ENGRI 1210
 Recent Trends in Computer Engineering

Christopher Batten

School of Electrical and Computer Engineering
Cornell University

The Complexity of Modern Computer Systems

How can we manage all of this hardware and software complexity?

The Complexity of Modern Computer Systems

How can we manage all of this hardware and software complexity?

The Computer Systems Stack

The Computer Systems Stack

Mac OS X, Windows, Linux

Handles low-level hardware management

C Compiler
Transform programs into assembly

$$
\begin{aligned}
& \text { int } a=b+c ; \quad \text { add } \$ t 0, \$ t 1, \$ t 2 \\
& \mathrm{~A}[\mathrm{i}]=\mathrm{a} ;
\end{aligned}
$$

RISC-V Instruction Set
Instructions that machine executes

```
blez $a2, done
move $a7, $zero
li $t4, 99
move $a4, $a1
li $a3, 99
lw $a5, 0($a4)
```


The Computer Systems Stack

CS vs. Computer Engineering vs. EE

In its broadest definition, computer engineering is the development of the abstraction/implementation layers that allow us to execute information processing applications efficiently using available manufacturing technologies

Cornell Computer Engineering Curriculum

CS 4820 Intro to Analysis of Algorithms
CS 3110 Data Struct \& Functional Prog
CS 1110 / CS 1112 Intro to Computing
CS 2100 OO Programming \& Data Struct
ECE 3140 Embedded Systems
CS 3410 Computer System Org \& Prog
ECE 4760 Design with Microcontrollers
ECE 5760 Advanced SoC Design
ECE 4750 Computer Architecture
ECE 5745 Digital ASIC Design
ECE 2300 Digital Logic \& Computer Org
ECE 3150 Microelectronics
ECE 4740 Digital VLSI
ECE 4360 Nanofabrication
ECE 4070 Physics of Semiconductors

Application

Agenda

Algorithm

\square

PL

OS
Compiler
ISA
μ Arch
RTL
Gates
Circuits
Devices
Technology
Project Team

The Computer Systems Stack

Trends in Computer Engineering

Trend \#1: Bell's "Law"
Trend \#2: Moore’s "Law"
Trend \#3: The Specialization Era
Cornell Custom Silicon Systems

Trends in Computer Engineering

Gordon Bell's "Law" of Computer Classes

Effect of Technology on Near Term
 Computer Structures

Given certain components, hardware and software techniques, and user demands an accurate picture of computer near future can be plotted.
by C. Gordon Bell, Robert Chen and Satish Rege

1
he development of computers has been influenced by three factors: the
technology (i.e., the components technology (i.e., the components
from which we build); the hardware and software techniques we have learned to use, and the user (market)
The improvements in technolog The improvements in technology
seem to dominate in determining the possible resulting structures. Speci fically, we can observe the evolution This is a working paper and may not be
quoted or reproduced without witten perThis work was supported by the Advanced Research Projects A gency of the office of
he secretary of Def n se the Seretary of Defense
(F44620.70-Colion) and is monitroed by (F44620.70.-.0107) and is monitored by
tee Ait Force office of Scientific
Research
 computer (circa 1950). The
price has remained relatively constant and the performance
has increased, thereby increas has increased, thereby increas ing the effectiveness.
The minicomputer (circa 1965). The performance has been relatively constant, with only a factor of 10 increase from ~ 1960
to ~ 1970, and the price has decreased.
3. Very low cost, specialized digi-
tal systems., .. , desk calculator tal systems.e.,.g. desk calculators
(circa 1968). The basic techno(circa 1968). The basic techno
logy cost has decreased to price which makes mass produc price which
4. New, very large.
4. New, very large structures based
on a high degree of parallelism (circa 1971+). The packing density and the reliability of the
technology has increased, theretechnology has increased, there-
by making large, parallel computer fabrication feasible. These highly specialized structures
offer significant increase in the offer significant increase in the
performance/cost ratio for cerperin, usually large problems. The following sections will briefly discuss the evolution of computing
structures in terms of the technology and general techniques. Conventional computers and minicomputers will
then be discussed as the reeresent then be discussed as they represent
two of the common computer strue two of the common computer stru
tures. The next section will briefl
 programming.

