
Dynamic Power Redistribution in Failure Prone CMPs

Paula Petrica
Computer Systems Laboratory

Cornell University

Jonathan A. Winter
Google, Inc.

David H. Albonesi
Computer Systems Laboratory

Cornell University

Abstract
Future chip multiprocessors (CMPs) will be capable of de-
configuring faulty units in order to permit continued opera-
tion in the presence of wear-out failures. However, the un-
foreseen downside ispipeline imbalancedue to other por-
tions of the pipeline now being overprovisioned with respect to
the deconfigured functionality. We proposePowerTransfer, a
novel CMP architecture thatdynamically redistributesthe chip
power under pipeline imbalances that arise from deconfiguring
faulty units. Through rebalancing – achieved by temporary,
symbiotic deconfigurationof additional functionality within
the degraded core – power is harnessed for use elsewhere on
the chip. This additional power is dynamically transferred to
portions of the multi-core chip that can realize a performance
boost from turning on previously dormant microarchitectural
features. We demonstrate that a realistic PowerTransfer man-
ager achieves chip-wide performance improvements of up to
25% compared to architectures that simply deconfigure faulty
units without regard to the resulting inefficiency.

1 Introduction
Future multicore microprocessors built in sub-32nm technolo-
gies will present major design challenges for computer archi-
tects. One serious concern is the possibility ofaging defects
due to various transistor and wire failure mechanisms which
become more prominent with technology scaling [3]. The
possibility of wear-out failures and manufacturing defects is
already forcing multicore architects to include the capability
of deconfiguring various features that may become faulty, to
permit the system to operate in a degraded state in the event
of a hard error. While the most obvious redundancy to exploit
in a multicore microprocessor is at the core level, with many
failures possible over the lifetime of a product in the future –
and some failures even present at product shipment [3] – the
trend is towards finer grain levels of redundancy that permit
each core to operate in a degraded state.

One issue that has not yet been addressed is thepipeline
imbalancethat arises within a core with deconfigured func-
tionality. A modern pipeline is highly tuned to create a good
balance of hardware features within an individual stage, and
from stage to stage. Similarly, memory hierarchies are care-
fully designed to be well-balanced in terms of bus and cache
parameters at every level of the hierarchy. Deconfiguration
of a full unit (such as an ALU) or part of a unit (such as a
way of a cache) may now make another unit to beoverprovi-
sionedin terms of the extent of its features, but the degree of
overprovisioning is application dependent and not obvious to
exploit. Thus, current fault-resilient microarchitectures simply
deconfigure the faulty unit and live with the resulting hardware
imbalance that may arise.

But for some applications, this imbalance may be severe.
As we show later in Section 4, the loss of functionality due
to a fault and subsequent deconfiguration can lead to signifi-
cant imbalance in some applications, while others see little or
no effect. For the former, eliminating the imbalance through
symbiotic deconfigurationof additional units saves significant

power that can be better used elsewhere on the chip.
In this paper, we presentPowerTransfer, a novel multicore

architecture that exploits both the pipeline imbalances that
arise due to deconfiguration of a faulty structure, and the de-
configuration capability built-in to overprovisioned structures
to permit failover. PowerTransfer eliminates the power inef-
ficiencies that arise due to hardware deconfiguration through
additional deconfiguration of hardware that is no longer effi-
ciently used by the current running application. Because chips
operate within a maximum power limitation, the power saved
in this particular area of the chip can betransferredto another
portion of the die that can achieve a performance boost with
the added power. Our results demonstrate the potential for
large performance gains over designs that simply deconfigure
faulty units without concern for the resulting imbalance and
loss of power efficiency.

2 PowerTransfer Architecture
Figure 1 shows an overview of the PowerTransfer system.
During application execution, the four step cycle shown in
Figure 1 is repeated periodically as the hardware and software
characteristics change. The PowerTransfer Runtime Manager
(PTRM) is informed of faulty units that are deconfigured. Dur-
ing program execution, the PTRM determines which symbi-
otic deconfigurations can save power with minimal perfor-
mance costs. The saved power is then used to boost perfor-
mance. The simplest approach is to boost the performance of
the affected core, but this might not be the best use of chip-
wide power. Rather, PowerTransfer considers other possible
chip-wide candidates for the additional power.

