
4

Addressing Thermal Nonuniformity
in SMT Workloads

JONATHAN A. WINTER and DAVID H. ALBONESI

Cornell University

We explore DTM techniques within the context of uniform and nonuniform SMT workloads. While
DVS is suitable for addressing workloads with uniformly high temperatures, for nonuniform work-
loads, performance loss occurs because of the slowdown of the cooler thread. To address this, we
propose and evaluate DTM mechanisms that exploit the steering-based thread management mech-
anisms inherent in a clustered SMT architecture. We show that in contrast to DVS, which operates
globally, our techniques are more effective at controlling temperature for nonuniform workloads.
Furthermore, we devise a DTM technique that combines steering and DVS to achieve consistently
good performance across all workloads.

Categories and Subject Descriptors: C.1.3 [Processor Architectures]: Other Architecture
Styles—Adaptable architectures; C.1.4 [Processor Architectures]: Parallel Architectures

General Terms: Algorithms, Design, Experimentation, Performance

Additional Key Words and Phrases: Simultaneous multithreading, clustered microarchitectures,
dynamic thermal management, dynamic voltage scaling, adaptive microarchitectures

ACM Reference Format:
Winter, J. A. and Albonesi, D. H. 2008. Addressing thermal nonuniformity in SMT workloads. ACM.
Trans. Architec. Code Optim. 5, 1, Article 4 (May 2008), 28 pages. DOI = 10.1145/1369396.1369400
http://doi.acm.org/10.1145/1369396.1369400

1. INTRODUCTION

Dynamic thermal management (DTM) is a microarchitectural approach to
maintaining acceptable on-die temperatures while reducing packaging and
cooling costs [Huang et al. 2000; Brooks and Martonosi 2001]. The fundamental
idea is to employ thermal sensors at the hotspots of the die to detect when a
potential thermal violation may arise. This triggers a response by the microar-

This research was supported by the Center for Circuits and Systems Solutions funded by
MARCO/DARPA.
Authors’ address: Jonathan A. Winter and David H. Albonesi, Computer Systems Labora-
tory, Cornell University, Frank H.T. Rhodes Hall, Ithaca, New York, 14853; email: {winter,
albonesi}@csl.cornell.edu.
Permission to make digital or hard copies part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to
redistribute to lists, or to use any component of this work in other works requires prior specific per-
mission and/or a fee. Permissions may be requested from the Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2008 ACM 1544-3566/2008/05-ART4 $5.00 DOI 10.1145/1369396.1369400 http://doi.acm.org/
10.1145/1369396.1369400

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 1, Article 4, Publication date: May 2008.

4:2 • J. A. Winter and D. H. Albonesi

chitecture to ward off the potential violation by throttling the chip resources
in some fashion to reduce the power and, over time, the temperature of the af-
fected die area. The temperature trigger is set such that only a small subset of
all applications may cause such a thermal emergency necessitating a throttling
response. Thus, performance is only minimally affected, while packaging and
cooling costs can be significantly reduced compared to a processor in which no
detection and throttling mechanism is employed (where the packaging/cooling
must be designed for the absolute worst-case condition).

DTM has been an active area of research, both for single and, more recently,
multicore systems. While the vast majority of prior DTM research has exam-
ined single-threaded processors [Dhodapkar et al. 2000; Huang et al. 2000;
Brooks and Martonosi 2001; Lim et al. 2002; Heo et al. 2003; Skadron et al.
2003; Skadron 2004; Chaparro et al. 2004a, 2004b, 2005], more recent efforts
have focused on chip multiprocessors (CMPs) and simultaneous multithread-
ing (SMT) processors. While a number of DTM techniques have been proposed
for CMPs and SMT, dynamic voltage scaling (DVS) stands out as the most ef-
fective approach [Li et al. 2005; Donald and Martonosi 2006; Chaparro et al.
2007]. DVS reduces both the voltage and frequency of the processor enabling
an almost cubic reduction in dynamic power, as well as attenuating the static
power, making it difficult to beat.

While DVS proves to be most effective when cooling a uniformly hot,
CPU-intensive workload, it is much less effective when there are differences
in the thermal behavior of the simultaneously running threads. Specifically, in
an SMT processor, DVS can penalize the performance of one thread in order to
cool a hotspot caused by another. In workloads where one thread is very CPU-
intensive and the other is not, or in mixed floating-point/integer benchmark
workloads, engaging DVS on an SMT core can often cause the other nonoffend-
ing thread to slow down despite the fact that it is not the cause of the hotspot.

To illustrate this phenomenon, we examine an SMT workload consisting
of two SPEC CPU2000 benchmarks: vortex, a CPU intensive integer applica-
tion, and equake, a less intensive floating-point application. Figure 1 shows the
baseline performance of the pair on the clustered SMT architecture we model
(described in detail later) when no dynamic thermal management is used. In
comparison, Figure 2 shows the performance when DVS is used to cool the pro-
cessor. In Figures 1, 2, and 12 (see later), performance is measured as billions
of instructions per second (BIPS) completed, averaged over 100 K cycle inter-
vals. The periodic performance degradation in Figure 2 is because of intervals
during which DVS is employed. Figure 3 illustrates the temperatures of the
hottest components of the processor during the DVS simulation. Because of
vortex’s intensive behavior, the hotspots are consistently the integer ALU and
integer multiplier unit on its clusters. Dips in temperature in Figure 3 from
engaging DVS, correspond to the performance degradation points in Figure 2.
Clearly, equake is being penalized by DVS even though its portion of the proces-
sor is nowhere near the thermal danger limit of 87◦C. This example illustrates
how thermal nonuniformity among the simultaneously running threads can in-
crease the performance degradation of DVS-based DTM by penalizing a cool
thread that runs on the same core as the hot one. A better DTM policy would

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 1, Article 4, Publication date: May 2008.

Addressing Thermal Nonuniformity in SMT Workloads • 4:3

0

1

2

3

4

5

6

7

8

9

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500 520

Millions of Cycles

B
ill

io
n

s
o

f
In

st
ru

ct
io

n
s

P
er

 S
ec

o
n

d
 (

B
IP

S
)

Vortex Equake

Fig. 1. Vortex/equake—performance with no DTM mechanism.

0

1

2

3

4

5

6

7

8

9

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500 520

Millions of Cycles

B
ill

io
n

s
o

f
In

st
ru

ct
io

n
s

P
er

 S
ec

o
n

d
 (

B
IP

S
)

 .

Vortex Equake

Fig. 2. Vortex/equake—performance with dynamic voltage scaling.

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 1, Article 4, Publication date: May 2008.

4:4 • J. A. Winter and D. H. Albonesi

76

77

78

79

80

81

82

83

84

85

86

87

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500 520

Millions of Cycles

T
em

p
er

at
u

re
 (
˚C

)

Cluster 0 Int ALU Cluster 0 Int Mult

Cluster 1 Int ALU Cluster 1 Int Mult

Cluster 2 Int ALU Cluster 2 Int Mult

Cluster 3 Int ALU Cluster 3 Int Mult

Fig. 3. Vortex/equake—temperature with dynamic voltage scaling.

intelligently manage individual threads and take advantage of the nonunifor-
mity in temperature to eliminate chip hotspots.

