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Abstract We present a combined architectural and circuit technique for reducing the en-

ergy dissipation of microprocessor memory structures. This approach exploits

the subarray partitioning of high speed memories and varying application re-

quirements to dynamically disable partitions during appropriate execution peri-

ods. When applied to 4-way set associative caches, trading off a 2% performance

degradation yields a combined 40% reduction in L1 Dcache and L2 cache energy

dissipation.

1. INTRODUCTION

The continuing microprocessor performance gains afforded by advances in

semiconductor technology have come at the cost of increased power consump-

tion. Each new high performance microprocessor generation brings additional

on-chip functionality, and thus an increase in switching capacitance, as well as

increased clock speeds over the previous generation. For example, both tran-

sistor count and clock speed have roughly doubled in the three years separating

the Alpha 21164 microprocessor [6, 11] and the recently introduced Alpha

21264 [14, 15]. Because the dynamic power, which is currently the dominant

contributor to power consumption in high-speed CMOS circuits, is linearly

related to each of these factors, it is extremely difficult for circuit-level tech-

niques (such as voltage scaling) to singlehandedly keep power consumption

from increasing under these circumstances. Indeed, the power consumption of

the 21264 is 1.5-2 times that of the most recent 21164 version despite the fact

that the voltage has been reduced from 3.3V to 2.2V [8, 9]. Similarly, while the

UltraSparc I microprocessor [20], which was introduced in 1995, dissipated

28W at 167MHz, the forthcoming UltraSparc III design [12] is estimated to
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dissipate 70W at 600MHz. For these reasons, in order to prevent microproces-

sor designers from being limited by power and energy dissipation, especially

in desktop and portable environments where heat dissipation and battery life

are critical constraints, it is necessary to devise architectural techniques for low

power that complement circuit-level approaches.

Because of the increasing usage of microprocessor die area for on-chip

caches, several architectural-level approaches to reducing energy dissipation

in these structures have been devised. These techniques seek to reduce the

amount of switching activity within the hardware for a given workload. The

SA-110 embedded microprocessor [19] uses 32-way associative 16KB L1 I

and Dcaches, each of which is divided into 16 fully associative subarrays. With

this scheme, only one-eighth of the cache is enabled for each access which

considerably reduces dynamic power. With a 160MHz target clock frequency,

the SA-110 designers were able to maintain a one cycle cache latency with this

degree of associativity. However, with larger on-chip caches and frequencies in

the GHz range, such a solution would likely increase L1 cache latencies. The

resulting increase in the branch mispredict penalty and in load latency would

significantly degrade performance for many applications.

A similar approach is used to reduce power consumption in the 21164

microprocessor’s 96KB, 3-way set associative L2 cache, whose data portion is

split into 24 banks. The tag lookup and data access are performed in series

rather than in parallel as with a conventional cache. This allows for predecoding

and selection of 6 of the 24 data banks in parallel with tag access, and final

access of only the 2 banks associated with the selected way1 (as determined

by the tag hit logic). Because only a small fraction of the total L2 cache is

enabled on each access, the dynamic power savings is considerable, estimated

at 10W [11]. However, the serial tag-data access of this technique increases

cache latency as with the SA-110 approach, and thus this approach is limited to

on-chip memory structures where overall performance is relatively insensitive

to the latency of the structure.

Several other approaches, such as the filter cache [16] and the L-Cache [5]

have been proposed for reducing the switching activity. However, each of

these techniques significantly alters the on-chip memory design in order to

improve energy efficiency. This ultimately results in a non-trivial performance

degradation or other limitations. In addition, these schemes only address caches

whereas non-trivial amounts of energy may also be dissipated in other memory

structures such as Translation Lookaside Buffers (TLBs), register files, branch

predictors, and instruction queues. In this paper, we introduce an alternative

and more general approach: that of leveraging the subarray partitioning that is

1In this paper, we use the term set to refer to the cache block(s) pointed to by the index part of the address,

and the term way to refer to one of the n sections in an n-way set associative cache.



often present in large on-chip memories for speed reasons in order to provide

the ability to selectively enable particular partitions of the memory. With

appropriate architectural support, these partitions can be dynamically enabled in

an on-demand fashion. That is, the full unmodified memory structure is enabled

when necessary to obtain good application performance, but only a subset

is enabled during periods where application requirements are more modest.