COMPUTER/MARCH/APRIL 1972/29

- Vice-President of Engineering at Digital Equipment Corporation
- Helped found Microsoft Research
- 1972 paper in IEEE Computer

Trend \#1: Bell's "Law"

Roughly every decade a new, smaller, lower priced computer class forms based on a new programming platform resulting in entire new industries

M3: Michigan Micro Mote

Adapted from Y. Lee et al., JSSC, 2013.

Trend \#1: Bell's "Law"

Bell's "Law" predicts an Internet-of-Things and cloud computing which continuously demand more performance and better efficiency

Gordon Moore's "Law" of Technology Scaling

The experts look ahead

Cramming more components onto integrated circuits

```
With unit cost falling as the number of components per circuit rises, by 1975 economics may dictate squeezing as many as 65,000 components on a single silicon chip
By Gordon E. Moore
Director, Research and Development Laboratories, Faichild Semiconder
division of Fairchild Camera and Instrument Corp.
```

The future of integrated electronics is the future of electronics itself. The advantages of integration will bring about a proliferation of electronics, pushing this science into many
new areas. new areas.
Integrat computers or at least terminals connected to a central com-puter-automatic controls for automobiles, and personal portable communications equipment. The electronic wristBut the biggest potential lies in the produc
systems. In telephone communications, integrated circlig in digital filters will separate channels on multiplex equipment. Integrated circuits will also switch telephone circuits Computers will be mo Computers will be more powerful, and will be organized
in completety different ways. For example, memories built
of integrated electronics may be distributed throughout the
of integrated electronics may be distributed throughout the
The author
Or. Gordon E. Moore is one of
the new breed of electron
engineers, schooled in the enginierss, schooled in the
physicial sciences rather than in
electronics electronics. He earned a B.S.
degree in chemistry from the degree in chemistry from the
University of California and a Ph.D. degre in in physical
chemistry from the California chemistry from the California
Institute of Technology. He wa one of the founders of fairchil
Semiconductor and has been Semiconductor and has been
director ot teresarch and
development laboratories s sin ${ }_{1959}^{\text {developm }}$
machine instead of being concentrated in a central unit. In addition, the improved reliability made possible by integrated circuits will allow the construction of larger processing units.
Machines similar to those in existence today will be built at Machines similar to those in existence today will be built at Present and future
By integrated electronics, I mean all the various technologies which are referred to as microelectronics today as well as any additional ones that result in electronics func-
tions supplied to the user as irreducible units. These techtions supplied to the user as irreducible units. These tech-
nologies were first investigated in the late 1950's. The object was to miniaturize electronics equipment to include increasingly complex electronic functions in limited space with minimum weight. Several approaches evolved, including
microassembly techniques for individual components, thinmicroassembly techniques for individual components,
film structures and semiconductor integrated circuits. Each approach evolved rapidly and converged so that
each borrowed techniques from another. Many researchers each borrowed techniquess from another. Many researchers
believe the way of the future believe the way of the future to be a combination of the variThe advocates of semiconductor integrated circuitry are already using the inproved characteristics of thin-film resistors by applying such films directly to an active semiconduc-
tor substrate. Those advocating a technology based upon tor substrate. Those advocating a technnology based upon
films are developing sophisticated techniques for the attachment of active semiconductor devices to the passive film ar-
rays. rays. in equipmenproaches have worked well and are being used in equipment today.

- Co-founder of Fairchild Semiconductor
- Co-founder of Intel Corp
- 1965 paper in Electronics Magazine

Gordon Moore's "Law" of Technology Scaling

Activity: Specifications of Modern Processors

http://tiny.cc/engri1210-2

1. Breakout into groups of 3 students
2. Browse WikiChip or Intel Ark
3. Find a few processors
4. Enter year, frequency, core count, power in Google form

[^0]
Celerity System-on-Chip

UCSD, Washington, Cornell, Michigan w/ DARPA CRAFT Program

- $5 \times 5 \mathrm{~mm}$ in TSMC 16 nm FFC
- 385 million transistors
- 511 RISC-V cores
$\triangleright 5$ Linux-capable Rocket cores
\triangleright 496-core tiled manycore
- 10-core low-voltage array
- 1 BNN accelerator
- 1 synthesizable PLL
- 1 synthesizable LDO Vreg
- 3 clock domains
- 672-pin flip chip BGA package
- 9-months from PDK access to
 tape-out

Trend \#1: Bell's "Law"

Bell's "Law" predicts an Internet-of-Things and cloud computing which continuously demand more performance and better efficiency

Trend \#2: Moore's "Law"

Moore's "Law" predicts an exponential increasing number of transistors per chip, but power limitations have motivated a move to multicore processors

Unfortunately, multicore processors are not enough. What else can we do to use more transistors to meet the needs of loT and cloud?

