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Abstract—There has been a resurgence of interest in vector
architectures evident by recent adoption of vector extensions in
mainstream instruction set architectures. Traditionally, vector en-
gines leverage this abstraction by exploiting its inherent regularity
to increase performance and efficiency. Recent work on SRAM-
based compute-in-memory has shown promise in reducing the area
overhead of these engines. In this work, we propose ephemeral
vector engines (EVE) where we leverage SRAM-based compute-
in-memory techniques as well as bit-peripheral computations to
facilitate efficient vector execution. EVE uses a novel approach of
bit-hybrid execution, striking a balance between throughput and
latency. Evaluated on the Rodinia and RiVEC benchmark suites,
EVE achieves almost 8× speed-up compared to an out-of-order
processor and 4.59× compared to an integrated vector unit. EVE
achieves speed-ups comparable to an aggressive decoupled vector
unit and increases the area-normalized performance by over 2× .
By repurposing SRAM arrays in the L2 cache to create ephemeral
vector execution units, EVE is able to efficiently achieve high per-
formance while incurring as little as 11.7% area overhead.

I. INTRODUCTION

As technology scaling fails to provide regular improvements
in transistor performance and efficiency [15, 19], there is a
resurgence of interest in vector architectures demonstrated by
ARM SVE [56, 57] and RISC-V RVV [43]. Traditionally, vec-
tor execution has been achieved either through simplified sub-
word packed SIMD units or through aggressive long-vector
engines [16, 32, 45, 60]. There is an emerging trend towards
next-generation vector architectures, which provide unified ab-
stractions suitable for a variety of different micro-architectures
and implementations (see Table I). To implement these next-
generation vector architectures, one can either use an integrated
vector unit (IV) or a decoupled vector engine (DV). Integrated
vector units are typically tightly coupled into the pipeline of the
control processor. These units incur lower area overhead as they
reuse the control processor execution hardware and often support
short hardware vector lengths. Decoupled vector engines, on the
other hand, are often loosely coupled with the control processor
and incur higher area overhead as they use aggressive execution
hardware and support long hardware vector lengths. There is
a fundamental tension between performance and area among
these next-generation vector micro-architectures: (1) integrated
vector units achieve modest performance in accelerating regular
data-parallel workloads while costing modest area overhead; (2)
decoupled vector engines have significantly better performance
at significantly higher area overhead. This paper seeks to address
this tension: Is it possible to achieve the performance of de-
coupled vector engines with the area overhead of integrated
vector units?

Compute-in-memory (CIM) is a novel approach to reduce the
area overhead associated with accelerating data-parallel kernels,
offering a promising path to solving this tension. There are mul-

TABLE I. A SUMMARY OF VECTOR ARCHITECTURES.

Attribute Packed
SIMD

Long
Vector

Next
Generation

Length fixed, short scalable, long scalable
Element Width variable fixed variable
Predication limited full full
Cross-Element Ops full limited full
Memory Gather/Scatter limited full full

Integration integrated decoupled either
Speculative Execution yes no either
Compute Pipeline integrated decoupled either
Memory Bandwidth modest large either
Memory Latency low high either

tiple flavors of CIM targeting different technologies: DRAM-
based compute-in-memory (D-CIM) [28, 33, 34, 50], RRAM-
based compute-in-memory (R-CIM) [10, 13, 14, 35, 41, 54, 55],
and SRAM-based compute-in-memory (S-CIM) [2–4, 17, 23, 30,
51, 52, 61]. This work focuses on S-CIM since it can be readily
implemented in current state-of-the-art processes and enables
closer integration with general-purpose processors. Prior work
on S-CIM leverages bit-line computation [30] to perform simple
bit-wise logical operations through a single read of a traditional
SRAM. Complex integer, fixed-point, and floating-point opera-
tions can be executed in-situ by additional peripheral hardware.
There are two key challenges when leveraging S-CIM to acceler-
ate data-parallel workloads: (1) S-CIM Programming: offering
a compelling abstraction enabling wider applicability and flex-
ible programmability, and (2) S-CIM Serialization Latency:
mitigating the latency overhead incurred by the serialized nature
of S-CIM in both compute and memory operations.

Duality cache [23] is a recent work that leverages S-CIM tech-
niques to accelerate data-parallel workloads in a coarse-grain
fashion. Duality cache addresses the S-CIM programming chal-
lenge by adopting a SIMT abstraction. The shared last-level
cache (LLC) in a chip multi-processor (CMP) can be reconfig-
ured to create a large SIMT-style execution engine on demand.
Leveraging S-CIM techniques, memory arrays in the LLC are
used to create a large number of bit-serial arithmetic and logical
units (ALUs). Due to the use of bit-serial execution, duality
cache suffers from high latencies (i.e., thousands of cycles) in
arithmetic operations. Incoming data need to be transposed to
fit the required layout for bit-serial execution, incurring area
overhead, additional latency, and reduced memory bandwidth.
The fully-transposed data along with the requirement for all
registers of a given thread to exist in the same column forces
duality cache to allocate architectural registers to neighboring
SRAM arrays. As a result, extra move operations are required to
execute instructions between registers in different SRAM arrays.
Duality cache requires extreme levels of parallelism to achieve
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compelling speed-ups; thus requiring most of the last-level cache
for execution. As a result, these limitations constrain the use of
duality cache to a coarse grain offloading model.

Though most of the prior work on S-CIM uses bit-serial ex-
ecution, VRAM [6] proposes bit-parallel as well as bit-serial
execution. VRAM shows that bit-parallel execution incurs simi-
lar area overhead to that of bit-serial. VRAM attempts to address
the S-CIM serialization latency challenge by using bit-parallel ex-
ecution. Whereas a bit-serial approach targets higher throughput,
a bit-parallel approach can achieve lower latencies in compute
and memory operations. CRAM [61] is another work on S-CIM
that addresses the S-CIM serialization latency challenge in bit-
serial execution by utilizing 8T-SRAM bit cells; thus, lowering
the serialization overhead. The compute operations in CRAM
still require high latencies due to their bit-serial nature. Due to
the use of 8T-SRAM bit cells, CRAM also incurs a high area
overhead.

In this paper, we propose ephemeral vector engines (EVE).
EVE leverages prior work on S-CIM to build efficient next-
generation vector accelerators with support for all 32-bit in-
teger instructions in the RISC-V vector extension [43]. By
way-partitioning a private L2 cache, each core in a CMP can
dynamically create an ephemeral private vector engine to exe-
cute data-parallel workloads efficiently. While state-of-the-art
S-CIM leverages bit-serial execution, EVE opts for a novel bit-
hybrid approach that balances the throughput and latency of
different vector instructions. Elements are broken down into
n-bit segments that are computed in bit-parallel fashion, while
the segments themselves are computed serially. SRAM arrays in
the partitioned cache ways are replaced with EVE SRAM, which
is a 6T-SRAM capable of bit-line computation with novel bit-
peripheral circuits added to enable complex bit-hybrid operations.
Additional units are added to: control instruction execution, han-
dle memory instructions, and perform reduction/cross-element
instructions.

We use a vertically integrated research methodology to evalu-
ate EVE on two important metrics: area and performance. We
generated a layout of a simplified EVE SRAM through a modi-
fied version of OpenRAM [27], which is a Python-based open-
source SRAM generator. The layout is composed of a simplified
version of the EVE circuits added to a bit-line compute capable
6T-SRAM. We used this layout to estimate the area overhead
of EVE circuits as well as the cycle-time penalty over a tra-
ditional SRAM array. For performance evaluation, we built a
cycle-approximate model of EVE in gem5 [7] and simulated its
performance on vectorized implementations of applications from
the Rodinia [11] and RiVEC [42] benchmark suites. To quan-
tify EVE’s performance, we built a cycle-approximate model of:
(1) a high-performance decoupled vector engine loosely based
on Tarantula [20], and (2) an integrated vector unit with hardware
vector length matching conventional SIMD width [44, 58]. EVE
is able to achieve comparable speedups to a decoupled vector
engine, and a 3.5× speedup over an integrated vector unit with
as little as 5% area overhead.