Figure 1: PowerTransfer system.

In actuality, the situation is much more challenging than in
this simple example as there may be faults in each core and
several possible performance boosting techniques from which
to choose on each core. Moreover, the effectiveness of symbi-
otic deconfiguration and performance boosting is application-
dependent, which implies that new decisions must be made at
the same time granularity as the Operating System scheduler
time slice, which can be on the order of 100ms.



2.1 Symbiotic Deconfiguration
We assume a baseline CMP that can detect the onset of a per-
manent failure, determine the faulty unit, and deconfigure the
entire unit or some portion of the unit in order to keep the
affected core operational. The inherent redundancy of proces-
sor structures permits partial deconfiguration of faulty units in
order to ensure continued, albeit degraded, operation in the
presence of a permanent failure.

Processor pipelines are carefully tuned to create a good bal-
ance of hardware features within an individual stage, and from
stage to stage. Thus, the deconfiguration of a faulty unit may
lead to pipeline imbalances due to other fully functional parts
of the processor now being overprovisioned with respect to
the deconfigured units. If these overprovisioned units can be
accurately identified, then they can besymbiotically deconfig-
ured, or partially or entirely deconfigured even though they are
fault-free, with little expected performance impact, and often
larger power savings.

The physical process of symbiotically deconfiguring addi-
tional hardware is straightforward; we can simply leverage
the deconfiguration capability built-in at design time for fault
tolerance. The more challenging task is identifying hardware
pairs that have correlated performance and thus are good can-
didates for symbiotic deconfiguration in terms of performance
loss versus power savings. In PowerTransfer, the front-end,
integer and floating point back-ends, and the load/store unit
are deconfigurable by horizontal slices through the pipeline or
lanes1. For instance, for a four-way front-end with four lanes,
a hard error in one lane reduces the front-end to three-way.
This coarse-grain approach serves as a middle ground between
deconfiguring an entire core – for which the performance cost
is exceedingly high – and deconfiguring at fine granularity –
for which the built-in overhead for deconfiguration and iden-
tification of the faulty portion of the faulty unit is also very
high.

Figure 2 illustrates an example of symbiotic deconfigura-
tion. A fault in a particular unit causes an entire lane – encom-
passing a horizontal slice through all the units within the same
region (FE, BE, or LSQ) – to be deconfigured. Symbiotic de-
configuration of the other two regions also occurs at lane-level
granularity.

Figure 2: Example fault and symbiotic deconfiguration for a
fault in fetch. The front-end lane associated with the fault is
initially disabled, and the PTRM symbiotically deconfigures a
lane of the back-end.

1We also include a sub-bank of the associated queues within a lane, even
though they are not technically part of the pipeline “width.”

2.2 Performance Boosting
Once a margin of additional available power has been accumu-
lated by exploiting both permanent unit deconfiguration (due
to a fault) and symbiotic deconfiguration (for pipeline rebal-
ancing), this power is distributed among the chip components
in order to boost performance. This is accomplished by tem-
porarily enabling previously dormant hardware features within
the limits of the global power budget.

By definition, a performance boosting technique does not
improve performance for most applications; otherwise, the
technique would be built-in to the design by default. Rather,
these techniques improve what might be deemedperformance
corner cases, snippets of particular applications. While the
speedup may be significant in these situations, in most cases,
the power cost exceeds the performance gain such that the
technique is not enabled by default.

In PowerTransfer, several boosting techniques are imple-
mented that collectively cover a range of performance corner
cases such that there is ideally always some worthwhile boost-
ing technique to engage given some harnessed power no matter
what mix of applications are running.

While there are many potential approaches, we discuss three
techniques that cover the spectrum of CPU, cache hierarchy,
and memory performance-bound applications.

