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The Computer Systems Stack

Technology

Application

Gap too large to bridge in one step
(but there are exceptions,
 e.g., a magnetic compass)
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The Computer Systems Stack

In its broadest definition, computer engineering is the
development of the abstraction/implementation layers that allow us to

execute information processing applications efficiently
using available manufacturing technologies
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Electrical Engr vs. Comp Sci vs. Comp Engr

In its broadest definition, computer engineering is the
development of the abstraction/implementation layers that allow us to

execute information processing applications efficiently
using available manufacturing technologies
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Computer Engineering is at the
interface between hardware and software
and considers the entire system
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Cornell Computer Engineering Curriculum
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ECE 2300 Digital Logic & Computer Org

ECE 3140 Embedded Systems

ECE 4750 Computer Architecture

ECE 4760 Design with Microcontrollers

ECE 2400 Computer Systems Programming
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Cornell Computer Engineering Curriculum
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Three Key Trends in Computer Engineering

RTL

Devices

ISA

PL
Algorithm

μArch

Technology

Application

OS

Gates
Circuits

Compilers

Trend #2:
Software/Arch
Interface Changing
Radically 

Trend #3:
Technology/Arch
Interface Changing
Radically 

Trend #1: Growing Diversity in
Applications and Systems 

Students entering the field of computer engineering
have a unique opportunity to shape the future of computing

and how it will impact society
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Bell’s Law

Roughly every decade a new, smaller, lower priced computer class forms
based on a new programming platform resulting in entire new industries
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M3: Michigan Micro Mote
230 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 48, NO. 1, JANUARY 2013

Fig. 2. Diagram and cross-sectional view of proposed 1.0 mm sensing platform.

means to protect the battery during the time period between

system assembly and deployment, wireless synchronization

and batch programming, and flexible design to enable use in
multiple application domains. A key challenge to implementing

such features in a very small form factor is the additional power

consumption incurred. To achieve long lifetime in a mm -scale

system, power consumption of each component must be ag-

gressively reduced to stay within a stringent power budget of

10 nW.

To this end, we propose a 1.0 mm general purpose recon-

figurable sensor node platform with a heterogeneous stackable
multi-layer structure. The key components implemented to re-

alize this form-factor includes ultra-low power C (Inter-In-

tegrated Circuit), a 228 pW standby power optical wakeup re-

ceiver, ultra-low power power management unit (PMU) and

brown-out detector (BOD).

II. SYSTEM OVERVIEW

The 1.0 mm sensing platform is designed with stacked

integrated circuit (IC) dies fabricated in three different tech-

nologies. Fig. 2 shows the dimension of each die and the

wirebonding scheme for electrical connectivity of the sensor

system. To enforce 1.0 mm volume, each layer measures less

than 2.21 1.1 mm and the length of each layer has to be

reduced by 140 m compared to the lower layer to provide

enough clearance for bond-wires. The height of each IC layer

is thinned to 50 m, while the custom thin-film Li battery is
150 m thick. The system’s die-stacked structure with wire-

bonding provides maximum functionality (or silicon area) per

unit volume and also enables easy expansion of the system

with additional layers. End users can create a sensor system

for new applications by designing an application-specific layer
in a preferred technology, which complies with the system

power and energy budget, and providing an identical inter-layer

communication interface.

Fig. 2 shows the system block diagram. The various com-

ponents in the system are categorized as CPU, memory, power

management, timer, and sensors.

CPU
The sensor system operation sequence is managed by a con-

trol microprocessor, which requires low computational perfor-

mance and hence can be optimized for low power operation.

However, some sensors, such as an imager, require high perfor-

mance for digital signal processing (DSP) operations. For this

reason, two ARM® Cortex-M0 processors are located in sepa-

rate layers with different functionality as follows:

1) The DSP CPU efficiently handles data streaming from
the imager (or other sensors), thus is built in 65 nm

CMOS (Layer 3) with a large 16 kB non-retentive SRAM

(NRSRAM). In such an advanced technology node, the

DSP CPU runs faster than the control CPU (fabricated in

180 nm) and accommodates the larger memory capacity

that is required for complex DSP operation. However, due

to the high leakage current in this process, the SRAM has

to be power-gated in standby mode and is non-retentive.