Our main contributions are: (1) a novel bit-hybrid execution
approach for SRAM-based compute-in-memory (S-CIM); to our
knowledge, this is the first work that proposes using bit-hybrid
approach for S-CIM to balance throughput and latency; (2) a
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Figure 1. Data Organization in S-CIM SRAM Array – varying number
of supported vector registers and the parallelization factor. Grey boxes
represent bit-cells. Each vector register is assigned a unique color.
Elements belonging to the same vector register are shown as boxes with
the same color. Triangles at the periphery represent in-situ ALUs.

template for EVE circuits that enables building EVE-n SRAM
capable of executing vector operations targeting n-bit-hybrid
execution; (3) an exploration of the cycle-level impact and trade-
offs of targeting different n-bit-hybrid execution configurations
(i.e., n = 1, 2, 4, 8, 16, 32); (4) the novel EVE micro-architecture
that enables transforming private L2 cache ways into ephemeral
vector engines; (5) a detailed evaluation of different EVE design
points exploring the trade-offs and impact of various design
parameters.

II. TAXONOMY OF VECTOR S-CIM

Previous work has examined two different design points for a
S-CIM vector engine: bit-serial [6,17,61] and bit-parallel [6]. In
bit-serial execution, the S-CIM vector engine breaks down each
32-bit element into one-bit segments (i.e., each element consists
of 32 segments). The engine processes one segment of a given
element in a cycle, and processes the rest of the segments serially.
In bit-parallel execution, the S-CIM vector engine processes each
32-bit element as one segment, where the segment size is 32
bits. We define the parallelization factor of a S-CIM vector
engine as the width (in bits) of a segment from an element that
the engine can process in parallel. Using this generalization,
bit-serial designs are expressed as S-CIM vector engines with a
parallelization factor of one. Bit-parallel designs are considered
to be S-CIM vector engines with a parallelization factor of n,
where n is the element size supported.

By varying the parallelization factor, there is a spectrum that
describes different S-CIM vector engines. On one end of the
spectrum, S-CIM vector engines with a parallelization factor
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of one (i.e., bit-serial) achieve higher throughput at the cost of
higher latency. On the other end of the spectrum, S-CIM vector
engines with a parallelization factor of 32 (i.e., bit-parallel, as-
suming 32-bit elements) achieve lower latency but lower through-
put as well. To explore this spectrum, we construct an analytical
model that calculates the throughput and latency for a vector
addition and multiplication. As one of the principles of S-CIM
is to have all input elements for an operation in the same column,
the model requires all vector registers, with all their elements, to
be stored in the same SRAM array.

Element Layout & Available In-Situ ALUs – Figure 1 shows
the layout of vector registers holding 8-bit elements in a 16× 16
SRAM while varying the parallelization factor. Considering an
ISA that supports one vector register, with parallelization factor
of one, each element occupies a single column in the SRAM.
As a result, half the SRAM is occupied providing storage for 16
elements. By increasing the parallelization factor, the segment
size increases while the number of segments decreases. As each
segment occupies a row, the number of elements for the vector
register decreases; thus, lowering the number of available in-situ
ALUs.

Starting with a parallelization factor of one, as the number of
supported vector registers increases, the utilization of the SRAM
grows as well. Each column in the SRAM can be used as an ALU
performing in-situ computation of corresponding elements from
different vector registers. As Figure 1 shows, the SRAM reaches
balanced utilization with two vector registers. However, to sup-
port more vector registers, some of the columns are repurposed
to hold the additional registers, reducing the number of in-situ
ALUs. With higher parallelization factor, the SRAM can support
more vector registers without reaching column under-utilization,
as each vector register is composed of fewer segments. But, high
parallelization factors struggle to increase the row utilization of
the SRAM unless provided with more vector registers. Figure 2
shows the latency and throughput for vector addition and mul-
tiplication as the parallelization factor increases for a S-CIM
vector engine implemented using a 256× 256 SRAM with 32
vector register support.

Latency – Figure 2 shows the latency for a vector addition and
multiplication normalized to that of parallelization factor of one.
As the parallelization factor increases, the number of segments
decreases accordingly; because the number of cycles required
to perform a vector addition and multiplication correlates to the
number of segments, the latency of these operations decreases as
well. However, one can observe from Figure 2 that the latency
is not linearly correlated with the number of segments. The
insight behind this is the control overhead induced by initializing
counters and control branching to process segments serially.

Throughput – Figure 2 shows the throughput for a vector
addition and multiplication. Starting with a parallelization factor
of one, the S-CIM vector engine experiences column under-
utilization (as previously exemplified in Figure 1). As the paral-
lelization factor increases, the elements are composed of fewer
segments; as a result, the column under-utilization is lessened
and the throughput increases despite having the same number of
in-situ ALUs (since the latency of the in-stu ALUs decreases).
The throughput peaks when the parallelization factor reaches
four, achieving balanced utilization for the S-CIM SRAM. Be-
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Figure 2. Latency and Throughput of Add/Logic and Multiply vs. Paral-
lelization Factor – achieved by a 256× 256 S-CIM SRAM assuming
32 vector register support normalized to latency and throughput of
parallelization factor of 1. The number of in-situ ALUs for each paral-
lelization factor is shown between parentheses in the X-axis.

yond balanced utilization, the S-CIM vector engine experiences
row under-utilization and the number of in-situ ALUs is de-
creased causing a drop in the throughput. Although, as discussed
previously, the latency will decrease further as the parallelization
factor increases, the decrease is not enough to compensate for
the reduction in the number of in-situ ALUs.

Key Insights – This section shows that both bit-serial and bit-
parallel are sub-optimal and induce problems such as row and
columnunder-utilization; moreover, the taxonomy shows that
targeting bit-hybrid, which is neither bit-serial nor bit-parallel is
the optimal design decision. To our knowledge, EVE is the first
to make this observation and explore bit-hybrid design space.
Previous work has predominantly explored either bit-serial or
bit-parallel. Duality cache, which leverages bit-serial execution,
tried to mitigate column under-utilization by dividing vector reg-
isters into four banks and introducing explicit move instructions
inserted automatically through compiler analysis. As a result,
duality cache binaries are not optimal nor portable across de-
signs with different sub-array sizes. EVE’s elegant bit-hybrid
approach alleviates column under-utilization without the need
for compiler solutions, making its binaries optimal and portable
regardless of underlying hardware micro-architecture.

III. EVE CIRCUITS

EVE transforms traditional 6T-SRAM into a vector execution
unit with additional peripheral hardware. EVE leverages the
circuit design from prior work on VRAM [6] as the peripheral
hardware with additional modifications to expand its function-
ality, as well as proposing a new circuit design for supporting
bit-hybrid execution. Considering a 32-bit precision, EVE-1
utilizes a bit-serial execution approach, and EVE-32 utilizes a
bit-parallel execution approach, while EVE-n targets an n-bit-
hybrid execution approach.

The EVE circuits are composed of different stacks of logic
and take as an input the outcome of a bit-line compute operation.
To perform bit-line compute, the differential sense-amplifiers in
the traditional 6T-SRAM are modified to support reconfigurable
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differential and single-ended modes. An extra address decoder
is added to allow the selection of two wordlines simultaneously.
When performing bit-line compute operation, the two operands
(i.e., wordlines) to the operation are selected simultaneously and
the sense-amplifiers are set in the single-ended mode. As a result,
the sense-amplifiers compute four bit-wise logical operations:
and, nand, or, and nor. The circuit for an EVE design is a
stack composed of a mixture from seven different layers of logic:
bus logic, XOR/XNOR logic, add logic, XRegister, mask logic,
constant shifter, and spare shifter. Due to the bit-wise nature
of the bus logic and XOR/XNOR logic, these layers are the
same for the different EVE designs. The bus logic amplifies
and selects one of the values computed by the circuit for it to be
written back to the SRAM. Meanwhile, the XOR/XNOR logic
uses the nand and or values to compute the xor and xnor of
the operands.