2.2.1 Boosting CPU Performance: DVFS

A well-known technique for boosting CPU performance is to
scale up voltage and frequency. Microprocessors typically
include multiple frequency and voltage domains, and recent
research has shown the merits of separate domains for each
core [7, 9]. The most straightforward approach is to use the
saved power locally within the core with the faulty unit to
compensate for the loss in IPC performance. Instead, Power-
Transfer adds any locally saved power to the chip-wide pool of
accumulated power for potential use in boosting other cores’
performance. While this requires more complex chip-level
power management algorithms, a performance gain closer to
the global optimal can be found. For instance, it would be
more worthwhile to boost the frequency and voltage of an-
other core running a high IPC thread when the local core is
running a memory-bound thread.

2.2.2 Boosting Cache Hierarchy Performance:
Speculative Cache Access

For applications that are more limited by L1 cache misses, im-
provements in the access time of lower levels of the cache hier-
archy would be more beneficial than DVFS. Speculative cache
access can be a very effective means to boost performance at
reasonable cost.

L2 caches are typically accessed in sequence after L1
lookup. To do so otherwise would greatly increase power con-
sumption for relatively little overall performance gain. A per-
formance boosting technique that requires little added hard-
ware complexity is to speculatively send L1 requests to the L2
cache simultaneously in order to reduce the delay penalty in
case of an L1 miss. We expect good improvements for appli-
cations that miss in the L1 but hit in the L2.

The main drawback of this technique is the substantial ad-
ditional power requirement, which mainly comes from unnec-
essarily accessing the L2 cache and amounts to increasing a
core’s power usage by 60% on average. In order to reduce this
latter power consumption, we add a Load Miss Predictor, im-
plemented as a two-bit saturating counter that is updated with
L1 hit/miss information. This low-overhead predictor has lit-
tle performance penalty yet reduces wasted L2 access power
by 90% on average.

A similar cost-effective performance boosting technique is
to access the L2 tags and data in parallel. Lower level caches
such as those in the Itanium II and Alpha 21164 access the



tag and data arrays in sequence due to power concerns. Given
additional harnessed power due to symbiotic deconfiguration,
and an application that can achieve significant performance
gains from parallel tag and data access, the L2 cache can be
switched into parallel mode.

2.2.3 Boosting Memory Performance: Clear

Many speculative techniques have been proposed to boost the
performance of memory-bound applications, but these may
come at a prohibitive power cost. When there is potential ben-
efit (i.e., many long latency loads) and sufficient power has
been harnessed, we engage Clear mode [10]. In this mode,
the registers are checkpointed, stores are buffered in the store
queue, loads are speculatively early retired, and the predicted
values are supplied to their destination registers. Through
these mechanisms, dependency chains following a long la-
tency load complete early, and processor resources are freed
for use by non-dependent instructions.

Although Clear can significantly boost application perfor-
mance, power consumption may increase significantly due to
the additional structures required to implement the mechanism
and the large boost in processor utilization it affords.

2.3 PowerTransfer Runtime Manager
The PowerTransfer Runtime Manager (PTRM) receives infor-
mation on deconfigured components with hard faults, deter-
mines what components should be symbiotically deconfigured
to save additional power, and allocates the harnessed power to
boosting mechanisms on the different cores. In order to adapt
to dynamic program behavior, the PTRM operates at a time
granularity of tens to hundreds of milliseconds.

Operation at this time granularity also allows the PTRM to
coordinate with the Global Power Manager (GPM). The GPM
controls the frequencies and voltages of each core to main-
tain the chip-wide power budget. In order to address chip-
wide power budget constraints, prior work has proposed coor-
dinating power management decisions at a global level [7, 14].
The GPM acts as a fail-safe mechanism in instances where the
PTRM underestimates the additional power cost of enabling a
performance boosting techique. Such overshoots occur only
5% of the time in the sampling-based PTRM that we evaluate
in Section 4.

3 Methodology
In order to evaluate PowerTransfer we use a highly mod-
ified version of the SESC [11] simulator augmented with
Wattch [4], Cacti [13], and HotLeakage [16] to model both
static and dynamic power consumption. We also modified the
simulator to dynamically account for temperature dependent
leakage power.

3.1 CMP Architecture, Workloads, and
Degraded Configurations

To ensure that the baseline processor core was appropriately
sized, we performed an exhaustive design space study to cre-
ate a balanced baseline core microarchitecture with the param-
eters shown in Table 1. Deconfiguring a portion of this base-
line design in the absence of a fault results in more than a 10%
performance loss for multiple benchmarks.