In this paper, we develop effective alternatives to DVS for thermally nonuni-
form SMT workloads. We propose DTM techniques, which utilize the inherent
steering mechanism in a clustered SMT microprocessor [Collins and Tullsen
2004; Latorre et al. 2004; El-Moursy et al. 2005] to exploit thermal nonuni-
formity among the threads to cool the chip more efficiently. For workloads
composed of threads with nonuniform heating characteristics, our best DTM
algorithm, counter-based steering, prevents all thermal violations with a worst
case performance of 1% compared to 6.4% for DVS.

We also propose a “best-of-both-worlds” DTM policy, which utilizes the com-
plementary properties of both steering and DVS-based algorithms. Namely,
the steering-based mechanisms exploit the thermal differences of the running
threads to reduce hotspots and avoid slowing all threads by globally scaling
down the frequency and voltage, whereas DVS is effective in cases where a set
of “hot threads” are uniformly heating the back ends (leaving little opportunity
for the steering-based mechanisms to exploit temperature differences among
the clusters). Moreover, adding steering-based DTM to DVS requires only minor
changes to the baseline clustered SMT organization.

Our paper makes a number of novel contributions to the field of dynamic ther-
mal management. This is the first work to explore DTM policies for clustered
SMT microarchitectures, a unique design that combines the benefits of both
multithreaded and multicore architectures. We discuss an overlooked draw-
back of dynamic voltage scaling, which is that engaging DVS on an SMT core

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 1, Article 4, Publication date: May 2008.

Addressing Thermal Nonuniformity in SMT Workloads • 4:5

Fig. 4. A clustered simultaneous multithreaded microarchitecture.

will unfairly penalize threads that are not causing the thermal emergency. We
show that this is a particularly large problem for nonuniform workloads and
propose a novel thermal management technique to address this deficiency. Our
algorithm exploits the spatial nonuniformity in temperature within a proces-
sor core caused by differences in thread pipeline usage to provide very low-cost
DTM. Finally, we devise a new kind of thermal management policy that com-
bines two distinct techniques—DVS and counter-based steering, each special-
ized for a particular class of benchmarks—to provide effective DTM across the
full range of multithreaded workloads.

2. THE CLUSTERED SMT MICROARCHITECTURE

The clustered SMT processor, shown in Figure 4, is similar to that explored
by El-Moursy et al. [2005]. The execution core, consisting of the issue queues,
register files, and the functional units, is divided into multiple clusters with
communication paths between the unified front end and the back ends, the
back ends and the L1 data cache, and among the back ends for passing operand
values. A traditional SMT front end is used to fetch, decode, and rename instruc-
tions from multiple threads, and a steering mechanism is employed to assign
these instructions to back ends. While sharing of back ends among multiple
threads is possible, prior research [Raasch and Reinhardt 2003; Latorre et al.
2004; El-Moursy et al. 2005] has shown that the best performance and power
characteristics are obtained by largely isolating the threads from each other by
assigning them to separate cluster groups. In order to reduce the performance
cost of intercluster communication of operand values, instructions from the
same thread are usually assigned to a contiguous group of adjacent clusters.

In our architecture, we found that the back-end clusters were the hottest part
of the die and focused on alleviating hotspots in this section of the processor.
This result is supported by previous research showing that register files and ex-
ecution units are typically the biggest thermal concern [Heo et al. 2003; Skadron
et al. 2003; Donald and Martonosi 2004, 2005, 2006; Li et al. 2005]. However, in
other designs the front end could also be a source of thermal emergencies. Cha-
parro et al. [2005] explore partitioning the front end to control temperature

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 1, Article 4, Publication date: May 2008.

4:6 • J. A. Winter and D. H. Albonesi

and the architectural enhancements they propose can be combined with our
techniques to provide thermal control across the processor.

Clustered SMT processor designs may appear to go against the current trend
toward chip multiprocessors containing many simple, perhaps single-threaded,
cores. However, sequential code will not disappear altogether. Some workloads
will contain high levels of instruction-level parallelism that is most effectively
processed by wide-issue cores, some applications may be extremely difficult to
parallelize, and there will always be some programs that software developers
have not yet parallelized. Clustered SMT processors provide the flexibility to
address these sequential workloads—by providing a low complexity, wide-issue
engine when needed—as well as future highly parallel workloads through mul-
tithreading. The partitioning of back-end resources greatly reduces the com-
plexity of the design, as well as the power and temperature. In addition, there
is industry precedence for designing wide cores with back-end clusters, such
as the Alpha 21264/21364, IBM Power4, and the SMT IBM Power5. Clustered
SMT cores could be implemented in CMPs, along with narrower cores in an
asymmetric configuration, providing a design that is performance- and power-
efficient across a large variety of applications.

Moreover, a clustered SMT microarchitecture provides a natural platform
for addressing nonuniformity for several reasons. First, the clustering of the
hottest components on the die, namely the functional units, register files, and
issue queues, into multiple back-end clusters, permits threads, and even dif-
ferent instructions from the same thread, to be largely thermally isolated from
other threads or instruction groups, yet run simultaneously. This is in con-
trast to a traditional SMT microarchitecture in which threads largely share
these hot back-end resources. Second, a clustered SMT microarchitecture has
a built-in communication mechanism to permit instruction operands to prop-
agate to the cluster in which they are needed. This allows a thread’s register
values to rapidly move from one cluster to another with low overhead and
no additional support required. Finally, the steering mechanism in a clus-
tered SMT provides a simple, yet effective means for temperature manage-
ment when a thermal emergency arises. If a particular thread, or a subset of
that thread’s instructions, causes a thermal emergency in a particular back
end, then those instructions can simply be steered to a cooler back end for some
period of time. Other instructions, possibly from a different thread with less
stringent cooling requirements at this moment, may begin to be steered to the
hot cluster to make use of its resources, while instructions drain from the prior
thread.

In this paper, DTM mechanisms are evaluated for a two-thread, four-cluster
microarchitecture. Each back-end cluster is dedicated to a single thread at any
time, except for the temporary overlap that occurs when cluster assignments
are switched by the steering algorithm. Nominally, each thread is allocated two
back ends in the processor. This simplifies the microarchitecture implementa-
tion and allows our DTM policies to take advantage of the differences in the ther-
mal heating profiles of the applications. Furthermore, we found that back-end
resource utilization was very high, indicating that having an additional thread
competing for issue queue slots, issue bandwidth, etc., would not be beneficial.

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 1, Article 4, Publication date: May 2008.

Addressing Thermal Nonuniformity in SMT Workloads • 4:7

Fig. 5. The floor plan of the clustered SMT microarchitecture.

Figure 5 illustrates the floor plan of our clustered SMT design. The back-end
clusters consist of integer and floating-point issue queues, register files, and
execution units, as well as a shared set of communication links and a register
access window for intercluster operand passing [Zyuban and Kogge 2001]. The
communication links provide a ring interconnect for forwarding register values
to other back ends, which can forward two values in either direction along
the ring each cycle. In addition, there are point-to-point links between each end
back and the front end for dispatching instructions, accessing the data L1 cache
for stores and loads, communicating branch results, and updating the reorder
buffer. Again, the links can send two results in each direction every cycle. The
contention and power of all the communication links are modeled. We assumed
a centralized, banked L1 data cache in order to simplify the architecture and
to allow us to analyze steering policies without the affect of relocating threads
away from their associated cache lines. We placed the data cache and the load

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 1, Article 4, Publication date: May 2008.

4:8 • J. A. Winter and D. H. Albonesi

store queue in the middle of the clusters on the die to permit a single cycle hop
to the cache for loads and stores.