Such a performance on demand approach exploits that fact that hardware

demands vary from application to application, and may also vary during the

execution of an individual application [2, 23]. With the ability to enable only the

precise amount of on-chip memory needed to meet performance requirements,

a significant amount of energy savings can be realized in the on-chip memories,

and thus in the overall microprocessor. However, unlike many other previous

approaches to energy savings, this technique delivers identical performance to

a conventional memory design when required by the application.

In the rest of this paper, we explore this concept in further detail. In the

next section, we examine the subarray partitioning that is often necessary to

minimize the access time of memory structures, and how this partitioning can

be exploited to tailor the memory organization to application requirements.

We then discuss in Section 3 our approach for selectively enabling partitions,

including schemes for properly handling information in a disabled partition.

In Section 4 we explore the application of this technique to the L1 Dcache,

and evaluate the energy savings that can be realized when some performance

degradation can be traded off for reduced switching activity. Finally, we

conclude and present future work in Section 5.

2. THE ORGANIZATION OF ON-CHIP MEMORIES

In this section, we use a modified version of the Cacti cache cycle time

model [22] to explore the partitioning of on-chip memories that is necessary to

optimize access time. Cacti is an analytical delay model that evaluates in detail

each component of the data and tag delay paths. In addition, Cacti includes six

layout parameters that allow for partitioning of single tag and data arrays into

multiple subarrays. The parameters Ndwl and Ntwl refer to the number of times

the wordlines are segmented for the data and tag arrays, respectively, while Ndbl

and Ntbl are the corresponding bitline parameters [21]. The parameters Nspd

and Ntspd refer to the number of sets that are mapped to the same wordline for

the data and tag arrays, respectively [22].

Figure 1 shows an example of a 4-way set associative cache with Ndwl =

4 and Ntbl = 2 and all other N parameters equal to one. The data array is

partitioned into four subarrays, each with its own decoder and one-quarter the

sense amps of a single data array. Here, each wordline is roughly one-quarter

the length of that in a single array. Two tag subarrays are formed by segmenting
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Figure 1 A 4-way set associative cache with Ndwl = 4, Ntbl = 2 and all other N parameters

equal to one.

the bitlines, resulting in a halving of the decoder width but a doubling of the

number of sense amps relative to a single tag array. Note that by segmenting the

tag array, an extra output selector delay is incurred. This can be implemented

by activating only one of the two sets of tag sense amps associated with the

same column during each access [21].

We used Cacti to explore the partitioning necessary to minimize the access

time of two different on-chip memories: TLBs and caches. The results are

shown in Table 1, which displays the N parameters that produce the fastest ac-

cess time for various organizations. Each N parameter is limited to a maximum

value of eight to avoid unreasonable aspect ratios. Note that in all cases, a par-

titioning of both the data and tag arrays into multiple subarrays is necessary to

minimize access time. For the TLBs, the data wordlines need to be segmented



Table 1 Optimal N parameters for on-chip TLB and cache structures. The block size is 16

bytes for TLBs and 32 bytes for caches.

Structure Organization Optimal N Parameters

Size Associativity Ndwl Ndbl Nspd Ntwl Ntbl Ntspd

TLB 1KB 4 8 1 1 2 1 1

2KB 4 8 1 1 2 1 1

4KB 4 8 1 1 2 1 1

Cache 8KB 1 2 4 1 1 2 2

2 4 2 1 1 2 1

4 8 1 1 2 1 1

16KB 1 2 4 1 1 2 2

2 4 2 1 1 2 2

4 4 2 1 1 2 1

32KB 1 1 8 1 1 2 4

2 8 1 1 1 2 2

4 4 2 1 1 2 1

64KB 1 1 8 1 1 2 4

2 4 2 1 1 2 2

4 4 2 1 1 2 1

eight times, while a combination of data wordline and bitline segmentation is

often required for optimal cache performance.

Although there are several aspects to Cacti that limit the applicability of

these results, on-chip caches are often partitioned in practice. For example,

the 32KB 2-way set associative and 2-way banked L1 Dcache in the R10000

microprocessor is partitioned into four subarrays [1, 24], as is each of the two

512KB data banks of the 1MB 4-way set associative L1 Dcache of the HP

PA-8500 microprocessor [18].

Note also that although we did not evaluate other on-chip memory struc-

tures, many of these need to be similarly partitioned for speed-optimality. For

example, branch prediction tables are typically tagless structures whose size

has increased significantly in recent microprocessors. For example, while the

Alpha 21164 employed a single 2K�2 branch direction predictor table, the Al-

pha 21264 implements four tables of sizes 1K�10, 1K�3, 4K�2, and 4K�2.