We use this baseline to model a four-core CMP, each of
which runs one of 13 SPEC CPU2000 benchmarks. We fast-
forward each benchmark five billion instructions and run for
a total time of 100ms, the granularity at which we periodi-
cally engage PowerTransfer. We create 100 randomly chosen
four-benchmark workloads that run on 100 four-core configu-
rations, each with a random single fault chosen from the three
possible coarse-grain errors (FE, BE, LSQ). Benchmarks are

Front End Branch Predictor: gshare + bimodal
64 entry RAS, 2KB BTB, 128 entry ROB

fetch/decode/rename/retire 4-wide
Execution Core Out-of-order, issue/execute 4-wide

80 Integer Registers, 80 FP Registers
32 entry Integer Queue, 24 entry FP Queue
32 entry Load Queue, 16 entry Store Queue

4 Integer ALUs, 1 Integer Mult/Div Unit
1 FP ALU, 1 FP Mult/Div Unit

On-chip Caches L1 ICache: 8KB, 2-way, 2 cycle access latency
L1 DCache: 8KB, 2-way, 2 cycle access latency
L2 Cache: 2MB, private, 8-way, 10 cycle latency

Memory 200 cycle latency
Operating Parameters 1V Vdd, 4.0 GHz frequency

Table 1: Architectural parameters.

not repeated for any given workload as this would tend to ac-
centuate the benefit of our approach, but the same fault may
occur in more than one core.

3.2 Symbiotic Deconfiguration
The core is divided into three regions: Front End (FE), Back
End (BE) and Load Store Queue (LSQ), each of which has
four lanes. The pipeline resources associated with each re-
gion are shown in Table 2. As an example, an error in one
of the decoders disables an entire FE lane (one quarter of the
fetch/decode/rename/retire widths, Fetch Queue, and ROB).
The BE and/or the LSQ are symbiotically deconfigured if the
power-performance tradeoff is attractive.

Front End Back End Load Store Queue

Fetch Width Issue Queues Load Queue
Fetch Queue ALUs Load Queue Ports

Decode Width Select Store Queue
Rename Width Wakeup Store Queue Ports

ROB Register Files
Retire Width

Table 2: The pipeline regions and their affected structures.

3.3 Performance Boosting Techniques
We model three performance boosting techniques that cover
CPU, cache hierarchy, and memory-bound applications.

Boosting voltage and frequency:Similar to Intel’s Turbo
Boost [15], we increase the operating voltage and frequency
within the constraints of the overall power budget. We use four
voltage and frequency levels above the baseline frequency and
voltage, in 2.5% Vdd increments.

Speculative cache access:We implement two techiques for
boosting cache hierarchy performance: performing L1 and L2
access in parallel, and performing L2 tag and data array access
in parallel. We augment the energy per read/write hit and miss
calculations in Cacti to reflect the difference between access-
ing the L2 tag and data sequentially or in parallel. We also
enhanced SESC to allow for dynamically changing the access
pattern of the cache hierarchy, that is, to either send L1 and
L2 requests sequentially (only misses in L1 go to L2) or to
speculatively send requests to the L1 caches to the L2 cache
at the same time. This technique complements the DVFS core
boosting technique in that it provides a much better perfor-
mance benefit / power cost ratio but only for a subset of the
benchmarks. Many of these fall into the mid IPC category
for which boosting frequency and voltage has only a moderate
performance improvement.

Clear: We augmented our simulator to correctly execute
mispath instructions and implemented Checkpointed Early
Load Retirement [10]. We model a Prediction Queue of 48
entries, up to four checkpoints, and a checkpoint allocation
threshold of seven loads.



4 Results
4.1 Pipeline Imbalance and Symbiotic

Deconfiguration
We first evaluate the pipeline imbalance that may occur due
to a fault and subsequent deconfiguration, as well as the vi-
ability of symbiotically deconfiguring additional functional-
ity to save power with little added performance cost. Symbi-
otic deconfiguration is effective if in the presence of a fault,
the additional deconfiguration yields little additional perfor-
mance loss relative to the added power savings; this indicates
that the fault creates pipeline imbalance that, when corrected
through symbiotic deconfiguration, permits significant power
to be harnessed relative to the performance loss.