The front end uses the ICOUNT fetch policy [Tullsen et al. 1996] to determine
the number of instructions to fetch for each thread each cycle. The baseline front
to back end performance-steering mechanism statically dedicates two clusters
to each thread [El-Moursy et al. 2005]. As in Balasubramonian et al. [2003],
steering of instructions within the same thread to its two clusters is based on
load balancing and the location of the instructions’ operands. The criticality
of each source operand is also considered and ties are broken by sending the
instruction to the cluster, whose operand is predicted to be produced last [Bala-
subramonian et al. 2003]. Further details of the microarchitecture can be found
in Table I.

3. METHODOLOGY

The simulation infrastructure is based on the SimpleScalar 3.0 architecture
simulator modeling the Alpha ISA [Burger and Austin 1997], augmented with
Wattch [Brooks et al. 2000], Hotspot 2.0 [Skadron et al. 2003], and HotLeakage
[Zhang et al. 2003] for modeling dynamic power, temperature, and static power,
respectively. The simulator has been further modified to support the clustered
SMT microarchitecture and dynamic thermal management.

We assumed a processor implemented in 70-nm technology with a clock fre-
quency of 2.5 GHz and a 1.0 V supply voltage. We use HotSpot’s default pa-
rameters for the thickness of thermal package components, including the die-
to-spreader thermal interface material (0.075 mm), the heat spreader (1 mm),
and the heat sink thickness (6.9 mm). The ambient temperature is set to 45˚C
[Skadron et al. 2003]. The thermal hard limit, which is the temperature the
microprocessor must not exceed to operate properly, is set at 87◦C to be consis-
tent with ITRS projections for maximum junction temperature for the 70-nm
technology node [Semiconductor Industry Association 2003].

The convection resistance of the heat sink models the quality of the thermal
package. It should be set so that with appropriate thermal management, the
processor’s performance is not degraded severely under worst-case conditions,
and so that DTM is not required in the average case. We used a convection
resistance of 0.40 K/W for our clustered SMT microarchitecture. One problem
with HotSpot is that it inaccurately models the heat flow through the edges
of the die [Skadron 2006]. As a result, the blocks near the edge of the chip,
particularly the units of cluster three in the corner of the chip, were dispro-
portionately hot relative to their power dissipation. As suggested by Skadron
[2006], we addressed this problem by surrounding the die with a ring of dummy
blocks about 1 mm × 1 mm, which allowed floor plan units on the edge to cool
more reasonably.

Our leakage power model is based on the code provided for download with
HotLeakage [Zhang et al. 2003]. However, we have extended HotLeakage sig-
nificantly, from the original modeling of the caches and register file, to include
static power for all front- and back-end components of the processor. This ex-
tension is based on the leakage power estimation method presented by Butts

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 1, Article 4, Publication date: May 2008.

Addressing Thermal Nonuniformity in SMT Workloads • 4:9

Table I. Simulated Clustered SMT Microarchitectural Parameters

Unified front-end parameters
Fetch bandwidth 8 instructions per thread
Branch predictor type Hybrid of bimodal and 2-level
Bimodal predictor entries 2048, 2-bit counters
Level 1 predictor table entries 1024, history of 10 branches
Level 2 predictor table entries 4096, 2-bit counters
BTB entries 2048, 2-way associative
Branch misprediction penalty 11 cycles
Fetch queue size 16 entries per thread
Decode/rename/dispatch/commit 8/8/8/8 instructions per thread

bandwidth
Re-order buffer size 200 entries per thread
Back-end cluster parameters
Integer/FP issue queue size 20 entries each
Integer/FP register file size 80 entries each
Integer/FP simple ALU 1 of each
Integer/FP complex ALU w/ multiply & 1 of each

divide
Register access window 10 slots
Intercluster communication links 2 point-to-point bi-directional links around

the ring
Front-end communication links 2 point-to-point bi-directional links to the

front end
Memory hierarchy
Load/store queue size 64 entries per thread
L1 instruction cache 64KB, 4-way, 32B blocks, 8 banks, 1 cycle latency
L1 data cache 64KB, 4-way, 64B blocks, 8 banks, 2 cycle latency
L2 unified cache 4MB, 8-way, 128B blocks, 16 cycle latency
Memory latency 100 cycles

and Sohi [2000], which employs the following main equation:

Pstatic = Vdd·N ·kdesign· Î leak

Here, Pstatic is the static power of a block in the HotSpot floor plan, Vdd is the
current processor supply voltage, N is the number of transistors in that proces-
sor component, calculated using the area of the floor plan block multiplied by
transistor densities for logic and SRAM structures given by Semiconductor In-
dustry Association [2003]. The multiplicative factor accounts for circuit design
parameters such as transistor stacking, sizing ratios between the NMOS and
the PMOS transistors, and the type of circuit being used. We used a combina-
tion of the kdesign values presented in a chart in Butts and Sohi [2000] for each
processor block appropriately matching the types of circuits found in that unit.
For example, the issue queues are assumed to be a combination of CAM cells
for the wakeup component, SRAM cells to store instruction information, logic
for the instruction select stage, and multiplexers for the writeback component
and, thus, the kdesign value used is the weighted average of these. On the other
hand, the execution units are assumed to be pure logic and thus have a kdesign
of 11. Finally, Î leak is the average leakage current of a single transistor for a
given technology and temperature.

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 1, Article 4, Publication date: May 2008.

4:10 • J. A. Winter and D. H. Albonesi

We model temperature-dependent static power by taking the temperature
that HotSpot generates every 10,000 cycle interval and recalculating the Î leak
current term for each block for the next interval. Since we use such a short
interval, there is no need to perform iterative leakage calculations because
temperatures can only change a few hundredths of a degree in that time frame.
HotSpot calculates the starting temperature of the next interval, based on the
current interval’s temperature and the sum of the dynamic and static power
generated over this interval.

When conducting DTM architecture simulations, it is critical to obtain re-
alistic starting temperatures for the components of the thermal model and, in
particular, the heat-sink temperature [Skadron et al. 2003]. This is achieved by
fast-forwarding four billion instructions per thread, running each benchmark
for 500 million instructions on our baseline architecture without DTM, and
then using HotSpot to calculate steady-state temperatures for each block. As
in Skadron et al. [2003], these steady-state temperatures are scaled so that no
block exceeds the emergency threshold and then used as a starting temperature
for the DTM simulations. Each DTM simulation also consists of fast-forwarding
four billion instructions per thread and then the simulation is allowed to run for
400 million instructions in order to warm-up the caches and branch predictors
and allow the DTM mechanisms to begin operating. With the simulation now
in a realistic performance and temperature state, each benchmark is executed
for 500 million instructions during which time we collect our results. Once a
thread completes its 500 million instructions, it continues to run without record-
ing statistics in order to maintain realistic temperature conditions for the other
thread and permit continued use of the DTM techniques. Overall performance
is measured using the harmonic mean of the IPCs for DTM simulations com-
pared to a baseline run consisting of the same steps, but which uses no DTM
mechanism. The harmonic mean was chosen to prevent rewarding algorithms
that unfairly constricted the performance of one application in favor of another.

We compare our steering-based DTM policies to dynamic voltage scaling to
illustrate their effectiveness against the most popular contemporary approach.
DVS scales the overall processor supply voltage and frequency until the tem-
perature cools to an acceptable level. By reducing voltage and frequency, the
dynamic power of the processor is reduced almost cubically because of dynamic
power’s linear dependence on frequency and quadratic dependence on voltage.
Static power is also reduced significantly, because as described in the equation
above, Pstatic is linearly proportional to Vdd and the Î leak term also has a supply
voltage dependence [Zhang et al. 2003].