The latter predictor is 3.625KB in size, over seven times that in the 21164, and

may consume non-trivial amounts of energy. Each of the predictor tables when

implemented as a single array would be a very long and narrow memory struc-

ture, and therefore, the bitline delay would be proportionally much longer than

the other delay components. Thus, segmentation of the bitlines would likely

reduce the access time of these large tables. In the next section, we discuss the

mechanisms necessary to exploit this partitioning such that the enabling and

disabling of memory partitions can be manipulated under software control.
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3. MECHANISMS FOR DISABLING MEMORY
PARTITIONS

Figure 2 is an overall diagram showing a memory structure which has been

partitioned into subarrays for speed purposes, and the small amount of addi-

tional circuitry needed to selectively disable each memory partition, which is

comprised of one or more subarrays. The gating logic in this diagram is based

on that used to selectively activate data subarrays in the Alpha 21164 L2 cache

[6]. Each bit in the Partition Select Register (PSR) controls the enabling of one

of the n memory partitions. If a particular bit is set to zero, then that partition

is not precharged, no word lines are selected, and its sense amps are prevented

from firing. Thus, no switching activity ensues and thus this partition dissipates

essentially no dynamic power.

A PSR may concatenate partition control bits for several on-chip memory

structures, and it may be necessary to include several PSRs in the proces-

sor. Each PSR is software readable and writable through special instructions.

Several possible sources are possible for control of the PSRs including the

compiler, the runtime system, the core operating system (which also needs to

save the PSRs as part of the process state on context switches), special priv-

iledged routines such as those that manage the TLB on several processors, or a

continuous profiling and optimization system [4, 25]. Another approach is to

have hardware that dynamically detects when partitions can be disabled. But

this hardware would be complex and dissipate energy, thereby mitigating some



of the benefits of our approach. These architectural issues are beyond the scope

of this paper and are further discussed in [3].

Note that our ability to exploit subarray partitioning is dependent on how

the partitioning divides the information stored in the memory. For example,

if only the wordlines of an instruction queue are segmented, then disabling

a partition would eliminate access to part of the instruction information in

every queue entry, and thus the processor would not correctly operate. For

memory structures that consist of a tag array in addition to a data array, different

subarray partitioning may be employed. In this case, the disabling of tag and

data partitions must be such that hits are masked for disabled data partitions,

and that hits are detectable for enabled data partitions. In some cases, this may

mean that we cannot take advantage of the tag partitioning in terms of disabling

partitions and saving power. (We discuss this further in Section 4.) Thus, our

scheme cannot be used for every possible partitioning of a memory structure,

and in these cases, the partitioning needs to be changed from that which is

speed-optimal in order to provide the ability to disable partitions. The resulting

increase in access time may critically impact performance as we describe in

Section 4. Therefore, in this paper we assume that we do not deviate from

the speed-optimal partitioning of Table 1 in applying this approach to on-chip

memory structures.

3.1 PRESERVING INFORMATION TO ENSURE
CORRECT OPERATION

For some on-chip memory structures, partitions can be disabled without

regard to the accessibility of the information in the disabled array. This is

the case for instruction caches, branch predictors, TLBs, and register files.

Both instruction caches and TLBs create no new information but rather provide

faster access than main memory, from which the same information can be

extracted. By ensuring that instruction TLB entries are invalidated before they

are disabled, we can ensure correct operation of both the instruction TLB and

instruction cache whenever entries are re-enabled. Similarly, the absence of

branch prediction information may simply cause more mispredictions, but these

do not result in incorrect execution. Any performance penalty resulting from

having to reload instruction caches and TLBs or reconstruct branch prediction

information can usually be mitigated by limiting the rate at which partitions

are disabled, e.g., only during context switches.

Similarly, if the register file is appropriately partitioned, no action is required

by the hardware to preserve data in a disabled partition. Because the register

file is compiler-managed, the compiler can precisely determine application

register usage and insert instructions to disable register file partitions when

requirements are modest. When more registers are required, or when the



values in these disabled registers are to be used, the compiler re-enables the

required partitions. The full register file must also be enabled by the operating

system when saving process state to memory. The issues associated with

register renaming are more complex and are not discussed in this paper.