We evaluate power harnessing opportunities within a de-
graded core using coarse-grain deconfiguration as in Table 2.

Figure 3: Performance loss (left bars) and power savings (right
bars) due to an initial fault in the LSQ and with symbiotic
deconfiguration of a FE lane.

Figure 3 shows the performance loss and power savings
(due to gating the lane of the affected region) for an initial fault
in the Load Store Queue, as well as the effect of symbiotically
deconfiguring a lane in the Front End. The left bars show the
performance loss while the right bars show the power savings.
The lower sections of the bars denote the performance cost and
power savings from deconfiguring one lane within the faulty
region, while the upper stacked sections show the effects of
symbiotic deconfiguration. Similar results were obtained for
the Front End and the Back End.

We make two major observations from these results. First,
the initial deconfiguration due to the faulty unit yields signif-
icant performance losses for some benchmarks, but also ap-
preciable power savings in many cases. In most cases, the
power/performance ratio is much less than two, indicating that
the unit is not overprovisioned to begin with. However, given
a fault, the power saved by deconfiguring the affected unit can
be used to boost performance by some other means, even with-
out symbiotic deconfiguration.

Second, additional symbiotic deconfiguration can yield a
large power savings for a small additional performance loss
(much greater than two to one), but for only a subset of the
benchmarks (e.g. for bzip2 but not for gcc). In other words,
large performance losses can be incurred by blindly deconfig-
uring additional units without regard for the characteristics of
the running application. On the other hand, judicious sym-
biotic deconfiguration in cases of pipeline imbalance can be
an effective means of harnessing additional power that can be
used elsewhere.

4.2 Performance Boosting Techniques
In this section, we evaluate the characteristics of the three
power boosting techniques described in Section 3.3, and com-
pare them in terms of performance and power.

Figure 4 shows the percent performance improvement and

Figure 4: Performance improvement (top) and power con-
sumption (bottom) for the performance boosting techniques.

percent power increase for the three techniques for each
benchmark. No one technique is clearly superior across all
benchmarks. While Clear has the greatest performance benefit
for some benchmarks (applu, mgrid, twolf, bzip2), Speculative
Cache and DVFS are the best techniques for other benchmarks
(mesa, crafty, applu for the former, and apsi, parser for the lat-
ter). Thus, the decision of which combination of performance
boosting techniques to engage is workload dependent.

The Power Performance Ratio (PPR), the ratio of the per-
cent power increase to percent performance gain (relative to
no boosting) is an effective metric for making this decision.
The smaller the PPR, the more efficiently the technique uses
the accumulated power. Even though Clear appears to be the
most power hungry technique, its PPR is advantageous (aver-
age of 1) for our PowerTransfer system. On the other hand,
DVFS has a high PPR relative to Speculative Cache and Clear.
Therefore, as we show in the next section, DVFS largely serves
as a backup technique to the more effective Clear and Specu-
lative Cache boosting approaches.

4.3 PTRM Results
To evaluate the PTRM, we assume that the power budget for
any particular benchmark-core combination is the total power
used by that benchmark on that core in the absence of faults.
We also assume that the maximum power budget of the four-
way CMP is the sum of the power of all current benchmarks
running on the cores in the absence of faults. This approach
limits our results to only show improvements from the tech-
niques we propose, rather than artificially introducing im-
provements from choosing a good power management tech-
nique. We evaluate our architecture with respect to the four-
core configuration with the initial random errors without ap-
plying any performance boosting techniques.

4.3.1 Understanding the Fundamental Tradeoffs

In order to gain insight into the effectiveness of the differ-
ent performance boosting techniques, the interactions between
symbiotic deconfiguration and performance boosting, and the
impact of locally versus globally managing the accumulated
power, we developed a number of offline PowerTransfer man-
agers. Given a set of initial deconfigurations (due to hard
faults) and applications for the four cores, these managers have
a priori knowledge of the performance benefits and power
costs for each possible symbiotic deconfiguration and perfor-



mance boosting possibility. We model this perfect knowledge
by calculating the global BIPS for all combinations of symbi-
otic deconfigurations and power boostings for the same 100ms
time quantum, and pick the configuration that maximizes the
geometric mean of all the cores’ BIPS with respect to the base-
line. It is important to note that the geometric mean acts as
both a performance and a fairness metric at the same time.
Thus we avoid penalizing low IPC applications to benefit high
IPC ones.