Our implementation of DVS only employs two voltage levels, the nominal
and the low voltage level, as advocated by Skadron [2004], who showed that
for DTM, there is virtually no benefit to using multiple voltage steps. After
exploring a wide range of low voltages, we found that 0.8 V had the best perfor-
mance and successfully prevented all thermal violations. At this low voltage,
the processor frequency was calculated to be 2.055 GHz by using the following
equation [Rabaey 2003]:

frequency = k·(Vdd − Vt)α/Vdd

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 1, Article 4, Publication date: May 2008.

Addressing Thermal Nonuniformity in SMT Workloads • 4:11

Table II. Baseline Benchmark Set Performance and Thermal Characteristics

Average Number of Peak Type – IPC Temp.
Benchmark pairs Clusters in Violation% Temperature(◦C) (INT/FP – high/low) (hot/warm)
Uniform workloads

applu/apsi 87.84 94.41 FF-HH HH
bzip2/vortex 100.00 92.74 II-LH WH
eon/galgel 100.00 92.70 IF-HH HH
facerec/mesa 100.00 92.68 FF-HH HH
gzip/vpr 50.00 89.84 II-HL WW

Nonuniform workloads
ammp/lucas 24.65 87.84 FF-HL HW
gcc/mgrid 100.00 93.67 IF-LH WH
mesa/parser 50.00 94.91 FI-HL HW
swim/wupwise 88.22 90.55 FF-LH WH
vortex/equake 50.00 93.86 IF-HL HW

where Vdd is the supply voltage, Vt is the threshold voltage (0.18 V) [Semicon-
ductor Industry Association 2003], α is a technology dependent constant set to
1.5, and k is a fitting constant set to 3.366 in our simulations so as to match
our nominal voltage (1.0 V) and frequency (2.5 GHz).

The benchmark sets for our simulations were selected using the 18 hottest
SPEC CPU2000 integer and floating-point applications. Each benchmark is
represented as equally as possible in the mixes and care was taken to evenly
combine benchmarks so that sets had different mixes of floating-point and in-
teger applications, high and low IPC applications, and hotter and colder appli-
cations to provide varied workloads for our simulations. One exception is that
two low IPC, low heat, benchmarks are not combined, as that pair would lead
to a simulation without any need for DTM.

Table II outlines our benchmark sets and their type, performance, and ther-
mal characteristics. It also shows the average number of clusters in thermal
violation during the execution of the applications when no dynamic thermal
management is employed. For example, a value of 50% means that, on average,
one-half the clusters are in thermal violation during the run. In addition, the
peak temperature reached during the run without DTM indicates how far the
application pairs would exceed the emergency thermal threshold of 87◦C.

In spite of the diversity among individual SPEC benchmarks, the most impor-
tant factor influencing the effectiveness of the DTM techniques on a benchmark
pair is the uniformity of the threads’ thermal and performance characteristics.
The top five pairs in Table II consist of uniform workloads, where both bench-
marks are high IPC and high temperature, or both benchmarks are integer
applications, which thermally stress the same components of the processor.
We will show in Section 5 that DVS is the most proficient DTM technique for
dealing with this kind of application mix. The bottom five benchmarks are
mixed floating-point and integer application pairs or two floating-point appli-
cations, where, in either case, one benchmark runs significantly cooler and
uses resources less intensively than the other. We focus on these nonuniform
benchmarks in the next section and demonstrate that our fine-grain, clustered

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 1, Article 4, Publication date: May 2008.

4:12 • J. A. Winter and D. H. Albonesi

SMT temperature-management policies are far more effective than DVS on this
workload type.

4. STEERING-BASED TEMPERATURE-MANAGEMENT POLICIES

This section explores a number of steering-based DTM policies. All the mecha-
nisms adhere to the same general framework. When not actively addressing a
thermal emergency, the architecture employs the baseline performance steer-
ing policy described previously. Simultaneously, the DTM techniques monitor
temperatures within each cluster every 10,000 cycles. If the temperature of a
back-end component reaches the trigger threshold, then the dynamic thermal
management mechanism reacts in some manner. When the temperature of the
component drops to the stop threshold, the thermal emergency is considered
alleviated. At this point, if the DTM technique involves throttling some active
component, such as avoiding the sending of instructions to a hotspot, the tech-
nique is disengaged and processor operation returns to normal. Note that all
of the proposed temperature-control mechanisms successfully prevented the
occurrence of thermal violations in the back-end clusters.

Our DTM policies can be divided into two general types. Section 4.1 describes
dispatch-gating policies, which reduce heat by decreasing processor activity.
These mechanisms guarantee that a particular maximum temperature will
not be exceeded, but incur a high performance penalty. Section 4.2 presents
heat-spreading policies which seek to balance heat dissipation among the clus-
ters to reduce the occurrences of hotspots. These mechanisms incur a negligible
performance cost, but cannot guarantee a safe temperature under all circum-
stances. Thus, they require a backup fail-safe mechanism, such as dispatch
gating. When the spreading policies are successful, however, dispatch gating is
not needed, thus avoiding the performance penalty.

4.1 Dispatch-Gating Policies

The dispatch-gating policies all build on the following basic mechanism. The
dispatch-gating trigger threshold is set to 86.5◦C, 0.5◦C below the thermal limit,
to give the thermal management mechanism some breathing room to operate
and to budget for possible temperature sensor error. The value of 0.5◦C was
empirically determined as the closest value to the emergency threshold that still
guaranteed that dispatch gating would succeed in keeping the temperature at a
safe level. With dispatch gating engaged, no further instructions are sent from
the front end to the issue queues of the hot back end. The hot cluster, receiving
no further instructions, will soon run out of work and begin to cool down. In
addition, once all the instructions have passed through the cluster’s pipeline,
dispatch gating clock-gates that back end’s resources. This stops all switching
activity and thus eliminates the dynamic power of the cluster. Furthermore, to
eliminate the leakage power, all structures are power-gated except the register
file, which must be left on to preserve register values possibly needed in the
future. When dispatch gating succeeds in lowering the peak temperature to the
stop threshold (85.5◦C), the thermal emergency is considered averted and gating
is disengaged. Lower values for the stop threshold were considered, such as 84.5

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 1, Article 4, Publication date: May 2008.

Addressing Thermal Nonuniformity in SMT Workloads • 4:13

Fig. 6. The three dispatch-gating techniques.

and 83.5◦C, in the hope that they would decrease the probability that the hotspot
would quickly reheat and require another DTM response causing a ping-pong
effect. However, we found as in Chaparro et al. [2007] that hotspots cool with
an exponential curve such that keeping dispatch gating on for longer intervals
cools less efficiently and reduces performance, because the DTM mechanism
remains on for more of the execution time despite being engaged less often.

The difference between the dispatch-gating policies is the granularity at
which the back end can be gated. The simplest policy is global-dispatch gat-
ing, and consists of ceasing dispatch to all the clusters, making it representa-
tive of pipeline or resource toggling [Brooks and Martonosi 2001; Skadron et
al. 2003; Li et al. 2005]. This policy emulates a thermal management scheme
in a nonclustered architecture. Thread-dispatch gating distinguishes between
the thermal activities of different threads. This technique stops dispatching in-
structions from a hot thread to the execution engines, but permits other threads
to proceed normally.