For other structures, incorrect operation can result unless the information

in a disabled partition is preserved or made accessible. For example, the

partitions of instruction queues and reorder buffers cannot be disabled until the

instructions associated with the disabled entries have completed execution and

committed their results. Thus, some time must elapse between the execution of

an instruction that writes the PSR and the actual disabling of these structures.

During this period (which may last 20-40 cycles on a modern microprocessor

that issues two instructions per cycle on average), no new instructions must be

placed in the to-be-disabled partitions. To speed up this process, the instruction

scheduling hardware can raise the priority of the instructions in these partitions.

The disabling of partitions in the L1 data cache (Dcache) and the L2 cache

is not as straightforward. For these structures, modified cache blocks must be

made accessible to sharing processes (on the same processor or other proces-

sors), to the same process (either on the same or another CPU), and to the I/O

subsystem. In addition, the coherence state of data in a disabled partition must

be properly maintained in case the partition is later re-enabled. These issues

are addressed in [3] in which we discuss the performance on-demand approach

of a set associative cache in which ways can be dynamically enabled to meet

performance demands. In the next section, we briefly describe this approach

as an example of saving energy in on-chip memory structures.

4. A PERFORMANCE ON-DEMAND L1 DCACHE

In this section, we describe the application of disabling memory partitions

to on-chip caches. Specifically, we quantify the energy savings obtained, and

performance degradation incurred, with set associative L1 Dcaches in which

the data ways of the cache can be selectively disabled using the methods

described earlier and in the rest of this section. The hardware organization

of this approach, which we call selective cache ways, is described in the next

section.

4.1 HARDWARE ORGANIZATION

Figure 3 is an overall diagram of a 4-way set associative cache using selective

cache ways. The wordlines of the data array are segmented either four or

eight times according to the Cacti results of Table 1, creating four separate

data way partitions. The bitlines of each data way may be segmented as

well, although this is not shown in the diagram. Note however, that the tag

portion of the cache (which also includes the status bits) is identical to that



d
e
c
o
d
e

d
e
c
o
d
e

precharge

sense 

pre_clk

array

data

=

...

hit0

datatag index

address
select
data

= =

hit1 hit2

=

hit3

array

tag

precharge

sense 

data way 0 data way 3

sel_way0

L2_request

Controller

Cache

en_part0 en_part1 en_part2

Partition Select Register

en_part3

Figure 3 A 4-way set associative cache using selective cache ways. The details for data ways

1-3 are identical to way 0 but are not shown for simplicity.

Table 2 Cache cycle time degradation of tag wordline partitioning relative to the speed-optimal

cache partitioning.

Cache Org Degradation

32KB 2-way 3.7%

64KB 2-way 7.8%

32KB 4-way 4.3%

64KB 4-way 7.3%

of a conventional cache. Our Cacti-based timing estimates indicate that for

the cache organizations we have studied, segmenting the tag wordlines can in

some cases result in a significant cache cycle time degradation relative to the

optimal tag N parameters of Table 1. For example, Table 2 shows that the cycle

time degradation incurred when the tag wordlines are segmented is roughly

4-8% for 32KB and 64KB set associative caches. Because the L1 Dcache is



Table 3 Simulated memory hierarchy parameters.

Mem Level Organization

L1 Icache 64KB, 4-way set assoc,

32B block, random, 1 cycle latency

L1 Dcache 64KB, 4-way set assoc, selective cache ways,

2 ports, 32B block, random, 1 cycle latency

L2 cache 512KB, 1MB, or 2MB, 4-way set assoc,

32B block, LRU, 15 cycle latency,

16 partitions

main memory 16B bus width, 75 cycle

initial latency, 2 cycles thereafter

typically a critical path, especially for caches as large as those in this table, this

degradation may result in an overall cycle time increase. For these reasons, we

used the N parameters of Table 1 and therefore only save energy in the data

portion of the cache. However, the data portion comprises roughly 90% of the

total energy dissipation for the cache organizations we have studied.

Note from Figure 3 that the outputs of the PSR do not directly control

the enabling of the arrays (as was the case in Figure 2), but rather are sent

to the Cache Controller. This is to allow the Cache Controller the ability to

access modified data in disabled ways as well as to properly handle coherence

transactions as is discussed in [3].