The remainder of the section discusses the design of the rest
of the stack for each EVE design. The first, second, and third
subsections discuss EVE-1 circuit, EVE-32 circuit, and EVE-n
circuit, respectively.

A. EVE-1 Bit-Serial Circuit
For bit-serial execution, EVE adopts the same circuit from

BS-VRAM [6]. Although BS-VRAM does not support variable
shift/rotation, the functionality can be supported through pro-
gramming the circuits to perform multiple reads/writes to shift
the values down the rows without any changes to the circuit. The
circuit, shown in Figure 3(c), is composed of five different layers
of logic: bus logic, XOR/XNOR logic, add logic, XRegister, and
mask logic. Each column of the circuit operates independently to
process 32-bit values over the span of multiple cycles. The add
logic in each column employs a single block of a Manchester
carry chain to perform a one-bit full addition and uses the xor
and xnor of the operands along with the carry-in to calculate
the sum and the carry-out of the addition. The XRegister stores
the carry bit from the add logic facilitating a bit-serial addition.
The mask logic contains a single latch to store the masking value
for each column. The input to the latch can either be one of the
values computed by the circuit or an input mask provided to the
SRAM.

B. EVE-32 Bit-Parallel Circuit
The bit-parallel circuit in EVE heavily leverages the BP-

VRAM [6]. However, as BP-VRAM does not support variable
shifts and rotations, extra layers have been added to the stack to
facilitate shift/rotation support. The EVE-32 bit-parallel circuit,
Figure 3(d), is composed of six layers: bus logic, XOR/XNOR
logic, add logic, XRegister, constant shifter, and mask logic. To
support bit-parallel execution, sets of 32 columns are grouped
together to process 32-bit values in parallel. For the add logic,
a Manchester carry chain is used to propagate the carry of the
addition and calculate the sum value. Each column contains a
block of the Manchester carry chain. The XRegister is config-
ured as a shift-right register spanning the 32 columns. This shift
register aids in executing complex operations such as multiplica-
tion, division, and shift. The mask logic contains a single latch
to store the masking value. As with bit-serial circuit, the input to
the latch can either be the values computed by the circuit or an
input mask provided to the SRAM through port.

In contrast to BP-VRAM, the EVE-32 bit-parallel circuit con-
tains constant shifter logic, which can be used to execute variable
shifts and rotations. After the 32-bit value is loaded, the shifter
supports conditional one-bit shift-left and shift-right. The condi-
tion for the constant shifter is set to the mask of the column. By
leveraging conditional one-bit shifts, a variable shift larger than
one can be computed through binary decomposition of the shift
amount. For each bit of the shift amount at index i, the constant
shifter can perform multiple one-bit shifts adding up to 2i. By
iterating through the shift amount, the conditional one-bit shifts
will eventually add-up to the shift amount over time.

C. EVE-n Bit-Hybrid Circuit

The circuit for EVE-n is set at design-time to target a fixed
parallelization factor of n (where n is between 2 and 16). The
EVE-n bit-hybrid circuit, shown in Figure 3(e), is composed of
seven layers: bus logic, XOR/XNOR logic, add logic, XRegis-
ter, constant shifter, spare shifter, and mask logic. The circuit
processes one n-bit segment from an element in parallel and
processes each of the n-bit segments serially. Every n columns
of the SRAM are grouped together to form an n-bit-hybrid ex-
ecution hardware. The mask logic contains a single latch used
to store a mask for a given column. The mask can be set to
the XRegister value of either the most-significant column or the
least-significant column of the segment. The mask latch can also
be loaded with either a value computed by the circuit or an input
mask.

For the add logic, an n-bit Manchester carry chain is used to
perform full n-bit addition between two segments. The carry is
then stored in one of the unused flip-flops in the spare shifter.
Then, the flip-flop is wired to provide the stored carry as the
carry-in for the Manchester carry chain when adding subsequent
segments. Unlike the bit-serial circuit, the XRegister is no longer
used to store the carry. As a result, the XRegister can be used as
a shift-right register, similar to the XRegister in the bit-parallel
circuit, to implement complex operations such as multiplication,
division, and shift.

For shifts, the bit-hybrid circuit employs a constant shifter,
similar to the bit-parallel circuit. However, the constant shifter
processes one n-bit segment. To be able to perform shifts in
a bit-hybrid fashion across multiple segments, the bit-hybrid
circuit utilizes a newly introduced layer called the spare shifter.
As the constant shifter performs either a left or right shift, the
spare shifter performs either a right or left shift, respectively. As
a result, the spare shifter can store the bits being shifted across
different segments. A binary decomposition approach similar to
that of the bit-parallel circuit can be used to perform the shifts
efficiently. However, indices in the shift amount greater than
or equal to log2(n) implies shifts that are integer multiples of
the segment size. These shifts can be performed much more
efficiently in the bit-hybrid approach than the bit-parallel ap-
proach by conditionally shifting a whole n-bit segment rather
than performing conditional one-bit shifts.

IV. EVE MICRO-PROGRAMMING

To control the circuits detailed in Section III, EVE employs
a micro-operation (µop) abstraction that enables writing micro-
programs to achieve elaborate and more complex operations.

4



Way 0

eWay 0

Way n/2

eWay n/2

...

...

DTUCTRL

O3

I$ D$

L2

VCU/Cache Controller

L2 Bank 0

VSU

Way 0

eWay 0

Way n/2

eWay n/2

...

... ...

DTU

VMUVRU

O3

I$ D$

L2

...

LLC
SLICE 0

LLC
SLICE k

CTRL

eWay x
EVE
RAM ...

...

EVE
RAM

EVE
RAM

EVE
RAM

EVE
RAM

EVE
RAM

EVE
RAM

EVE
RAM

...

EVE
RAM ...

... EVE
RAM

EVE
RAM

EVE
RAM

EVE
RAM

EVE
RAM

EVE
RAM

EVE
RAM

...

L2 Bank m

(a) EVE Micro-Architecture

VMU
IDX Data

ProcLogic LineBuffer

ReqLogic LineBuffer

S
T

Q

L
D

Q

LineBuffer

Shuffle/Align

VMUReq

To L2 Cache From L2 Cache

Shuffle/Align

Metadata

Data Out

(b) EVE VMU Micro-Architecture

Bitline Logic

Bitcell Array

D
ec

od
er

 B

sn

BL BLB

sel_and

sel_nand

sel_nor

sel_or

sel_xnor

sel_xor

data_out mask_out

sel_data_in

data_in

sel_add

ff_en

cin
wr_xreg_bus
wr_xreg_sr

sel_mask_in
sel_mask_lsb
sel_mask_msb

lsb

mask_in

srn

msb

coutb

srn+1

l_shft
r_shft

enen+1

s_shft

en_shft

en_shft

l_shft
r_shft

s_shft

sn-1

sn+1

en-1

cin_init

cin_shft

cout

sn

sel_shft

sn

BL BLB

sel_and

sel_nand

sel_nor

sel_or

sel_xnor

sel_xor

data_out mask_out

sel_data_in

data_in

sel_add

ff_en

cin
wr_xreg_bus
wr_xreg_sr

sel_mask_in
sel_mask_lsb
sel_mask_msb

lsb

mask_in

srn

msb

coutb

srn+1

en_shft

l_shft
r_shft

s_shft

sn-1

sn+1

sn

sel_shft

BL BLB

sel_and

sel_nand

sel_nor

sel_or

sel_xnor

sel_xor

data_out mask_out

sel_data_in

data_in

sel_add

ff_en

wr_xreg_cin
wr_xreg_init

sel_mask_in
sel_mask_bus

mask_in

msb

srn+1

xreg_init_val

lat_en

Constant Shifter

Bus Logic

XOR/XNOR Logic

ADD Logic

XRegister

Mask Logic

Bus Logic

XOR/XNOR Logic

ADD Logic

XRegister

Mask Logic

Constant Shifter

Bus Logic

XOR/XNOR Logic

ADD Logic

Spare Shifters

Mask Logic

XRegister

Bitline Logic

D
ec

od
er

 A

Bitcell Array

D
ec

od
er

 B

Bitline Logic

Bitcell Array

D
ec

od
er

 A
D

ec
od

er
 A

D
ec

od
er

 B
(c) EVE-1 Bit-Serial Circuits
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bus logic, XOR/XNOR logic,
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(d) EVE-32 Bit-Parallel Circuits