2) The CTRL CPU manages the system using an always-on

3 kB retentive SRAM (RSRAM) to maintain the stored op-

erating program, and is built in low leakage 180 nm CMOS

(Layer 4).

Adapted from Y. Lee et al., JSSC, 2013.
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Three Key Trends in Computer Engineering
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Activity: Specifications of Modern Processors

http://tiny.cc/engri1210-2

1. Breakout into groups of 3
students

2. Browse WikiChip

3. Find a few processors

4. Enter year, frequency, core count,
power in Google form
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Trends in High-Performance Processors
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(Thousands)

MIPS
R2K

Intel
P4

Data collected by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, C. Batten
1975 1980 1985 1990 1995 2000 2005 2010 2015

100

101

102

103

104

105

106

107

DEC
Alpha 
21264

Typical
Power (W)

Frequency
(MHz)

SPECint
Performance

~9%/year

~15%/year

ENGRI 1210 Recent Trends and Applications in Computer Engineering 12 / 32



The Computer Systems Stack • Trends in Computer Engineering • Hardware Xcel for Deep Learning

Parallelization & Specialization Are Now Critical
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Celerity System-on-Chip

UCSD, Washington, Cornell, Michigan w/ DARPA CRAFT Program

I 5 ⇥ 5mm in TSMC 16 nm FFC
I 385 million transistors
I 511 RISC-V cores

. 5 Linux-capable Rocket cores

. 496-core tiled manycore

. 10-core low-voltage array
I 1 BNN accelerator
I 1 synthesizable PLL
I 1 synthesizable LDO Vreg
I 3 clock domains
I 672-pin flip chip BGA package
I 9-months from PDK access to

tape-out
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Three Key Trends in Computer Engineering
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Technology Scaling is Slowing

1940 1955 1970 1985 2000 2015 2030

Sy
st

em
 P

er
fo

rm
an

ce

Vacuum
Tube

Discrete
Transistor

Integrated
Bipolar

Integrated
CMOS

7nm, ~50B Transistors

New Technologies
Vertical MOSFETs
Graphene
Carbon Nanotubes
Nanorelays
Quantum Computing
Molecular Computing
Memristers
Phase-Change Mem
Spintronics
3D Integration
Nanophotonics

Adapted from D. Brooks Keynote at NSF XPS Workshop, May 2015.
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Image Recognition

Starfish

Dog
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Training vs. Inference
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ImageNet Large-Scale Visual Recognition Challenge
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ML Hardware Acceleration in the Cloud

NVIDIA DGX-1
I Graphics processor

specialized just for
machine learning

I Available as part of a
complete system with
both the software and
hardware designed by
NVIDIA

Google TPU
I Custom chip specifically

designed to accelerate
Google’s TensorFlow
C++ library

I Tightly integrated into
Google’s data centers

I 15–30⇥ faster than
contemporary CPU and
GPUs

Microsoft Catapult
I Custom FPGA board for

accelerating Bing
search and machine
learning

I Accelerators developed
with/by app developers

I Tightly integrated into
Microsoft data center’s
and cloud computing
platforms
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ML Hardware Acceleration at the Edge

Amazon Echo
I Developing AI chips so

Echo line can do more
on-board processing

I Reduces need for
round-trip to cloud

I Co-design the algorithms
and the underlying
hardware

Facebook Oculus
I Starting to design custom

chips for Oculus VR
headsets

I Significant performance
demands under strict
power requirements

Movidius Myriad 2
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ML Acceleration Can Incorporate All Three Trends

G1

I1 =V1.G1

V1

G2

I2 =V2.G2

V2

I = I1 + I2 =
V1.G1 + V2.G2

(a) Multiply-Accumulate operation

DAC

S&H

ADC

Shift & Add

(b) Vector-Matrix Multiplier

S&H S&H S&H

DAC

DAC

DAC

Fig. 1. (a) Using a bitline to perform an analog sum of products operation.
(b) A memristor crossbar used as a vector-matrix multiplier.

Further, a Microsoft team [24] has built the best model to
date with a top-5 error rate of 4.94% – this surpasses the
human top-5 error rate of 5.1% [58]. The Microsoft network
also does not include any LRN layers. It is comprised of three
models: model A (178M parameters, 19 weight layers), model
B (183M parameters, 22 weight layers) and model C (330M
parameters, 22 weight layers).