Figure 5: Throughput improvement with only DVFS used
globally (GlobalDVFS), all three techniques used locally (Lo-
cal3), and with all three boosting techniques used globally
(Global3).

Figure 5 compares the improvement in throughput for 100
four-core configurations with random initial errors for a man-
ager that globally employs only DVFS, one that globally em-
ploys all three performance boosting techniques (DVFS, Spec-
ulative Cache Access, and Clear), and one that locally employs
all three techniques, i.e., any harnessed power from a core is
only applied to boosting that core’s performance.

The results of Figure 5 confirm the intuition from Figure 4
that DVFS is not sufficient to reap the available performance
benefits. Rather, a number of techniques in combination is
necessary to boost different application classes. With all three
techniques, the chip-wide throughput is improved on average
by 22.2%, while using DVFS as the sole boosting technique
achieves only a 6.3% average increase in chip-wide through-
put. The individual Speculative Cache and Clear techniques
also fall far short, increasing chip-wide throughput by an av-
erage of 9% and 13%, respectively.

We assess the benefit of accumulating a global pool of
power and applying it to the best combination of chip-wide
boosting techniques by comparing Global3 with Local3, in
which each core makes local symbiotic deconfiguration and
boosting decisions. The 10% average throughput improve-
ment for Local3 is significantly less than the 22.2% average
improvement achieved by accumulating and distributing the
power globally.

Table 3: Symbiotic deconfiguration decisions given an initial
error, the available boosting techniques, and whether decisions
are made locally or globally for best configurations.

Table 3 shows the deconfiguration decisions as a function of
the initial error, the available boosting techniques, and whether
the decision is made locally or globally. Note that the sym-

biotic deconfigurations made by the managers are highly ap-
plication and fault dependent. For example, out of the 100
initial 4-core configurations (total of 400 cores), 140 of them
were randomly picked to have a Front End fault. In 98 of the
140 cases the best decision is to symbiotically deconfigure the
Back End, in 20 cases the LSQ is deconfigured, and in 22 cases
no symbiotic deconfiguration is performed. While there is of-
ten a bias towards the symbiotic deconfiguration of one region
over another depending on the initial fault, it is not a clear-cut
decision to engage symbiotic deconfiguration all the time.

Finally, we implemented an offline manager that decouples
the symbiotic deconfiguration decision from the boosting de-
cision. The manager first accumulates the largest amount of
power possible using only symbiotic deconfigurations with a
PPR of at least 2 (i.e., a minimum 2% power accumulation
for a 1% performance loss). The manager then finds the com-
bination of boosting techniques that maximizes performance
within this accumulated power budget. We found that this de-
coupled offline manager achieved an average performance of
20.4%, which is very close to the 22.2% achieved by Global3.

The results from this section demonstrate that in order to
reap the full benefits of PowerTransfer:

• Symbiotic deconfiguration decisions must account for
the characteristics of the running applications; however,
these decisions can be decoupled from the decisions of
which boosting techniques to engage;

• Alternative CPU boosting techniques with a better PPR
than DVFS should be included;

• Multiple performance boosting techniques should be im-
plemented to account for a range of application types;

• A global pool of power should be accumulated and dis-
tributed to boosting techniques in a global fashion.

4.3.2 Online PowerTransfer Management

For the offline managers, each core can be configured in 160
ways: 4 deconfiguration decisions, 5 DVFS configurations
(one of four DVFS levels or no frequency boosting), 4 ways
to employ Speculative Cache Access, and 2 ways to employ
Clear (on/off). Moreover, since there are four cores in each
configuration, this results in a total number of 1604 chip-wide
combinations, which clearly indicates that runtime exhaustive
exploration of the space is impractical. In this section, we
devise a Power Transfer Runtime Manager (PTRM) capable
of making new decisions every OS time slice interval by sam-
pling the space in a pragmatic way based on the insights gained
from the offline analysis.