Composed of six different stacks:

bus logic, XOR/XNOR logic,

add logic, XRegister,
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and mask logic.

(e) EVE-n Bit-Hybrid Circuits

Composed of seven different stacks:
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Blue lines indicate connections and components
existing only in the LSB column of the segment.
Red lines indicate connections and components
existing only in the MSB column of the segment.
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Figure 3. EVE General Overview.
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TABLE II. SUPPORTED EVE MICRO-OPERATIONS

µOperation Syntax Description

read rd a, src read a into src
write wr d, src write src into d

blc blc a, b Bit-line compute of a and b
lshift lshft 1-bit shift left
rshift rshft 1-bit shift right
lrotate lrot 1-bit rotate left
rrotate rrot 1-bit rotate right
mask shft m_shft 1-bit shift right the XRegister

cnt_init init cnt, val Initialize cnt to val
cnt_decr decr cnt Decrement cnt by one

bnz bnz cnt, l Branch to l if cnt is not zero
bnd bnd cnt, l Branch to l if cnt is a decade
ret ret Conclude execution

m = {msb, lsb, none}. src = {(n)and, (n)or, x(n)or, add, shift,
data_in}.

Each µop takes a single cycle to execute and has well-defined
inputs, outputs, and side-effects. This section discusses the
micro-programming aspect of EVE. The remainder of the section
is organized as follows: the first subsection details the different
µops implemented by EVE; the second subsection explains how
different macro-operations are implemented by sequencing µops.

A. Micro-Operations

Table II lists all the µops supported by the different EVE-n
types. There are three types of µops: arithmetic, control, and
counter. Arithmetic µops are executed by the circuits detailed in
Section III. The other two categories are executed by the control
logic. The arithmetic µops are as follows:

Read/Write (rd/wr a, [dst/src], mask) – These two
µops represent the native SRAM read and write. The µops take
as an operand a destination to store resulting read; or a source
to the data for the write. Both operations include a mask as an
operand to specify which columns in the SRAM are active or
inactive to during the read/write execution.

Bit-Line Compute (blc a, b) – This µop performs a bit-
line compute operation between wordline a and wordline b.
It starts by enabling the two decoders in the EVE SRAM at
the same time selecting wordline a and wordline b. Then, it
reconfigures the sense-amplifiers in the single-ended mode. The
sense-amplifiers will compute the bit-wise logical operations
and feed these values to the rest of the EVE circuitry (as detailed
in Section III).

Shift Left/Right ({l,r}shift) – This µop shifts left or right
the content of the constant shifter by one bit. For EVE-32, only
the constant shifter is shifted. However, for EVE-n, a spare
shifter is shifted along side the constant shifter; whereas constant
shifter is shifted left or right, the spare shifter is shifted in the
opposite direction (i.e., right or left, respectively).

Writeback (wb d, src, mask) – After executing a blc,
this µop reads the value computed by src and writes it back
to the EVE SRAM at wordline d. The destination of the write
back can also be specified as the mask registers (XRegister in
bit-parallel and bit-hybrid; mask logic in bit-serial).

Mask Shift (mask_shift) – Conditionally executing µops is
an essential functionality to implement more complex operations.

Each µop is used as op c, a, b: a
and b are inputs and result is stored in
c. addr_X is the row address of X. La-
bels are at beginning of line with colon.
Control µops use labels as destination to
redirect execution flow. <(X): indicates
setting the data_in port to X. (;): indi-
cates a mini-op composed of 2-3 µops.

loop:
1 blc addr_a, addr_b

; decr seg_cnt[0]
2 wb addr_c, add

; bnz seg_cnt[0], loop

(a) add

1 rd addr_b, mask
iter:

2 blc addr_c, addr_a
; decr seg_cnt[0]

3 wb addr_c, add, mask
4 rd addr_c
5 wb addr_c, add

; bnz seg_cnt[0], iter
6 mask_shift

; decr bit_cnt[0]
; bnz bit_cnt[0], iter

7 rd addr_b, mask
; decr seg_cnt[1]
; bnz.r seg_cnt[1], iter

(b) mul

Figure 4. add and mul Macro-Operations.

To this end, for bit-hybrid and bit-parallel, the mask_shift µop
allows manipulating a masking value through left shifts without
the need for additional SRAM reads. The mask registers can be
loaded through the writeback µop.

EVE also includes 12 counters shared by all EVE SRAMs.
These 12 counters are grouped in three groups: segment coun-
ters (seg_cnt[0-3]), bit counters (bit_cnt[0-3]), and array
counters (arr_cnt[0-3]). Each group is initialized to a spe-
cific value, which is inferred from the EVE configuration and
execution state: segment counters are initialized to number of
segments; bit counters are initialized to the size of a segment;
and array counters are initialized to the number of active arrays
in EVE. When the value in any counter is decremented to zero,
the counter is reset to its initial value. There are two sets of
flags that track the state of each counter: zero flags, which track
whether each counter has reached zero and was reset to its initial
value; and binary decade flags, which record whether a counter
has reached a binary decade. Counter µops are executed by a
unified control logic to manipulate the counters. The first counter
µop is: incr/decr cnt, which increments or decrements the
counter specified by cnt. The second µop is: init_cnt, val,
which forces an initialization of the counter cnt to the value
val—a specified value inferred from the EVE configuration and
execution state (e.g., number of segments, segment size, or active
SRAM arrays).

To control which arithmetic µop is executed, a unified con-
trol logic in EVE executes control µops to manipulate a micro-
program counter (µpc). There are two classes of control µops:
conditional and non-conditional branches. Conditional branches
inspect the corresponding flags for a specified counter and redi-
rect the µpc depending on the condition (i.e., whether the counter
has reached zero or a binary decade). The inspected flag for
the conditional branch is reset when the branch is taken. Non-
conditional branches change the µpc unconditionally. Control
µops include a ret flag, which indicates whether the current
micro-program is terminating execution and yielding to the next
micro-program.

B. Macro-Operations

Incoming vector instructions are broken down into one or
multiple macro-operations. Any of these macro-operations to
be executed on the EVE SRAM are implemented as a micro-
program (µprogram), which is a sequence of micro-operation
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tuples with a micro-program counter (µpc). Each tuple is com-
posed of three µops, one from each of the three categories out-
lined in Section IV-A. These tuples are executed in the following
order: counter µop, arithmetic µop, then control µop.