We also examine the face detection problem. There are
several competitive algorithms with LRNs [12], [37], [49], and
without LRNs [67], [75]. DeepFace [75] achieves an accuracy
of 97.35% on the Labeled Faces in the Wild (LFW) Dataset.
It uses a Deep Neural Network with private kernels (120M
parameters, 8 weight layers) and no LRN.

We use the above state-of-the-art CNNs and DNNs without
LRN layers to compose our benchmark suite (Table II).
We note that not every CNN/DNN operation can be easily
integrated into every accelerator; it will therefore be important
to engage in algorithm-hardware co-design [17].

C. The DaDianNao Architecture
A single DaDianNao [9] chip (node) is made up of 16 tiles

and two central eDRAM banks connected by an on-chip fat-
tree network. A tile is made up of a neural functional unit
(NFU) and four eDRAM banks. An NFU has a pipeline with
multiple parallel multipliers, a tree of adders, and a transfer
function. These units typically operate on 16-bit inputs. For
the transfer function, two logical units are deployed, each
performing 16 piecewise interpolations (y=ax+b), the coeffi-
cients (a,b) of which are stored in two 16-entry SRAMs. The
pipeline is fed with data from SRAM buffers within the tile.
These buffers are themselves fed by eDRAM banks. Tiling
is used to maximize data reuse and reduce transfers in/out
of eDRAM banks. Synaptic weights are distributed across all
nodes/tiles and feed their local NFUs. Neuron outputs are
routed to eDRAM banks in the appropriate tiles. DaDianNao
processes one layer at a time, distributing those computations
across all tiles to maximize parallelism.

D. Memristor Dot Product Engines
Traditionally, memory arrays employ access transistors to

isolate individual cells. Recently, resistive memories, espe-
cially those with non-linear IV curves, have been implemented
with a crossbar architecture [74], [77]. As shown in Figure 1b,

every bitline is connected to every wordline via resistive
memory cells. Assume that the cells in the first column are
programmed to resistances R1, R2,..., Rn. The conductances
of these cells, G1, G2, ..., Gn, are the inverses of their
resistances. If voltages V1, V2,...,Vn are applied to each of
the n rows, cell i passes current Vi/Ri, or Vi⇥Gi into the
bitline, based on Kirchoff’s Law. As shown in Figure 1a, the
total current emerging from the bitline is the sum of currents
passed by each cell in the column. This current I represents
the value of a dot product operation, where one vector is the
set of input voltages at each row V and the second vector is
the set of cell conductances G in a column, i.e., I = V ⇥ G
(see Figure 1a).

The input voltages are applied to all the columns. The
currents emerging from each bitline can therefore represent the
outputs of neurons in multiple CNN output filters, where each
neuron is fed the same inputs, but each neuron has a different
set of synaptic weights (encoded as the conductances of cells
in that column). The crossbar shown in Figure 1b achieves very
high levels of parallelism – an m⇥n crossbar array performs
dot products on m-entry vectors for n different neurons in a
single step, i.e., it performs vector-matrix multiplication in a
single step.

A sample-and-hold (S&H) circuit receives the bitline current
and feeds it to a shared ADC unit (see Figure 1b). This con-
version of analog currents to digital values is necessary before
communicating the results to other digital units. Similarly, a
DAC unit converts digital input values into appropriate voltage
levels that are applied to each row.

The cells can be composed of any resistive memory technol-
ogy. In this work, we choose memristor technology because it
has an order of magnitude higher on/off ratio than PCM [35],
thus affording higher bit density or precision. The crossbar
is implemented with a 1T1R cell structure to facilitate more
precise writes to memristor cells [79]. For the input voltages
we are considering, i.e., DAC output voltage range, the pres-
ence of the access transistor per cell has no impact on the dot
product computation.