We identify a sequence of sampling steps that significantly
reduces the search space. The first step is to make a symbiotic
deconfiguration decision on each core by sampling deconfigur-
ing a lane in each of the two remaining pipeline regions in turn.
Second, based on our previous observations, we only sample
8 boosting configurations, corresponding to the combination
of enabling Speculative Cache Access and Clear. Using this
information, the best chip-wide configuration that meets the
power budget is chosen. The remaining power (if any) is dis-
tributed using DVFS across the cores in a greedy fashion: the
frequency of the highest IPC core is boosted to its maximum
value, then the next highest IPC core, etc, until the power bud-
get is exhausted.

Based on the need for only 10 samples, and our experimen-
tation with different sampling sizes, we chose a sampling in-
terval of 1ms within a 100ms time quantum. Note that it is pos-
sible that the configurations deemed best in the sampling phase
would actually exceed the power budget in a 100ms quantum.
To address this possibility, the GPM uses DVFS to reduce the
frequency and voltage when the power budget might be ex-
ceeded. This only occurred in 5 out of the 100 runs and is
reflected in our performance results.



To differentiate between the performance loss due to the
limited number of samples, and that due to the use of a 1ms
sample to infer the behavior of the full 100ms time quantum,
we also implemented a version of the online manager (On-
lineExhaustive) that can sample all possible combinations of
symbiotic deconfigurations and performance boosting without
cost. That is, we run all possible combinations for 1ms each
and pick the best to run over the entire 100ms quantum.

Figure 6 shows the results. The OnlineExhaustive manager
improves throughput on average by 17.3% compared to the
22.2% improvement when decisions are made based on the
entire 100ms time quantum, indicating some loss due to the
1ms sampling interval. The PTRM achieves very close to On-
lineExhaustive (average of 15.3% compared to 17.3% over the
baseline), indicating a modest impact from decoupling symbi-
otic deconfiguration from performance boosting.

From these results, we conclude that a significant perfor-
mance improvement – as much as 25% over the baseline – can
be achieved with a PTRM that samples the deconfiguration in
a logical fashion based on the insight obtained from the offline
analysis.

Figure 6: Throughput improvement of PTRM, the online ex-
haustive manager (OnlineExhaustive), and Global3 over the
baseline.

5 Related Work
Processor Adaptivity: Prior work investigated architectural
techniques that adapt the processor components to workload
variation save power. Albonesi et al. propose Complexity-
Adaptive Processors which dynamically disable underutilized
hardware to improve performance or power efficiency [1]. Iyer
and Marculescu develop a run-time profiling technique to de-
tect program hotspots and adapt the processor configuration to
match the hotspots demands [8].

Most work in this area examines a particular processor
structure and makes it more efficient through adaptation.
Buyuktosunoglu et al. coordinate adaptive fetch and issue [5].
Folegnani and Gonzalez also develop a variable sized issue
queue [6]. Bahar and Manne [2] examine a more coarse gran-
ularity adaptation which disables an entire back-end execution
cluster to save power, when an application does not need it.
While previous research developed mechanisms which sacri-
ficed a little performance to save a lot of power, our work de-
configures units that would otherwise be wasting power due
to hardware faults, and intelligently redistributes the power to
other other components to boost performance.

CMP Power Management : There has been much work
on power management for CMPs, but here we focus on the
most related work where performance is maximized under a
chip-wide power constraint. Isci et al. [7] developed the per-
core maxBIPS algorithm. Sharkey et al. extend this work
by exploring algorithms based on both DVFS and fetch tog-
gling, and explore a number of tradeoffs such as local ver-
sus global management [12]. Teodorescu and Torellas [14]

consider global power management in the presence of process
variations and propose using linear optimization to efficiently
find a near optimal allocation.