Figure 4 shows the bit-hybrid implementation of integer addi-
tion and multiplication. Integer addition, shown in Figure 4(a),
is executed by performing bit-line computation between corre-
sponding segments of the two input elements and then writing
the results back into the destination. The carry between the seg-
ments is propagated through the XRegister in the circuits. The
control required for the addition is straight-forward requiring a
simple count-down loop that iterates over the segments. Integer
multiplication, shown in Figure 4(b), requires more elaborate
control with nested loops and different bounds for each loop.
An outer loop (iter) handles predicated summation for calcu-
lating the multiplication (executed for N iterations, where N is
the number of segments). The inner loop (i.e., iter_add) will
perform a single addition (executed for n iterations).

V. EVE MICRO-ARCHITECTURE

This section introduces the micro-architecture of EVE, shown
in Figure 3(a). To facilitate vector execution in EVE SRAM, a
vector control unit (VCU) converts incoming vector instructions
into one or multiple macro-operations. Depending on the type of
the vector instruction, these macro-operations are broken down
into a sequence of micro-operations by the help of either the vec-
tor sequencing unit (VSU), vector memory unit (VMU), and/or
vector reduction unit (VRU). The stream of micro-operations are
executed by EVE SRAMs. The VCU coordinates execution and
communitcation between these units and the control processor.

A. Vector Control Unit (VCU)

When the control processor encounters a vector instruction, it
is inserted in a special queue waiting to be sent to EVE. As EVE
does not support precise exceptions, the vector instructions are
only sent to EVE when they are ready to be committed. Once
sent, the vector instructions are committed to unblock the com-
mit logic. Then, these vector instructions are sent to the retire
stage awaiting a response confirming their execution from EVE.
If a writeback is to be expected from a vector instruction (e.g.,
vmv.x.s), the instruction instead stalls the commit logic await-
ing a response from EVE with the value to be written back. To
manage scalar-vector memory dependency and synchronization,
a new vector memory fence instruction (vmfence) is introduced.
The vmfence stalls the load-store-queue (LSQ) in the control
processor from executing subsequent memory instructions until
the vector fence is committed. Once at the commit stage and
all pending scalar stores are performed, the vmfence is sent to
EVE and stalls awaiting a response.

Once a vector instruction is received, depending on its type,
the VCU creates one or more macro-operations. For non-
memory and non-cross-element vector instructions, the VCU
creates one macro-operation that is executed by the VSU. Once
the macro-operation is sent to the VSU, the vector instruction
is marked as performed and a response is sent back to the con-
trol processor. For memory and reduction/cross-element vec-
tor instructions, two macro-operations are created: one macro-
operation is sent to either the VMU to initialize the memory

operation or the VRU to initialize the reduction operation; the
second macro-operation is sent to the VSU to perform the nec-
essary reads and writes from and to EVE SRAMs. For vector
memory fences, the VCU stalls waiting for the VMU to drain all
pending loads and stores; then, the VCU executes the fence by
simply sending a response to the control processor.

B. Vector Sequencing Unit (VSU)
The vector sequencing unit (VSU) decodes macro-operations

into a sequence of µops primitives as explained in Section IV.
The arithmetic µops are sent to the EVE SRAMs for execution
as detailed by Section III, while the control µops are executed
by the VSU. The VSU consists of a micro-program counter
(µPC), a ROM containing the implementation of various macro-
operations, and a set of counters. The µPC points to the current
µop tuple being executed in the ROM. The set of counters help
in executing the various control µops (e.g., bnz and bnd). The
VSU adapts a VLIW-style encoding for the µops. Each cycle the
VSU fetches a tuple consisting of three different µops: arithmetic
µop, counters µop, and control µop. These micro-operations can
be executed simultaneously. Executing control µops with the
ret flag set will cause the VSU to stop executing the current
vector instruction and return control back to the VCU.

C. Vector Memory Unit (VMU)
Executing memory vector instructions requires upwards of

three macro-operations. One macro-operation is for the vector
memory unit (VMU), shown in Figure 3(b), to generate the
appropriate requests to the memory sub-system. Another one or
two macro-operations are for the VSU to read indices required
for the memory requests and to perform a read/write for the
data from/to the EVE SRAMs. The VMU guarantees cache-line
alignment for the generated requests. As for memory gather
instructions (i.e., indexed loads), the VMU generates a request
for each element and then performs the required gather operation
to form a single line to be written back into the EVE SRAMs.
An extra port in the TLB of the control processor is dedicated for
the VMU to translate virtual addresses for incoming requests.

D. Vector Reduction Unit (VRU)
The vector reduction unit handles reduction instructions (e.g.,

vredsum.vs) as well as vector cross-element instructions (e.g.,
vrgather). Assuming B bits as the read/write bandwidth of the
EVE SRAM, the VSU is able to stream B

n elements (i.e., E) into
the VRU for a given n-bit-hybrid configuration. The elements
will be streamed one segment at a time over the span of 32

n for
32-bit element precision. The VRU contains E ports with each
port having a fast lightweight detranspose logic. After all the seg-
ments are received, the VRU begins performing a dot-operation
between the received E elements and the previously reduced E
elements. Finally, once all elements have been streamed and the
dot-operation between the different element groups has finished,
the VRU starts a linear reduction operation. Then, the VSU is-
sues a read µop to read the calculated reduction and either write
it to a destination vector register or back to the control processor.

E. Reconfigurability
To support EVE, half of the private L2 cache ways are de-

signed with EVE SRAMs instead of vanilla SRAMs. These
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ways operate as normal SRAMs performing reads and writes for
L2. To spawn EVE, the associativity for the private L2 cache is
reduced by half and the L2 cache is way-partitioned into: cache
ways, and EVE ways. The cache ways constitute the new L2
and continue to service the core with no impact, aside from the
halved associativity. The overhead of setting up EVE consists
of reconfiguring the remaining EVE ways through invalidating
cache lines residing in these ways. For dirty cache lines, the
invalidation causes a writeback to the LLC. For clean cache lines,
the invalidation causes the number of sharers to be decremented
in the LLC, depending on the cache protocol. Since the cache
hierarchy is inclusive, the invalidation and write-back to LLC
should scale linearly with the number of cache lines (i.e., each
cache line should incur constant number of cycles to invalidate
in L1 and write-back to the LLC). To achieve this, a simple FSM
machine and a counter can iterate through the reconfigured EVE
ways causing the L2 to stall. However, the core can continue to
be serviced from L1 as long as no misses are encountered. To
reconfigure EVE ways back to L2 cache, there is no overhead
and simply the cache associativity can be increased with all the
cache lines returned to the L2 cache initialized as invalid.

VI. CIRCUITS EVALUATION

This section discusses the evaluation methodology and results
of EVE’s circuits.

A. Methodology
To evaluate the circuit of the different EVE designs with vary-

ing parallelization factors, we leveraged OpenRAM [27], which
is an open-source Python-based memory generator. OpenRAM
was modified to generate layout of an SRAM memory capable of
bit-line computation on a 28nm technology node. Bit-line com-
putation required an additional decoder to the SRAM as well as
modifying the sense-amplifiers to support reconfigurable modes:
differential and single-ended. A simplified version of the EVE-1
and EVE-32 circuits were implemented and used as an estimate
for the proposed circuits. The simplified version lacked support
for constant shifting; but, otherwise, matched the rest of the
proposed circuits. The simplified circuits were implemented and
laid out on the aforementioned 28nm technology node and they
passed DRC and LVS checks. After the simplified circuits were
verified through SPICE simulations, they were added as modules
to OpenRAM. Then, OpenRAM was modified to include these
circuits as part of the peripheral hardware for EVE SRAM. By
leveraging the flexibility of OpenRAM, once OpenRAM was
capable of generating EVE-1 and EVE-32 SRAMs, multiple
designs of bit-parallel EVE SRAM (i.e., EVE-32) with varying
bit-precision (b) were generated effortlessly (i.e., b = {2, 4, 8,
16, 32}). Each b bit-parallel EVE SRAM was used as proxy
to analyze b-bit-hybrid EVE SRAMs as both designs have the
same critical combinational path (i.e., carry propagation). Cycle-
time for the EVE-n SRAM was estimated through the extracted
netlist for the SRAM generated by OpenRAM. Area overhead
was estimated by inspecting the layout of the simplified circuits
adding estimated area from the missing stacks.