Application

Algorithm

Agenda

\square

PL

OS
Compiler
ISA
μ Arch
RTL
Gates
Circuits
Devices
Technology

The Computer Systems Stack

Trends in Computer Engineering

Trend \#1: Bell's "Law"
Trend \#2: Moore’s "Law"
Trend \#3: The Specialization Era
Cornell Custom Silicon Systems
Project Team

Example Application Domain: Image Recognition

Machine Learning: Training vs. Inference

ImageNet Large-Scale Visual Recognition Challenge

Software: Deep Neural Networks

Accelerators for Machine Learning in the Cloud

NVIDIA DGX Hopper

- Graphics processor specialized just for accelerating machine learning
- Available as part of a complete system with both the software and hardware designed by NVIDIA

Google TPU v4

- Custom chip specifically designed to accelerate Google's TensorFlow C++ library
- Tightly integrated into Google's data centers

Microsoft Catapult

- Custom FPGA board for accelerating Bing search and machine learning
- Accelerators developed with/by app developers
- Tightly integrated into Microsoft data center's and cloud computing platforms

Accelerators for Machine Learning at the Edge

Amazon Echo

- Developing Al chips so Echo line can do more on-board processing
- Reduces need for round-trip to cloud
- Co-design the algorithms and the underlying hardware

Facebook Oculus

- Starting to design custom chips for Oculus VR headsets
- Significant performance demands under strict power requirements

Apple A15 Bionic

- 16-core Neural Engine

Top-five software companies are all building custom accelerators

- Facebook: w/ Intel, in-house Al chips
- Amazon: Echo, Oculus, networking chips
- Microsoft: Hiring for Al chips
- Google: TPU, Pixel, convergence
- Apple: SoCs for phones and laptops

Chip startup ecosystem for machine learning accelerators is thriving!

- Graphcore
- Nervana
- Cerebras
- Wave Computing
- Horizon Robotics
- Cambricon
- DeePhi
- Esperanto
- SambaNova
- Eyeriss
- Tenstorrent
- Mythic
- ThinkForce
- Groq
- Lightmatter

[^1]

Trend \#1: Bell's "Law"

Bell's "Law" predicts an Internet-of-Things and cloud computing which continuously demand more performance and better efficiency

Trend \#2: Moore's "Law"

Moore's "Law" predicts an exponential increasing number of transistors per chip, but power limitations have motivated a move to multicore processors

Trend \#3: The Specialization Era

Hardware specialization can use wealth of transistors to meet needs of IoT and cloud

Application

Agenda

Algorithm
\square
OS
Compiler
ISA
μ Arch
RTL
Gates
Circuits

The Computer Systems Stack

Trends in Computer Engineering Trend \#1: Bell's "Law"
Trend \#2: Moore's "Law"
Trend \#3: The Specialization Era

Devices

Technology

Cornell Computer Engineering Curriculum

ECE 4740 Digital VLSI
ECE 4360 Nanofabrication
ECE 4070 Physics of Semiconductors

Conventional Wisdom

It is not possible for underclassmen to build custom computer chips
Must wait until senior or graduate level classes

Cornell Project Teams

Call for new engineering project team proposals - Exchange

Associate Dean for Undergraduate Programs
Call for new engineering project team proposals
To: ENGRFACULTY-L, ENGRFACULTYINCSANDBEE-L,
ENGRACADEMICS-L, Cc: Lauren Stulgis,
Reply-To: Associate Dean for Undergraduate Programs

Colleagues,

Through a generous donor gift creating the Shen Fund for Social Impact we have the opportunity to fund multiple new engineering project teams. This program is designed to bring together new studentteants under a facuty members mentorsnip to address signiticant social challenges through novel and/or advanced-engineering solutions:- Falling under the Project Team Umbrella, the program will fund up to three new teams per year, with each supported for a three-year period at $\$ 30 \mathrm{~K} / \mathrm{yr}$. The teams will also be provided space and support to design and implement these projects.