III. OVERALL ISAAC ORGANIZATION

We first present an overview of the ISAAC architecture,
followed by detailed discussions of each novel feature. At a
high level (Figure 2), an ISAAC chip is composed of a number
of tiles (labeled T), connected with an on-chip concentrated-
mesh (c-mesh). Each tile is composed of eDRAM buffers to
store input values, a number of in-situ multiply-accumulate
(IMA) units, and output registers to aggregate results, all
connected with a shared bus. The tile also has shift-and-add,
sigmoid, and max-pool units. Each IMA has a few crossbar
arrays and ADCs, connected with a shared bus. The IMA also
has input/output registers and shift-and-add units. A detailed
discussion of each component is deferred until Section VI.

The architecture is not used for in-the-field training; it is
only used for inference, which is the dominant operation in
several domains (e.g., domains where training is performed
once on a cluster of GPUs and those weights are deployed on
millions of devices to perform billions of inferences). Adapting
ISAAC for in-the-field training would require non-trivial effort
and is left for future work.
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Fig. 2. ISAAC architecture hierarchy.

After training has determined the weights for every neuron,
the weights are appropriately loaded into memristor cells with
a programming step. Control vectors are also loaded into each
tile to drive the finite state machines that steer inputs and
outputs correctly after every cycle.

During inference, inputs are provided to ISAAC through an
I/O interface and routed to the tiles implementing the first layer
of the CNN. A finite state machine in the tile sends these inputs
to appropriate IMAs. The dot-product operations involved in
convolutional and classifier layers are performed on crossbar
arrays; those results are sent to ADCs, and then aggregated
in output registers after any necessary shift-and-adds. The
aggregated result is then sent through the sigmoid operator and
stored in the eDRAM banks of the tiles processing the next
layer. The process continues until the final layer generates an
output that is sent to the I/O interface. The I/O interface is
also used to communicate with other ISAAC chips.

At a high level, ISAAC implements a hierarchy of
chips/tiles/IMAs/arrays and c-mesh/bus. While the hierarchy
is similar to that of DaDianNao, the internals of each tile and
IMA are very different. A hierarchical topology enables high
internal bandwidth, reduced data movement when aggregating
results, short bitlines and wordlines in crossbars, and efficient
resource partitioning across the many layers of a CNN.

IV. THE ISAAC PIPELINE

DaDianNao operates on one CNN layer at a time. All the
NFUs in the system are leveraged to perform the required
operations for one layer in parallel. The synaptic weights for
that layer are therefore scattered across eDRAM banks in all
tiles. The outputs are stored in eDRAM banks and serve as
inputs when the next layer begins its operation. DaDianNao
therefore maximizes throughput for one layer. This is possible
because it is relatively easy for an NFU to context-switch from
operating on one layer to operating on a different layer – it
simply has to bring in a new set of weights from the eDRAM
banks to its SRAM buffers.

On the other hand, ISAAC uses memristor arrays to not
only store the synaptic weights, but also perform computations

Fig. 3. Minimum input buffer requirement for a 6�6 input feature map with
a 2 � 2 kernel and stride of 1. The blue values in (a), (b), and (c) represent
the buffer contents for output neurons 0, 1, and 7, respectively.

on them. The in-situ computing approach requires that if an
array has been assigned to store weights for a CNN layer, it
has also been assigned to perform computations for that layer.
Therefore, unlike DaDianNao, the tiles/IMAs of ISAAC have
to be partitioned across the different CNN layers. For example,
tiles 0-3 may be assigned to layer 0, tiles 4-11 may be assigned
to layer 1, and so on. In this case, tiles 0-3 would store all
weights for layer 0 and perform all layer 0 computations in
parallel. The outputs of layer 0 are sent to some of tiles 4-11;
once enough layer 0 outputs are buffered, tiles 4-11 perform
the necessary layer 1 computations, and so on.

To understand how results are passed from one stage to the
next, consider the following example, also shown in Figure 3.
Assume that in layer i, a 6⇥6 input feature map is being
convolved with a 2⇥2 kernel to produce an output feature
map of the same size. Assume that a single column in an
IMA has the four synaptic weights used by the 2⇥2 kernel.
The previous layer i � 1 produces outputs 0, 1, 2, ..., 6, 7,
shown in blue in Figure 3a. All of these values are placed
in the input buffer for layer i. At this point, we have enough
information to start the operations for layer i. So inputs 0, 1,
6, 7 are fed to the IMA and they produce the first output for
layer i. When the previous layer i�1 produces output 8, it gets
placed in the input buffer for layer i. Value 0, shown in green
in Figure 3b, is no longer required and can be removed from
the input buffer. Thus, every new output produced by layer i�1
allows layer i to advance the kernel by one step and perform
a new operation of its own. Figure 3c shows the state of the
input buffer a few steps later. Note that a set of inputs is fed
to Nof convolutional kernels to produce Nof output feature
maps. Each of these kernels constitutes a different column in
a crossbar and operates on a set of inputs in parallel.