B. Results
OpenRAM was used to generate the layout of a 256× 128 sim-

plified EVE SRAM, which includes the simplified EVE circuit

TABLE III. SIMULATED SYSTEMS

IO Single-issue in-order RV64GC core:
• L1I: 1-cycle-hit 4-way 32KB, 16 MSHRs
• L1D: 2-cycle-hit 4-way 32KB, 16 MSHRs
• L2: 8-way 8-bank 8-cycle-hit 512KB, 32 MSHRs

O3 Out-of-order 8-way RV64GC core:
• Same L1I, L1D, and L2 as IO

O3+IV Small vector unit integrated into O3:
• Same L1I, L1D, and L2 as O3
• IV: 4-element VL, out-of-order issue, 3 exec pipes

O3+DV Decoupled vector engine connected to O3:
• Same L1I, L1D, and L2 as O3
• DV: 64-element VL, in-order issue, 4 exec pipes

O3+EVE EVE engine connected to O3:
• Same L1I and L1D as O3
• L2: 4-way 8-bank 8-cycle-hit 256KB in vector mode
• EVE-x: in-order issue, 1 exec pipe
• VL (elements):
• EVE-{1,2,4}=2048
• EVE-8=1024
• EVE-16=512
• EVE-32=256

LLC Same for all systems: 16-way, 12-cycle-hit & 2MB, 32 MSHRs

Memory Same for all systems: single-channel DDR4-2400

in its peripheral hardware. The layout passed the DRC and LVS
checks for the 28nm technology node. Schematic circuits for
the full bit-serial, bit-parallel, and bit-hybrid EVE configuration
was built and used to verify correct functionality.

According to the layout, the 256× 128 simplified EVE SRAM
incurs 8.2% area overhead compared to a vanilla 28nm SRAM
generated by OpenRAM. By estimating the additional stacks
for the different designs, EVE-1 incurs 9.0% area overhead,
EVE-x (bit-hybrid) incurs 15.6% area overhead, and EVE-32
incurs 12.6% area overhead. An EVE SRAM is composed of
two banked 256× 128 sub-arrays, further reducing the area over-
heads by half: EVE-1 (4.5% ), EVE-x (7.8% ), and EVE-32
(6.3% ). As for the cycle-time, the baseline vanilla SRAM has a
cycle-time of 1.025ns with the read logic being the critical tim-
ing path. By estimating n-bit-hybrid circuit through bit-parallel
circuit with n-bit precision, our analysis shows that n-bit-hybrid
(with n <= 8) has a cycle-time equivalent to that of the base-
line with no penalty. However, targeting 16-bit-hybrid incurs a
cycle-time penalty of about 15% (cycle time of 1.175ns ). 32-
bit-hybrid configuration further increases the overhead to 51%
(cycle-time of 1.55ns ).

Vanilla SRAM supports two basic operations: read, and write.
EVE SRAM supports read and write basic operations as well
as extra operations (shown in Table II). According to power
analysis conducted on the extracted netlist from the layout, EVE
SRAM energy for the basic operations (i.e., read and write)
are similar to the vanilla SRAM. Other than bit-line compute
operation (blc), the extra operations supported by EVE SRAMs
incur much lower energy since no sense-amplifiers nor bit-line
pre-charging is involved. Bit-line compute (blc) in EVE SRAM
incur around 20% higher energy when compared to a read (the
most energy-expensive operation in the vanilla SRAM). Despite
the energy increase, EVE is energy-efficient since no energy-
expensive data movements are needed through the H-tree.
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Figure 5. Overview of Decoupled Vector Engine (O3+DV).

VII. ARCHITECTURE EVALUATION

This section discusses the performance methodology and eval-
uation of the different EVE designs.

A. Methodology
To model the performance of the different EVE designs, we

leveraged gem5 [7, 36, 59], which is a cycle-approximate simu-
lator. We built cycle-approximate models for EVE-n and other
baseline systems in gem5 and verified their correctness. In our
modeling, we used two core types as the scalar baselines: out-
of-order (O3) and in-order (IO). For the O3 core, we leveraged
gem5’s out-of-order core. As for IO core, we developed our own
single-issue, in-order core. For the memory sub-system, we used
ARM’s CHI cache coherency model [25]. We modified ARM
CHI to include special ports to connect vector units to either the
L2 cache or the LLC, while modeling arbitration between the L1
and the vector unit.

To quantify the performance of EVE, we leveraged two scalar
baselines and two vector baselines, detailed in Table III. The
two scalar baselines are in-order core (IO) and out-of-order core
(O3).The two vector baselines are: integrated vector unit added
to an out-of-order core (O3+IV) (loosely based on [44, 58]) and
decoupled vector unit (shown in Figure 5) added to an out-of-
order core (O3+DV) (loosely based on [20]). IV shares three
execution pipes with the control core (two floating-point/SIMD
pipes, and memory execution pipe) and shares the load-store
queue. Constant strides and indexed memory operations are
decomposed to micro-operations and handled as scalar loads/s-
tores by the load-store queue. As for DV, it has four execution
pipes: simple integer, pipelined complex integer, iterative com-
plex integer/cross-element, and memory execution pipe. DV

includes a detailed model of a vector memory unit (VMU) ca-
pable of performing unit-stride, strided, and indexed memory
operations. The VMU uses its TLB port to translate addresses for
each generated cacheline memory request. Our model accounts
for the request generation and address translation with one cycle
and it assumes translated addresses always hit in the TLB.

We built a flexible cycle-approximate model of EVE in gem5
to calculate the performance of the different EVE-n designs. The
model contains four units: vector control unit (VCU), vector
sequencing unit (VSU), vector reduction unit (VRU), and vector
memory unit (VMU). The control processor sends a vector re-
quest to EVE upon encountering a vector instruction in commit
stage. The VCU handles the incoming vector requests as well as
the outgoing vector responses. The VCU forwards the requests
in the order received to the VSU and the VMU. The VSU per-
forms a micro-decoding and starts executing the micro-program
for the vector request. Each generated µops from the VSU is
sent to the EVE SRAMs in one cycle. The VSU stalls special
read/write µops from/to the DTU until the data is ready. Our
model performs a separation between execution and timing by
using the µops to estimate timing while execution for the vector
instructions happens functionally.

We evaluated the performance of the different EVE designs
on applications form Rodinia [11] and RiVEC [42] benchmark
suites (shown in Table IV). The applications were vectorized
manually using vector intrinsics in LLVM 13. The character-
ization of the scalar and vector versions of the applications is
detailed in Table IV.

B. Results

Figure 6 shows the simulated performance (normalized to IO)
of the different EVE designs against other baselines. Table IV
details the performance of the different EVE designs normalized
to different baselines. O3+DV achieves the best performance
on the chosen data-parallel workloads, as expected. On aver-
age, O3+DV achieves 21.58× speedup over the in-order scalar
baseline (IO). O3+IV achieves a speedup of 5.58× over IO and
1.74× speedup over out-of-order scalar baseline (O3). Among
all the different EVE designs, EVE-8 achieves the best perfor-
mance of 25.60× over the IO baseline, which is comparable
to O3+DV performance. EVE-16 achieves the best next per-
formance among EVE designs; however, EVE-16 suffers from
a cycle-time penalty that affects its scalar performance. As a
result, EVE-8 is a very compelling design point incurring modest
overhead, yet achieving performance comparable to a decoupled
vector unit.