Cluster-dispatch gating utilizes the clustered nature of our microarchitec-
ture by halting the dispatch of instructions to a specific hot cluster. The thread
whose cluster is disabled steers all instructions to its remaining cluster until
the emergency subsides. The ability to control the flow of instructions to dif-
ferent parts of the back end is a feature unique to architectures with clustered
back ends and enables finer grained DTM control. Figure 6 illustrates how the
three dispatch-gating policies operate in the presence of a hotspot in one of the
clusters of thread 1.

We compare our steering-based techniques to dynamic voltage scaling, an-
other heat-reduction mechanism that does not require gating. DVS is similarly
employed to global-dispatch gating, turning on when the hottest part across
all back ends reaches the trigger threshold of 86.5◦C and turning off when the
stop threshold, 85.5◦C, is reached. We assumed that the processor pipeline must
stall for 10 μs whenever the voltage and frequency is changed, which is consis-
tent with previous research [Brooks and Martonosi 2001; Skadron et al. 2003;
Skadron 2004; Li et al. 2005].

4.1.1 Results. Figure 7 shows the performance of DVS and the three
dispatch-gating techniques relative to the baseline architecture with no ther-
mal management for the five nonuniform workloads. On average, global-
dispatch gating causes a 12.7% performance degradation, compared to thread-
dispatch gating with a 7.5% penalty, and cluster-dispatch gating with a 5.0%
penalty. Clearly, it is beneficial to dispatch gate at a finer granularity. Because of
differences in processor resource-utilization and heating between a workload’s
benchmarks, it is beneficial to employ thread-dispatch gating, which is able to

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 1, Article 4, Publication date: May 2008.

4:14 • J. A. Winter and D. H. Albonesi

0.0%

2.0%

4.0%

6.0%

8.0%

10.0%

12.0%

14.0%

16.0%

18.0%

20.0%

ammp / lucas gcc / mgrid mesa / parser swim /

wupwise

vortex /

equake

average

S
lo

w
d

o
w

n
 R

el
at

iv
e

to
 R

u
n

 W
it

h
o

u
t

D
T

M

Dynamic Voltage Scaling Global-Dispatch Gating Thread-Dispatch Gating Cluster-Dispatch Gating

Fig. 7. Performance of the dispatch-gating techniques on the clustered SMT design.

isolate and cool the thread with the hotspot, while allowing the other thread to
execute normally when it is not also overheating. The dependence-based base-
line performance steering algorithm tries to dispatch dependent instructions
to the same cluster as the instructions producing their operands. As a result,
back-end clusters of the same thread may exhibit quite different temperature
characteristics. Cluster-dispatch gating benefits from cutting power to only the
hot cluster, allowing the thread to continue to make forward progress using its
other cluster as long as that back end stays cool. While cluster-dispatch gating
has lower performance than DVS on three out of the five workloads, DVS is still
better overall with a slowdown of 4.1%.

4.2 Heat-Spreading Policies

Heat-spreading policies exploit the different heating patterns of applications to
reduce the frequency of thermal crises. By altering the assignment of threads to
back-end clusters, these mechanisms cool a hot component of the chip by send-
ing it instructions from a thread that does not heavily utilize that resource. For
example, if a processor has a floating-point application that overheats the FP
units on its two clusters, steering an integer application to those clusters would
cool the FP units while they are inactive. The goal of this approach is to keep all
the back-end clusters active all the time, in contrast to policies based on activ-
ity migration, which require idling resources [Lim et al. 2002; Heo et al. 2003;
Skadron et al. 2003; Chaparro et al. 2004a, 2004b; Ghiasi and Grunwald 2004].

Static heat-spreading policies rearrange the assignment of threads to clus-
ters at fixed intervals regardless of the application thermal behavior. These

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 1, Article 4, Publication date: May 2008.

Addressing Thermal Nonuniformity in SMT Workloads • 4:15

Fig. 8. The two static heat-spreading techniques.

techniques are simple to implement and do not even use temperature measure-
ments (except to determine when to engage dispatch gating—see below). Since
static heat-spreading methods do not respond to application behavior, they may
potentially miss opportunities to cool threads more effectively. Dynamic heat-
spreading policies react to thermal conditions on the die by steering instructions
or threads that are causing excess heating to cooler areas of the chip. Simulta-
neously, cooler instructions or threads are steered to the hot components of the
processor to allow these areas to avoid thermal emergencies.

Heat-spreading policies are not guaranteed to alleviate thermal emergencies.
It may turn out that the “cold” thread enters a phase where it becomes quite
hot, preventing the hotspot from cooling down. To ensure that the emergency
threshold temperature is not exceeded, all heat-spreading methods must en-
gage a form of dispatch gating as a last resort. The dispatch-gating mechanism
engages at the normal dispatch trigger threshold, which is the temperature at
which the heat-spreading mechanism is deemed to have failed to address the
temperature emergency. Because of the superiority of cluster-dispatch gating,
it serves as this fail-safe backup cooling mechanism for all our heat-spreading
policies.

4.2.1 Static Heat-Spreading Policies. We considered two static heat-
spreading algorithms. The first, round-robin steering, simply shifts the clusters
assigned to each thread by one in a counterclockwise direction after a fixed in-
terval length. For example, if a thread is running on clusters 0 and 1 and the
interval length is one million cycles, after one million cycles it will be steered
to clusters 1 and 2; after two million cycles it will be steered to clusters 2 and 3.

The second algorithm, called static thread swapping, swaps the clusters as-
signed to one thread with the clusters assigned to another after each fixed-
interval length. With two threads, this means that the first thread is steered to
clusters 0 and 1 for one interval, then to clusters 2 and 3 for another interval,
and then to clusters 0 and 1. The other thread is steered to the alternate set
of clusters. We simulated policies with interval lengths ranging from 10,000 to
50 million cycles and found that one million cycle intervals delivered the best
performance.

Combining static heat-spreading methods with dispatch gating is very sim-
ple. Both techniques are simply run together, with the spreading mechanism
changing the assignment of threads to clusters, and cluster-dispatch gating
engaging when the dispatch trigger threshold is reached, and disengaging at
the stop threshold. Figure 8 illustrates the workings of the two static heat-
spreading policies.

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 1, Article 4, Publication date: May 2008.

4:16 • J. A. Winter and D. H. Albonesi

0.0%

2.0%

4.0%

6.0%

8.0%

10.0%

ammp / lucas gcc / mgrid mesa / parser swim /
wupwise

vortex /
equake

average

S
lo

w
d

o
w

n
 R

el
at

iv
e

to
 R

u
n

 W
it

h
o

u
t

D
T

M

Dynamic Voltage Scaling Cluster-Dispatch Gating Round-Robin Steering Static Thread Swapping

Fig. 9. Performance of the static heat-spreading techniques on the clustered SMT design.

4.2.2 Static Heat-Spreading Results. The results for static spreading are
shown in Figure 9 along with cluster-dispatch gating for comparison. First,
static heat-spreading mechanisms definitely improve upon cluster-dispatch
gating, decreasing the average slowdown from 5.0 to 1.3%. In particular, for
the ammp/lucas workload, static heat spreading is so effective that no dispatch
gating is needed and the mechanisms had zero slowdown compared to the base-
line. These spreading techniques also have a performance degradation of less
than one-third of the slowdown of DVS. While round-robin steering and static
thread swapping are about even in slowdown on nonuniform workloads, round
robin is a slightly better mechanism across uniform workloads (not shown).
The greater success of round-robin was primarily because of its ability to more
evenly spread threads among the clusters, since, over the course of the run,
each thread is assigned to every pair of neighboring clusters. In static thread
swapping, threads either use clusters 0 and 1, or 2 and 3, and thus cooling is
not as even.