We now discuss two important properties of this pipeline.
The first pertains to buffering requirements in eDRAM be-
tween layers. The second pertains to synaptic weight storage
in memristors to design a balanced pipeline. In our discussions,
a cycle is the time required to perform one crossbar read
operation, which for most of our analysis is 100 ns.

The eDRAM buffer requirement between two layers is fixed.
In general terms, the size of the buffer is:

((Nx ⇥ (Ky � 1)) + Kx) ⇥ Nif

where Nx is the number of rows in the input feature map, Ky

and Kx are the number of columns and rows in the kernel,

I ISAAC: Convolutional neural network accelerator which uses in-situ
analog arithmetic in crossbars of emerging resistive memory devices

I Captures all three trends
. New applications and systems in ultra-low-power TinyML
. New software/architecture interface for accelerator
. New technology/architecture interface with non-traditional devices

Adapted from A. Shafiee et al., ISCA, 2016.
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Top-five software companies are
all making chips
I Facebook: w/ Intel, in-house AI chips?
I Amazon: Echo, Oculus, networking chips
I Microsoft: Hiring for AI chips?
I Google: TPU, Pixel, convergence?
I Apple: SoCs for phones, wireless chips

Chip startup ecosystem for
machine learning is thriving!

I Graphcore
I Nervana
I Cerebras
I Wave Computing
I Horizon Robotics
I Cambricon
I DeePhi
I Esperanto
I SambaNova
I Eyeriss
I Tenstorrent
I Mythic
I ThinkForce
I Groq
I Lightmatter
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Take-Away Points

I We are entering an exciting new era of computer
engineering
. Growing diversity in applications & systems
. Radical rethinking of software/architecture interface
. Radical rethinking of technology/architecture interface

I This era offers tremendous challenges and
opportunities, which makes it a wonderful time to
study and contribute to the field of computer
engineering
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ECE 2400 Computer Systems Programming
I Part 1: Procedural Programming

. introduction to C, variables, expressions, functions, conditional & iteration
statements, recursion, static types, pointers, arrays, dynamic allocation

I Part 2: Basic Algorithms and Data Structures
. lists, vectors, complexity analysis, insertion sort, selection sort, merge sort,

quick sort, hybrid sorts, stacks, queues, sets, maps

I Part 3: Multi-Paradigm Programming
. transition to C++, namespaces, flexible function prototypes, references,

exceptions, new/delete, object oriented programming (C++ classes and
inheritance for dynamic polymorphism), generic programming (C++
templates for static polymorphism), functional programming (C++ functors
and lambdas), concurrent programming (C++ threads and atomics)

I Part 4: More Algorithms and Data Structures
. trees (binary trees, binary search trees), tables (lookup tables, hash

tables), graphs (DFS, BFS, shortest path first, minimum spanning trees)
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ECE 2400 Computer Systems Programming

I PA1–3: Fundamentals
. PA1: Math functions
. PA2: List and Vector Data Structures
. PA3: Sorting Algorithms

I PA4–5: Handwriting Recognition System
. PA5: Linear vs. Binary Searching
. PA5: Trees vs. Tables

I Every programming assignment involves
. C/C++ “agile” programming
. State-of-the-art tools for build systems,

version control, continuous integration,
code coverage

. Performance measurement

. Short technical report
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Application-Level
Software

System-Level
Software
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Do I have to wait to really build a chip?
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C2S2: Cornell Custom Silicon Systems Project Team

Three-year student-led project team to tapeout
a custom chip in SkyWater 130nm to implement
a proof-of-concept system for a campus partner
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C2S2: Cornell Custom Silicon Systems Project Team

The C2S2 project team is
unique across the country!

Email cbatten@cornell.edu
for more information.
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