EVE incurs a modest area overhead making it area-
comparable to O3+IV. The VMU employed by EVE is similar
and sized equivalently to O3+IV’s VMU. EVE requires only
eight data transpose units (DTUs). Each DTU is equivalent in
size to half a sub-array. The ROM required for to implement
the macro-operations is equivalent to one sub-array. In total,
EVE incurs a 7.8% increase in the number of sub-arrays in the
L2 cache (which contains 64 sub-arrays). Considering EVE-8,
the circuits incur 7.8% area overhead, but since only half the
SRAMs are EVE SRAMs, the circuit overhead is 3.9% . Overall,
EVE-8 incurs a total area overhead of 11.7% . EVE in its best
configuration can achieve 4.59× performance speedups over

9



TABLE IV. BENCHMARK APPLICATIONS

Su
ite

Scalar Vector (VL=64) Speedup vs. O3+IV E-8 vs.

Name Input DIns IOc DIns VI% ctrl ialu imul xe us st idx prd DOp VO% VPar WInf ArInt DV E-1 E-2 E-4 E-8 E-16 E-32 E-1 E-32

vvadd k 8.388M 75.5M 205M 1.6M 42% 20 20 0 0 7 0 0 0 35.5M 96% 22.6 0.47 0.33 3.64 3.19 3.23 3.24 3.28 3.23 3.38 1.03 0.97
mmult k 1024 8.60B 48.5B 151M 44% 25 25 25 0 25 0 0 0 3.35B 97% 22.2 0.39 2.00 4.42 0.93 1.84 3.55 5.34 5.29 4.60 5.71 1.16

k-means ro 10Kx34 2.11B 3.59B 51.5M 46% 1 52 18 ∼0 ∼0 10 7 1 1.53B 98% 29.8 0.72 2.44 2.28 1.22 1.32 1.35 1.86 1.82 1.51 1.53 1.24
pathfinder ro 5Mx10 1.08B 2.43B 22.5M 50% 31 37 0 0 16 0 0 25 513M 97% 22.8 0.48 1.20 8.11 5.37 6.27 6.33 6.30 6.30 6.20 1.17 1.02
jacobi-2d rv 2Kx10 1.59B 8.50B 35.4M 44% 8 50 8 17 7 0 0 0 940M 98% 26.6 0.59 4.50 6.36 6.18 9.50 11.30 13.49 13.50 12.69 2.18 1.06
backprop ro 524K 1.17B 15.7B 21.5M 39% 13 19 25 ∼0 5 12 0 0 488M 96% 22.7 0.42 1.00 2.14 2.01 2.05 2.07 2.07 2.06 2.06 1.03 1.01
sw g 2070 1.38B 1.69B 20.4M 39% 10 55 0 11 10 14 0 10 433M 97% 21.2 0.31 2.75 3.44 2.43 3.97 5.32 6.21 6.14 5.08 2.55 1.22

geomean 3.87 2.88 3.64 4.03 4.59 4.55 4.16 1.59 1.10

k = kernel, ro = rodinia, rv = RiVEC, g = genomics, DIns = number of dynamic instructions in ROI, IOc = number of cycles to run on an in-order core, VI% = percent of dynamic instructions
that are of vector type, ctrl = vector control instructions, ialu = vector integer alu instructions, imul = vector integer multiplication and division instructions, xe = vector cross-element
instructions, us = vector unit stride memory instructions, st = vector constant stride memory instructions, idx = vector indexed memory instructions, prd = predicated vector instructions,
DOps = total number of operations (scalar instructions + vector instructions × active vector length), VO% = percent of operations performed by vector unit, VPar = logical parallelism (total
ops / dynamic instructions in vectorized program), WInf = work inflation (total ops in vectorized program / dynamic instructions in scalar program), ArInt = arithmetic intensity (mathematical
operations / memory operations) for vector unit, DV = O3+DV, E-x = EVE-x, geomean = calculated for: {k-means, pathfinder, jacobi-2d, backprop, sw}.

Figure 6. Performance Evaluation – performance of the different EVE configuration on applications from Rodinia and RiVEC benchmark suite
normalized to the performance of an in-order core.

Figure 7. Execution Breakdown – profiling execution breakdown between different categories (normalized to EVE-1 execution time); busy=executing
useful work; vru_stall=VRU structural hazard stall; ld_mem_stall=load memory stall; st_mem_stall=store memory stall; ld_dt_stall=load transposing
stall; st_dt_stall=store detransposing stall; vmu_stall=VMU structural hazard stall; empty_stall=empty cycle stall; dep_stall=register dependency
stall.

Figure 8. Cache-Induced Stalls in the VMU – showing the percentage of time the VMU is faced with a stall when sending a request to the LLC.
These stalls do not necessarily cause a bubble/stall in execution as they can be hidden by overlapping outstanding compute in EVE.
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the O3+IV. By achieving higher performance at a similar area
overhead, EVE is more area-efficient than O3+IV.

Compute Throughput – Figure 7 shows the execution break-
down of different EVE designs running several applications.
The execution breakdown, normalized to EVE-1, clearly shows
the column under-utilization effect in S-CIM: the percentage of
time where EVE is busy executing useful work goes down as the
parallelization factor increases until balanced utilization (i.e.,
EVE-4), then it starts to increase due to row under-utilization
and slower clock. The reason behind this behavior is: despite
the hardware vector length being constant, the latency of the in-
situ ALUs decreases going from EVE-1 to EVE-4 (with EVE-4
being balanced utilization), giving EVE higher compute through-
put and thus requiring less time to perform the same amount of
work; beyond EVE-4, row under-utilization coupled with slower
clock (for EVE-16, and EVE-32 only) causes lower compute
throughput and thus EVE requires more time to perform the
same amount of work.

For applications that are memory-bound (i.e., vvadd,
pathfinder, backprop-int), the execution time for the different
parallelization factors is dominated by memory stalls. Therefore,
compute throughput have a negligible impact on the overall per-
formance. vvadd is inherently memory bound, while the others
(as will be shown later) are faced with hardware limitations from
the memory sub-system.

Transpose/Detranspose Overhead – Although EVE employs
a very conservative transpose units, the transpose/detranspose
overhead is minimal in most applications, as shown in Figure 7.
One of the applications that experience measurable overhead
from transpose/detranspose is vvadd, which is heavily memory
bound. In vvadd, the bandwidth of transpose/detranspose in
EVE fails to match the bandwidth of the data streaming from the
cache sub-system. As a result, the transpose units start to induce
negligible stalls. pathfinder is a the only application that show
significant transpose/detranspose overheads. EVE struggles to
overlap compute with transpose/detranspose and as a result, the
execution stalls waiting for the data.

In EVE-1, the transpose/detranspose overhead is insignificant
regardless of the application. Due to its low compute throughput,
EVE-1 is able to overlap execution with the transpose/detrans-
pose operation. This effect is more prominent in mmult, which
is compute-bound. As the compute throughput increases starting
from EVE-1 till EVE-4, the transpose/detranspose overhead in-
creases while memory stalls are non-existent; EVE-32, however,
requires no transpose/detranspose and, therefore, has higher per-
formance despite the increase in its compute time. For pathfinder
(which has a significant transpose/detranspose overhead), EVE-
32 achieves higher performance despite its lowered compute
throughput, also. In sw, the lack of transpose/detranspose opera-
tion for EVE-32 allows it to match EVE-16 performance while
still having lower compute throughput and frequency.