4.2.3 Dynamic Heat-Spreading Policies. The dynamic heat-spreading poli-
cies monitor the thermal behavior of the running applications and rearrange
the cluster to thread assignment to balance the heating of the back ends. Every
10,000 cycles, the temperature sensors of the back-end clusters are examined.
Dynamic spreading is then applied to any back ends with a peak temperature
above the spreading trigger threshold (85.5◦C), starting from the hottest clus-
ter. To give the dynamic spreading techniques a chance to have an effect, the
algorithm waits five million cycles before making another change to a back end
involved in an earlier application of dynamic heat spreading. Furthermore, this

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 1, Article 4, Publication date: May 2008.

Addressing Thermal Nonuniformity in SMT Workloads • 4:17

Fig. 10. The four dynamic heat-spreading techniques.

prevents the algorithm from responding to small temperature fluctuations that
do not threaten to cause thermal emergencies. Figure 10 provides a graphic ex-
planation of the dynamic heating policies.

The first heat-spreading mechanism, coldest steer, is an intrathread-
spreading policy that works within a single thread’s clusters. It is inspired by
the T-thermal algorithm of Chaparro et al. [2004a]. In order to avoid applying
the policy unnecessarily and to account for noisy sensors, it requires that the
difference in the peak temperatures between the hot and cold thread of a clus-
ter be over a 0.2◦C threshold before engaging. When engaged, it tries to send
all instructions to the colder cluster of the two that are allocated to the thread.
However, if the cold cluster cannot accept any more dispatched instructions
because it has no free physical registers or issue queue slots, then instructions
are sent to the hot cluster, if it has room. Ideally, this algorithm is successful
in directing the bulk of the instructions to the colder cluster, leaving the hot
cluster with a light load and a chance to cool off. The relevant thread can still
suffer a performance drop, because instructions are no longer steered according
to the performance-conscious steering policy of the baseline architecture.

Dynamic thread swapping attempts to cool a hot thread by exchanging the
clusters that the hot thread is using with the clusters assigned to the colder
thread. Thus, it is a more sophisticated version of static thread swapping policy.
The colder thread is determined as the thread with the lowest peak temperature
among all its clusters and its instructions are steered to the hot clusters to
permit them to cool. The hot thread is steered to the cooler clusters of the other
thread, allowing the application to heat up this part of the back end without
causing an immediate thermal emergency. Both the hot and the cold thread are
steered to their new clusters for at least five million cycles. This prevents the
cold thread from being falsely picked as a hot thread right after it was moved
to the hot cluster and before the temperature has had a chance to change.

Often, the algorithm will swap two threads and after waiting five million cy-
cles, it will find that the hot cluster is still hot. Before swapping the hot clusters
again, the algorithm checks to see if that cluster has decreased in temperature.
If the hot cluster is cooler than when it was swapped, the swapping is deemed

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 1, Article 4, Publication date: May 2008.

4:18 • J. A. Winter and D. H. Albonesi

to be successful and the thread running on the cluster is not swapped again, de-
spite still being above the spreading threshold. This criterion prevents clusters
that are cooling down slowly from being swapped prematurely. However, if the
hot cluster was dispatch gated since last being swapped, then thread swapping
proceeds normally, as the original swap clearly did not solve the heating cri-
sis. These extra features were experimentally found to improve the algorithm’s
performance over blindly swapping hot threads again after five million cycles.

The third dynamic spreading algorithm is dynamic cluster swapping. This
mechanism is very similar to dynamic thread swapping. The only difference is
that a single hot cluster can be individually swapped with a single cold cluster.
Often the temperatures of the clusters associated with a given thread are quite
different. Swapping at the granularity of a single cluster gives the spreading
algorithm more flexibility to pick the best back ends to assign to a hot thread
and does not force it to reassign clusters that are not causing thermal problems.
On the other hand, cluster swapping may lead to configurations where a thread
is using noncontiguous clusters in the back end, resulting in higher intercluster
communication of register operand values.

Our final technique, counter-based steering, employs activity counters for
back-end components, in particular, the number of instructions issued, the
number of register accesses, and the number of times a functional unit is used.
We examined the steering decisions made by the previous three interthread
dynamic spreading techniques and found that often the algorithms make the
mistake of swapping too often because they cannot tell whether a hot unit is
heating up because of the current thread running on it or still hot because of
the previous thread that used it. This final algorithm gets around that problem
by using activity counters as an indicator of a thread’s thermal intensity as
in Powell et al. [2004] and Donald and Martonosi [2005, 2006]. The activity of
the various back-end components is continuously tracked by hardware coun-
ters. When the spreading trigger threshold is reached, the steering algorithm
selects the thread with the least activity in the processor component that is
overheating and starts dispatching its instructions to the hot cluster and its
hottest neighboring cluster, in an attempt to cool those clusters. Meanwhile,
the thread that caused the overheating is sent to the other cooler clusters. The
counters are then reset waiting for the next hotspot. If the thread with the
lowest activity is already occupying the hot cluster, the algorithm chooses not
to do anything, because most likely moving threads will just heat the hotspot
even more.

As with the static spreading policies, cluster-dispatch gating is engaged as
a backup DTM mechanism for the dynamic spreading mechanisms if a hotspot
reaches the dispatch trigger threshold and is disabled at the stop threshold. The
spreading trigger threshold is set to be the same value as the stop threshold for
dispatch gating. This way, as soon as dispatch gating is turned off, spreading
is engaged to further cool the hot thread and hopefully prevent the need to use
dispatch gating in the future.

When cluster-dispatch gating is employed with counter-based steering, there
will be some interference between the two mechanisms. Since counter-based
steering observes the activity levels of back-end components, its readings will be

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 1, Article 4, Publication date: May 2008.

Addressing Thermal Nonuniformity in SMT Workloads • 4:19

0.0%

2.0%

4.0%

6.0%

8.0%

10.0%

ammp / lucas gcc / mgrid mesa / parser swim /

wupwise

vortex / equake average

S
lo

w
d

o
w

n
 R

el
at

iv
e

to
 R

u
n

 W
it

h
o

u
t

D
T

M

Dynamic Voltage Scaling Cluster-Dispatch Gating Coldest Steering

Dynamic Thread Swapping Dynamic Cluster Swapping Counter-Based Steering

Fig. 11. Performance of the dynamic heat-spreading techniques on the clustered SMT design.

affected by dispatch gating activity, which deactivates clusters for short periods
of time. However, we observed that the interference was mostly constructive as
clusters that were dispatch gated and thus had lower levels of activity also had
lower temperatures, making them good candidates for the steering algorithm
to send hot threads to.

4.2.4 Dynamic Heat-Spreading Results. Figure 11 shows the dynamic
heat-spreading results. Clearly, coldest steer is ineffective, with overall per-
formance worse than cluster-dispatch gating alone. There are three reasons
for coldest steer’s ineffectiveness in an SMT environment: (1) the two clus-
ters of the hot thread often have almost the same peak temperature, (2) the
limited free resources in the cold cluster means that most of the instructions
from the hot cluster cannot be moved, and (3) coldest steer prevents the very
effective performance-driven steering mechanism from dispatching instruc-
tions to minimize communication between clusters and balance the instruction
load.