6 Conclusions
Future CMPs built in highly-scaled technologies face the
prospect of having to deconfigure hardware units in the face of
manufacturing defects and aging-related faults. Such decon-
figuration may lead to application-specific pipeline imbalances
that reduce the power-performance efficiency of the formerly
well-balanced pipeline. We propose a novel CMP microarchi-
tecture, PowerTransfer, that dynamically identifies such im-
balances and rebalances the pipeline by proactively deconfig-
uring additional units. Doing so in an application-specific way
yields additional power savings at little performance cost. The
harnessed power is used to improve chip-wide performance
by enabling previously dormant performance boosting tech-
niques. We demonstrate that the use of a small number of
boosting techniques enabled across the entire workload yields
up to a 25% performance improvement over simply deconfig-
uring the faulty units.

Acknowledgements
The authors would like to thank Meyrem Kırman and Nevin
Kırman for their help integrating Clear in our simulation in-
frastructure. This research is supported by NSF grants CCF-
0916821 and CCF-0811729.

REFERENCES
[1] D. Albonesi, R. Balasubramonian, S. Dropsho, S. Dwarkadas, E. Fried-

man, M. Huang, V. Kursun, G. Magklis, M. Scott, G. Semeraro, P. Bose,
A. Buyuktosunoglu, P. Cook, and S. Schuster. Dynamically Tuning Pro-
cessor Resources with Adaptive Processing. InIEEE Computer, 2003.

[2] R. Bahar and S. Manne. Power and Energy Reduction Via Pipeline Bal-
ancing. InISCA, 2001.

[3] S. Borkar. Designing Reliable Systems from Unreliable Components:
The Challenges of Transistor Variability and Degradation. InIEEE Mi-
cro, 2007.

[4] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A Framework for
Architectural-Level Power Analysis and Optimizations. InISCA, 2000.

[5] A. Buyuktosunoglu, T. Karkhanis, D. Albonesi, and P. Bose. Energy
Efficient Co-Adaptive Instruction Fetch and Issue. InISCA, 2003.

[6] D. Folegnani and A. Gonzalez. Energy-Effective Isssue Logic. InISCA,
2001.

[7] C. Isci, A. Buyuktosunoglu, C.-Y. Cher, P. Bose, and M. Martonosi.
An Analysis of Efficient Multi-Core Global Power Management Poli-
cies: Maximizing Performance for a Given Power Budget. InProc.
IEEE/ACM 39th Annual International Symposium on Microarchitecture,
2006.

[8] A. Iyer and D. Marculescu. Microarchitecture-level Power Manage-
ment. InIEEE Transactions on Very Large Scale Integration Systems,
2002.

[9] W. Kim, M. Gupta, G.-Y. Wei, and D. Brooks. System Level Analy-
sis of Fast, Per-Core DVFS using On-Chip Switching Regulators. In
Proc. 14th IEEE Symposium on High Performance Computer Architec-
ture, 2008.

[10] N. Kirman, M. Kirman, and J. Martinez. Checkpointed Early Load Re-
tirement. InProc. IEEE/ACM 38th Annual International Symposium on
Microarchitecture, 2005.

[11] J. Renau, B. Fraguela, J. Tuck, W. Liu, M. Prvulovic, L. Ceze,
S. Sarangi, P. Sack, K. Strauss, and P. Montesinos. SESC Simulator.
http://sesc.sourceforge.net. 2005.

[12] J. Sharkey, A. Buyuktosunoglu, and P. Bose. Evaluating Design Trade-
offs in On-Chip Power Management for CMPs. InInternational Sym-
posium on Low Power Electronics and Design, 2007.

[13] D. Tarjan, S. Thoziyoor, and N. Jouppi. Cacti 5.3. InHP Laboratories
Palo Alto Technical Report, 2005.

[14] R. Teodorescu and J. Torrellas. Variation-Aware Application Scheduling
and Power Management for Chip Multiprocessors. InISCA, 2008.

[15] Whitepaper. Intel Turbo Boost Technology in In-
tel Core Microarchitecture (Nehalem) Based Processors.
http://download.intel.com/design/processor/applnots/320354.pdf.
2008.

[16] Y. Zhang, D. Parikh, K. Sankaranarayanan, K. Skadron, and M. Stan.
HotLeakage: A Temperature-Aware Model of Subthreshold and Gate
Leakage for Architects. The University of Virginia, Department of Com-
puter Science, Technical Report CS-2003-05. 2003.