Limited MSHR Effect – For applications dominated by mem-
ory stalls, as explained before, some are inherently memory-
bound, while others are limited by the number of available
MSHRs in the LLC. Figure 8 shows the percentage of execution
time in which the VMU experiences a stall in issuing a cache
request. Execution breakdown for kmeans-int indicates a sig-
nificant amount of memory stalls; these stalls are explained by

Figure 8 as it shows that the VMU experiences cache-induced
stalls for almost half of the execution time between EVE-1 and
EVE-4. In EVE-8, however, due to row under-utilization, the
hardware vector length is halved and, thus, the required num-
ber of MSHRs is also halved. Indeed Figure 8 shows that the
cache-induced stalls are reduced by more than half. As the
hardware vector length is halved further for EVE-16 and EVE-
32, the cache request stalls in the VMU keep on decreasing
further. Although similar behavior is observed in pathfinder
enabling EVE-8 in achieving the highest performance, the trans-
pose/detranspose overhead is a bottleneck in achieving higher
performance. Finally, backprop-int performs strided-memory
operations with a very large stride. As a result, no two elements
in these operations would reside in the same cacheline, and
thus this application requires significantly more MSHRs than
available. This is further shown in Figure 8 where the VMU
experiences cache-induced stalls for more than 90% of the time
while executing backprop-int. While these stalls are lowered
as the parallelization factor increases and the hardware vector
length is halved, the decrease in these stalls is very minimal
and indicates a significant limitation on the number of available
MSHRs.

Energy/Power Analysis – According our evaluation of EVE
circuits, the peak power consumption of the SRAM arrays is
expected to increase by 20% . Although this figure might look
concerning, performing vector operations in EVE requires a
mixture of multiple µops, and as such the expected power con-
sumption overhead is lower than 20% . Previous work [2, 17, 23]
have shown the energy efficiency of S-CIM execution, and more
recent work [6] have shown that different execution paradigms
have comparable energy efficiency. EVE leverages these energy
efficient S-CIM execution techniques with bit-hybrid execution.
Moreover, vector execution in EVE is energy-efficient as it elim-
inates the need for highly multi-ported vector register files that
incur high access energy. Also, since the compute is fused with
storage, there is no need for expensive redundant data move-
ment from private L2 caches (through the costly H-tree) to these
highly multi-ported vector register files, only to be read again to
the functional units.

Area Efficiency Analysis – The best design point of EVE
achieves comparable performance to O3+DV while incurring
an area overhead equivalent to O3+IV. Compared to O3 core,
the O3+IV baseline area is estimated to be 1.10× , while the
O3+DV baseline area is estimated to be 2.00× . As for EVE
design points, EVE-1 has an area estimate of 1.10× , EVE-2
through EVE-16 has an area overhead of 1.12× , and EVE-32
has an area overhead of 1.11× . The best EVE best design point,
EVE-8, is able to increase performance by 4.59× at comparable
area overhead to the O3+IV. EVE-8 also achieves over twice the
area-normalized performance compared to O3+DV. EVE-8 is
able to attain higher area-normalized performance than O3+DV
by achieving comparable performance at a much lower area-
overhead.

VIII. RELATED WORK

Conventional vector processing architectures use dedicated
long-vector engines to accelerate data-parallel computation [1,
16,20,60]. These machines achieve incredibly high performance
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on data parallel workloads at the expense of a significant cost
in area. Subword packed SIMD is an attempt to reap some
of the same benefits as conventional vector processing without
paying the same area overhead. These designs re-use many of the
scalar components of a processor to perform vector operations
[29,40,53]. However, their performance is limited by the lack of
available hardware units and limited instruction sets. Recently,
next-generation scalable vector length ISA extensions which
are flexible enough to support both of the traditional hardware
paradigms have been developed [9, 12, 43, 46, 58]. These vector
extensions also have the flexibility to support new developments
in the vector processing space, like EVE.

Traditional processing-in-memory (PIM) techniques have pri-
marily involved implementing computation logic in DRAM
chips [18, 38, 39]. The goal of these implementations is to
address the memory bandwidth wall by reducing the amount
of data transfer across the system memory bus. Some recent
variations have leveraged 3D manufacturing techniques to re-
duce the amount of change required to the physical design of the
memory circuits [5, 21]. These designs aim to address the fact
that modifying DRAM chips is a difficult proposition due to the
incredibly high circuit density and desire for wide compatibility
by implementing the compute circuitry on separate chips that
can be assembled with 3D manufacturing techniques.

While traditional processing-in-memory (PIM) focuses on
bringing compute closer to data, in-situ processing proposes to
reconfigure the memory into compute engines achieving higher
efficiency and performance. Rowclone [49] is among the earliest
work to explore transforming DRAM into a compute engine
capable of in-DRAM row cloning. Ambit [50] and DRISA [34]
proposed transforming the DRAM into an accelerator capable
of massive bit-wise logical operations between multiple rows.
ComputeDRAM [24] explores implementing this technique with
entirely stock DRAM chips.

While the work on in-situ processing-in-DRAM seems promis-
ing and can be explored beyond rudimentary bit-wise logical op-
erations, special technology considerations and reduced margins-
of-error make DRAM a difficult choice. Instead, SRAM is a
more promising venue to explore in-situ processing. Jeloka et.
al. [30, 31] introduces the bit-line compute technique, which per-
forms digital bit-wise logical operations between SRAM rows.
Bit-line compute constitutes an important precursor to subse-
quent processing-in-SRAM work. Compute caches [2] uses bit-
line compute to transform the caches in a chip multi-processor
into bit-wise logical compute engines.

Further work based on bit-line compute explored extending
its functionality by utilizing a bit-serial approach to complex
integer and floating-point operations. This work has demon-
strated the ability to use bit-line compute to transform caches in
a CMP into fixed-function accelerators for neural networks [17]
and single-instruction-multiple-threads (SIMT) engine [23]. To
mitigate transposing data, Wang et. al. [61] explored adding
bit-line compute to an 8T-SRAM allowing the computation to
be performed horizontally in the compute-bitline (CBL), while
data read and writes are performed on the vertical bitlines. The
8T bitcell hinders its use in traditional caches due to low den-
sity. EVE leverages traditional 6T-SRAM, thus retaining high
density and can be used in traditional caches. VRAM [6] ex-

plored utilizing bit-serial and bit-parallel execution paradigms
to extend the functionality of bit-line compute. As bit-serial
execution achieves high throughput but high latency and bit-
parallel execution achieves lower latency at the expense of lower
throughput [6], EVE proposes bit-hybrid execution to balance
throughput and latency.

Another line of work [8, 26, 37, 62–64] on in-situ compute-
in-memory explores leveraging associative compute abstraction
[22, 47, 48]. Some work in this space proposes utilizing analog
compute on emerging resistive technology [26,62,64] to perform
the computations. However, analog compute accuracy suffers
due to process variation. Other work utilizes CAM search/multi-
write [8,37,63] to perform the computations, incurring extremely
long latencies for the operations.

IX. CONCLUSION

This paper have demonstrated the ability of EVE to resolve
the tension between performance and area in next-generation
vector architectures. By employing S-CIM techniques, EVE
is able to reconfigure private L2 caches into ephemeral vector
engines with comparable performance to decoupled vector en-
gines. EVE addresses the S-CIM programming challenge by
adopting next-generation vector architecture. For the S-CIM
serialization latency challenge, EVE mitigates the serialization
overhead by proposing a novel bit-hybrid execution mechanism
facilitating lower compute and memory latency. EVE serves as
a motivation for future research in leveraging S-CIM techniques
to alleviate the area-overhead associated with next-generation
vector architectures.

Future research can explore techniques to further increase the
utilization of the S-CIM arrays (e.g., dynamic micro-operation
scheduling) with the help of an out-of-order core. Since EVE
is an example of a new breed of very long next-generation vec-
tor machines, another line of research is to address the limited
MSHRs efficiently to enable EVE to utilize memory bandwidth
more effectively. EVE have shown the ability of bit-hybrid execu-
tion paradigm in balancing latency and throughput with focus on
integer operations, future research can explore using bit-hybrid
execution to balance latency and throughput for floating-point
operations.
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