On the other hand, our other three dynamic techniques are very effective
at providing low-cost DTM. Dynamic thread and cluster swapping both show a
0.8% slowdown, on average. On individual workloads, sometimes thread swap-
ping is superior, on other benchmarks, cluster swapping is preferable. When it
is most important to keep each thread’s clusters together to decrease the com-
munication costs of passing register values, thread swapping performs better.
On other workloads, cluster swapping takes advantage of differences in the
thermal behavior of individual clusters to provide more precise targeting of
hotspots and, thus, requires less use of dispatch gating.

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 1, Article 4, Publication date: May 2008.

4:20 • J. A. Winter and D. H. Albonesi

0

1

2

3

4

5

6

7

8

9

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500 520

Millions of Cycles

B
ill

io
n

s
o

f
In

st
ru

ct
io

n
s

P
er

 S
ec

o
n

d
 (

B
IP

S
)

 .

Vortex Equake

Fig. 12. Vortex/equake—performance with the counter-based steering DTM policy.

Finally, we find that the counter-based steering policy performs best with
a worst-case degradation of only 1.0% on nonuniform workloads, compared to
6.4% for DVS (mesa/parser). To gain a deeper understanding of the workings of
counter-based steering, Figure 12 shows the performance of the vortex/equake
workload; Figure 13 shows the temperatures of the hottest resources during
the simulation. Note the similarity of Figure 12 (counter-based steering) with
Figure 1 (no DTM), indicating little performance loss is incurred. Indeed, the
performance loss on this benchmark pair is only 1.0% compared with 4.5% for
DVS (Figure 2). Undoubtedly, the counter-based steering policy is better suited
than DVS to managing hotspots in a nonuniform workload and Figure 13 indi-
cates why. By switching the thread to cluster assignment intelligently, counter-
based steering significantly evens out the temperatures across all the clusters
and eliminates most of the need for dispatch gating. Cluster-dispatch gating
is called as a backup fail-safe just once, compared to the 27 times that DVS is
required. When DVS is engaged, the frequency and voltage of the processor are
decreased, harming both benchmark’s performance, as shown in Figure 2 by
the multiple drops in the BIPS rate.

Overall, the best steering-based DTM policies are round-robin and counter-
based steering. While round-robin steering is not quite as effective as counter-
based steering, it is a very simple static policy to implement. Counter-based
steering is appealing because of its particularly good performance on nonuni-
form workloads, where it demonstrates a significant advantage over DVS. We,
therefore, consider combining it with DVS to achieve a “best-of-both-worlds”
DTM technique.

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 1, Article 4, Publication date: May 2008.

Addressing Thermal Nonuniformity in SMT Workloads • 4:21

76

77

78

79

80

81

82

83

84

85

86

87

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500 520

Millions of Cycles

T
em

p
er

at
u

re
 (
˚C

)

c0_IntAlu c0_IntMul c1_IntAlu c1_IntMul

c2_IntAlu c2_IntMul c3_IntAlu c3_IntMul

-

Fig. 13. Vortex/equake—temperature with the counter-based steering DTM policy.

5. COMBINED POLICIES

Given the good match of dynamic voltage scaling to uniform workloads, and
steering-based DTM’s proficiency on nonuniform benchmark pairs, such as
vortex/equake, it seems natural to combine the two approaches. Thus, we con-
sidered a hybrid mechanism where counter-based steering is used to spread
the heat and dynamic voltage scaling takes the place of cluster-dispatch gating
as the fail-safe mechanism for preventing a thermal crisis. (We implemented
other hybrid policies using round-robin and dynamic thread swapping, but
found counter-based steering to perform best.) Ideally, this combined policy will
harness the temperature-steering mechanism to obviate much of the need to
use DVS on nonuniform workloads, while we will get the performance benefits
of DVS on the uniform workloads where there is little temperature variation
among clusters to exploit. Employing global DVS as a backup mechanism does
not cause interference with counter-based steering. Reducing the frequency of
the back ends changes the counter values read each interval in an absolute
sense, but does not affect the relative differences between component activities
that are used to determine which threads are thermally intensive and need
to be assigned to cold clusters. While it is possible to combine DVS, cluster-
dispatch gating, and counter-based steering, we felt that merging three DTM
mechanisms would be too complex to implement in hardware.

Figure 14 compares dynamic voltage scaling, counter-based steering with
cluster-dispatch gating (CDG), and a hybrid policy (counter-based steering +
DVS) for both uniform and nonuniform workloads. As expected, DVS is superior
for uniform workloads, with an overall slowdown of 4.6% compared to 6.4% for

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 1, Article 4, Publication date: May 2008.

4:22 • J. A. Winter and D. H. Albonesi

0.0%

2.0%

4.0%

6.0%

8.0%

10.0%

ap
pl
u

/ a
ps

i

bz
ip
2

/ v
or

te
x

eo
n

/ g
al
ge

l

fa
ce

re
c
/ m

es
a

gz
ip
 /

vp
r

am
m

p
/ l
uc

as

gc
c
/ m

gr
id

m
es

a
/ p

ar
se

r

sw
im

 /
w
up

w
is
e

vo
rte

x
/ e

qu
ak

e

un
ifo

rm
 a

ve
ra

ge

no
nu

ni
fo

rm
 a

ve
ra

ge

ov
er

al
l a

ve
ra

ge

Uniform SPEC 2000 Pairs Nonuniform SPEC 2000 Pairs

S
lo

w
d

o
w

n
 R

el
at

iv
e

to
 R

u
n

 W
it

h
o

u
t

D
T

M

Dynamic Voltage Scaling Counter-Based Steering + CDG Counter-Based Steering + DVS

Fig. 14. Overall performance comparison of the DTM techniques on the clustered SMT design.

counter-based steering. Under these uniform conditions when both threads are
simultaneously hot, it is difficult to beat the almost cubic power reduction of
DVS. However, because of the superiority of counter-based steering on nonuni-
form workloads, it provides better performance, averaged across all workloads
(uniform and nonuniform combined) with a degradation of 3.5%, compared to
4.3% with DVS.

Looking at the hybrid policy, shown in the the last bar in Figure 14, we see
that this mechanism is effective at merging the better performance features of
DVS and counter-based steering. Specifically, this combination provides strictly
better performance than DVS, with degradations on uniform, nonuniform, and
overall workloads at 4.2, 1.4, and 2.8%, respectively (compared to 4.6, 4.1, and
4.3% for DVS). Yet, it is still capable of obtaining most of the heat-spreading
benefit on nonuniform workloads. Furthermore, our results assume that the
processor will see an equal mix of uniform and nonuniform workloads. In the
event of an imbalanced workload of all uniform or all nonuniform thread com-
binations, counter-based steering with DVS provides near optimal performance
regardless of the application mix, unlike either technique alone.

6. RELATED WORK

Previous research related to our study can be categorized into a number of
different themes. First, there are a few studies that pioneered the need for dy-
namic thermal management and proposed early solutions in this area. Skadron
et al. [2003] released HotSpot, an easy to use architectural-level temperature
model, which generated much research activity. A number of more recent works

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 1, Article 4, Publication date: May 2008.

Addressing Thermal Nonuniformity in SMT Workloads • 4:23

look at thermal issues on processors with multiple threads either through
SMT or CMP. Finally, a few papers analyze DTM on single-threaded clustered
microarchitectures.

Huang et al. [2000] were perhaps the first to propose the need for dynamic
thermal management. They outlined a framework called dynamic energy effi-
ciency and temperature management (DEETM), which invokes the operating
system to monitor chip thermal behavior and engage various techniques to
combat high temperatures. Brooks and Martonosi [2001] further strengthen
the case for dynamic thermal management and outline the basic components
and methodology that all DTM schemes are based upon. Dhodapkar et al. [2000]
propose TEM2P2EST, an early thermal model at the architectural level.