4.2 ENERGY AND PERFORMANCE EVALUATION

In this section, we quantify the performance degradation incurred, and the

energy savings obtained, with an L1 Dcache using selective cache ways. Our

evaluation methodology combines detailed processor simulation for perfor-

mance analysis and for gathering event counts, and analytical modeling for

estimating the energy dissipation of both conventional caches and caches em-

ploying selective cache ways.

We use the SimpleScalar toolset [7] to model a modern 4-way out-of-order

speculative processor with a two-level cache hierarchy that roughly corresponds

to a current high-end microprocessor such as the HP PA-8000 [17] and Alpha

21264 [15]. Table 2 shows the simulator parameters for the memory hierarchy.

Selective cache ways is implemented for only the L1 Dcache. The data array of

the L2 cache is implemented as 16 partitions, only one of which is selected for

each access. This power-saving technique is used in the Alpha 21164 on-chip

L2 cache [6].

We estimate L1 Dcache and L2 cache energy dissipations using a modified

version of the analytical model of Kamble and Ghose [13]. This model calcu-

lates in detail cache energy dissipation using technology and layout parameters
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Figure 4 (a) Combined L1 Dcache and L2 cache energy savings and (b) actual performance

degradation as a function of the performance degradation threshold.

from Cacti and counts of various cache events (hits, writebacks, etc.) as inputs.

These event counts, in addition to performance results, are gathered from Sim-

pleScalar simulations (each 400 million instructions long) of eight benchmarks:

the SPEC95 benchmarks compress, ijpeg, li, turb3d, mgrid, fpppp, and wave5,

as well as stereo, a multibaseline stereo benchmark from the CMU benchmark

suite [10] that operates on three 256 by 240 integer arrays of image data. The

number of enabled ways is determined based on overall application cache char-

acteristics, and therefore the number of enabled cache ways is only changed

during context switches. Only L1 Dcache and L2 cache energy dissipations

are calculated as the L1 Icache and main memory energy dissipations do not

change significantly with the number of enabled L1 Dcache ways.

The energy savings of selective cache ways depends on the amount of

performance that can be traded off for energy. The Performance Degradation

Threshold (PDT) signifies the average performance degradation relative to a

cache with all ways enabled that is allowable for a given period of execution. If

the PDT is 2%, and, for a given period of execution, performance is projected

to degrade by 1% with three ways enabled, and 4% with two ways enabled,

then three ways are enabled for that period of execution, so long as the total

energy is less than that with all four ways enabled. This would not be the case

if the extra misses with three ways enabled increase L2 cache energy more

than the energy savings obtained with disabling one of the L1 Dcache ways.

In this case, all four ways are enabled. In this study, the optimum number of

enabled ways for each benchmark is determined from comparing performance

and energy dissipation results. In an actual system, a runtime system such as

Compaq’s DCPI [4] can read cache hierarchy performance counters and make

changes based on knowledge of relative L1 and L2 cache energy dissipations.

Figure 4 shows the energy savings and actual performance degradation



incurred across all benchmarks as a function of the PDT. The energy savings

is calculated from the average energy dissipation of all benchmarks with all

ways enabled, and the average with the number of disabled ways allowable

for a given PDT value. The performance degradation is similarly calculated

from the corresponding Instructions Per Cycle results. The actual performance

degradation incurred is significantly less than the PDT value. Overall, roughly a

40% cache hierarchy energy savings is realized with less than a 2% performance

degradation for a 512KB L2 cache with a PDT of 4%. The benefits are less,

yet still significant, for larger L2 caches due to the higher energy dissipated

servicing an L1 Dcache miss. Even with a large 2MB on-chip L2 cache, a 25%

energy savings is obtained with less than a 2% performance degradation using

this technique.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we have described techniques for leveraging the subarray

partitioning of high-speed memory structures in order to dynamically tailor the

organization of these structures to application requirements. We have discussed

the mechanisms necessary to allow software to dynamically modify which

partitions are disabled, as well as to ensure the proper handling of information

in disabled partitions. Through detailed simulation and analytical modelling,

we demonstrated that a 40% reduction in overall cache energy dissipation can

be achieved for 4-way set associative L1 Dcaches with only a 1-2% overall

performance degradation.

Our future work includes applying this technique in concert to multiple

on-chip memory structures, as well as exploring how these structures can be

dynamically tailored to changing requirements during individual application

execution. Finally, we plan to combine these efforts with our previous work on

dynamic speed-complexity performance tradeoffs [2] in order to dynamically

optimize the energy-delay product of future high performance microprocessors.
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