Proposals may be submitted by either faculty looking to guide a group of students, or by students who will engage with a faculty member to form the teams.

Attached to this e-mail are three documents:

- Shen Fund FAQ Sp22.pdf: More fully describes the nature of the projects and the goals of the program (also copied to the e-mail below).
- Shen Fund Proposal Template Sp22.docx: Short project proposal form.
- Shen Funded Projects Summary_Sp22.pdf: A summary document of a currently funded teams.

The ideal project will likely develop through discussions with Lauren Stulgis (as director of the project teams) and me. Feel free to reach out to us with rough ideas and concepts and we can help to try to develop a viable proposal.

Proposals will be considered as they arrive, with discussions to strengthen each within the program constraints. The initial application is a simple document identifying the primary goals, technical challenges and plans, timeline and budget, and currently engaged personnel.

Proposals must be uploaded directly to Box by email to: Proposa.zeuyhp9wag5p8teo@u.box.com. The first round of decisions will be made based on submissions received by 11:59pm on Sunday, March 13, 2022.

Again, please feel free to contact me or Lauren Stulgis with any questions or to discuss potential projects.

Prof. Alan Zehnder

Associate Dean for Undergraduate Programs
177 Rhodes Hall
Phone: (607) 255-9181
email: eng_ugdean@cornell.edu

C2S2: Cornell Custom Silicon Systems Project Team

Three-year student-led project team to tapeout multiple custom chips in SkyWater 130nm to implement a proof-of-concept system for a campus partner

- Open RISC-V instruction set
- Open-Source VexRISCV μ contoller
- Open-Source OpenROAD chip flow
- Open PDK for SkyWater 130nm
- OpenMPW + Chiplgnite w/ efabless
- Custom system-on-chip
- Custom evaluation board
- Custom software stack

C2S2 Recruiting

- 60 students attended virtual summer information session
- 40 students applied to be on the leadership team
- 7 students selected to lead the team including sophomores, juniors, seniors from ECE, CS, and Engineering Management
- Student-led recruiting in early fall with over 100 students applying to be on the team
- 25 students selected in fall with five students joining in spring

C2S2 Team

- Students self-organized into five subteams
\triangleright Digital design subteam
\triangleright Analog design subteam
\triangleright Software subteam
\triangleright System architecture subteam
\triangleright Project management subteam

- Analog subteam was completely driven by student interest
\triangleright Reached out to domain experts at Cornell and industry to help
\triangleright Actively recruiting fellow students interested in analog design
\triangleright Very few analog tapeouts on SkyWater 130nm using open-source EDA tools, pushing the frontier of tooling!
\triangleright Planning on both an analog and digital tapeout

C2S2 Analog and Digital Subteams

C2S2 Software and System Architecture Subteams

C2S2 Project Management Subteam

- Reached out to over 30 instructors, researchers, and faculty across Cornell to find a campus partner interested in working with the team
- Campus partner will provide problem specification that can potentially be
 addressed through a custom system-on-chip
- Team has decided to work with the Cornell Lab of Ornithology to explore meeting unique weight and power constraints of on-bird tracking systems

C2S2 Community

- Coding sprints and hack-a-thons
- Organized C2S2 swag including T-shits, sweatshirts, stickers
- Social events like bowling and movie night
- Recruiting with companies
- Day trip to the SUNY Poly
 Nanofabrication facility

Cornell Custom Silicon Systems Project Team

The C2S2 project team is unique across the country!
Email c2s2-leaders-l@cornell.edu for more information

Application

Algorithm
PL
OS
Compiler
ISA
μ Arch
RTL
Gates
Circuits
Devices
Technology

Take-Away Points

- Computer engineering is the development of the abstraction/implementation layers that enable information processing applications to efficiently use available manufacturing technologies
- We are entering an exciting new specialization era which offers tremendous challenges and opportunities, which makes it a wonderful time to study and contribute to the field of computer engineering
- The Cornell Custom Silicon Systems project team is a unique way for underclassman to get practical hands-on experience across the entire computer systems stack (from apps to chips!)

[^0]: C. Batten, M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, K. Rupp \& [Y. Shao, IEEE Micro'15] \& [C. Leiserson, Science'20]

[^1]: C. Batten, M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, K. Rupp \& [Y. Shao, IEEE Micro'15] \& [C. Leiserson, Science'20]