Lim et al. [2002] use the TEM2P2EST model to explore a form of activity
migration that uses a second low-power in-order pipeline when the main out-
of-order pipeline overheats. Heo et al. [2003] examine activity migration in
detail and try to determine which microprocessor components are best dupli-
cated. They conclude that it is most critical to replicate the register files and
execution units to get the best power/area tradeoff. We similarly focus on the
back-end execution engine. However, the important difference between our re-
search and these works on activity migration is that we do not require spare,
backup resources for our DTM mechanisms. The extra register files, ALUs, and
pipelines required by these prior schemes are inactive most of the time when
there are no thermal emergencies, and they add significantly to the cost of the
chip.

Skadron et al. [2003] describe and use HotSpot to study a number of DTM
techniques on a single-threaded core, which thereafter became the standard
tool for DTM research. Skadron [2004] extends that work by combining DTM
techniques in a hybrid scheme. Liao et al. [2003, 2005] examine the impact of
temperature-dependent modeling of leakage power and thermal run-away on
DTM techniques. This work advocates considering the effect temperature and
voltage dependence on performance and power and the need for tightly coupled
management of power and temperature. As in our work, Powell et al. [2005]
use HotSpot to study the asymmetric usage of back-end processor resources
and devise algorithms to spread the power and heating more evenly. However,
they examine a single-threaded processor and thus only explore intrathread
diversity in application behavior. Furthermore, we go beyond utilizing asym-
metry to show how DVS and our steering algorithms, which are well adapted to
different workload characteristics, can be combined to provide a comprehensive
DTM scheme. All these earlier works focus on single-threaded processors.

A number of papers study power and thermal issues on SMT and CMP archi-
tectures. A few papers look specifically at the energy efficiency of multithreaded
processors. Seng et al. [2000] examine the power efficiency of SMT machines
and propose architectural enhancements to optimize energy usage. Similarly,
Li et al. [2004] look at the energy efficiency of SMT machines and identify the
root causes of multithreading’s power advantage. Another study compares the
energy efficiency of chip multiprocessors and simultaneous multithreaded ma-
chines and finds CMPs to be more compelling [Sasanka et al. 2004]. Managing
chip temperature, however, is a distinct issue from power efficiency, because

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 1, Article 4, Publication date: May 2008.

4:24 • J. A. Winter and D. H. Albonesi

many schemes for saving energy do not reduce power density, or reduce aver-
age power, but have no effect on die hotspots [Skadron et al. 2003].

Other research looks at the more related topic of thermal management on
SMT and CMP machines. Ghiasi and Grunwald [2004] examine an asymmet-
ric chip multiprocessor with a power-hungry ILP intensive core and a spare
low-power, low-performance core. Under normal operating conditions, the high-
performance core executes a single thread. DTM consists of activity migration
between these two cores, which is done either proactively or reactively. Again,
the need for a spare core results in a large amount of die area that is not used
unless the workload is extremely thermally intensive.

Donald and Martonosi [2004] examine the thermal properties of two- and
four-threaded SMT and CMP architectures. They find that these proces-
sors experience higher temperatures, but have a similar heating distribu-
tion across their components to that of a single-thread superscalar machine.
Rather than using DTM, the authors propose to mitigate the high tem-
peratures of the issue queue and result bus by changing the floor plan of
the processor and by increasing the area of these units to spread out the
heat.

In another work, the same researchers investigate the possibility of exploit-
ing varying application behavior to control temperature on an SMT processor
[Donald and Martonosi 2005]. Temperature-guided fetch and rename policies
are developed. The goal is to restrict the flow of instructions to the thread least
likely to heat the integer and floating-point register files, deemed the hottest
processor components. Like our work, that paper tries to adjust the instruc-
tion flow in an SMT processor to mitigate the heating effects of a hot thread.
However, both their policies are toggling policies that reduce activity to reduce
hotspots. Our static and dynamic steering techniques utilize the differences in
application thermal characteristics to eliminate hotspots, often without reduc-
ing performance.

Heat Stroke is a denial-of-service (DoS) attack on an SMT processor in which
a malicious thread highly utilizes a particular pipeline resource, creating a
hotspot on the chip [Hasan et al. 2005]. In that work, Hasan et al. [2005] as-
sert that such a Heat Stroke attack harms the performance of other threads on
the processor when DTM mechanisms, such as stop–go or DVS, slowdown the
whole pipeline in order to cool the hotspot. They conclude that it is imperative
to isolate the offending thread and restrict only its execution through sedation,
which has the same effect as our thread-dispatch gating. We likewise propose
thread- and cluster-specific DTM techniques to avoid penalizing threads that
are not causing thermal problems. However, while the goal of their work is to
stop malicious threads from degrading performance, our hot threads are behav-
ing properly, but happen to use the processor intensively. Rather than simply
restrict the execution of these threads, we propose steering-based DTM policies,
which take advantage of the variations in applications to improve the thermal
behavior of the hot thread by intelligently steering it to clusters cooled by less
resource intensive threads. This approach does not punish hot threads, but,
instead, increases IPC by lengthening the time before performance-harming
DTM must be engaged.

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 1, Article 4, Publication date: May 2008.

Addressing Thermal Nonuniformity in SMT Workloads • 4:25

Other research proposes HybDTM, a methodology for coordinating fine-
grained hardware techniques and coarser grain software mechanisms to pro-
vide more effective thermal management [Kumar et al. 2006]. The authors eval-
uate their approach on a Pentium 4 processor running Linux in single thread
and SMT configurations. Like our work, their two-level approach combines a
low-cost mechanism (an OS software technique), which tries to keep the pro-
cessor as cool as possible and a higher cost mechanism (hardware stop-go) as a
backup to prevent thermal emergencies. However, since they experiment with
a real processor, they focus on making better use of features that are already
implemented, whereas we propose new hardware DTM techniques for future
clustered SMT architectures.

Donald and Martonosi [2006] employ formal control theory to perform DTM
in a four-core CMP environment. They compare chip-wide and per-core imple-
mentations of a basic stop-go policy (equivalent to global-dispatch gating) and
dynamic voltage scaling and experiment with migration of threads among the
cores. In contrast, our work investigates, in more detail, the DTM opportuni-
ties within a single SMT core and shows that there are effective alternatives to
dynamic voltage scaling at the per-core level. While we examine how nonuni-
form heating within an SMT core can be exploited for thermal management,
they look at single-thread cores and treat the cores holistically. Future research
could explore how our intracore and Donald and Martonosi’s intercore policies
could work in tandem for even more effective DTM.

Chaparro et al. [2007] also examine thermal management using stop–go,
thread migration, and DVS in a chip multiprocessor of single-thread cores.
However, these authors evaluate a sixteen-core architecture, compare a num-
ber of variants of stop–go and thread migration, and focus on performing sen-
sitivity studies to understand the impact of cool-down interval length, emer-
gency threshold temperature, frequency of DTM decisions, and the quality of
the thermal solution. Again, the insight they develop for intercore DTM poli-
cies can be combined with our techniques for managing temperature within the
core.

Heat-and-run exploits the variation in application resource usage to manage
temperature in an architecture consisting of a chip multiprocessor composed
of SMT cores [Powell et al. 2004]. By pairing complimentary applications in a
multiprogrammed workload, processor-core resources are maximally utilized
and heated. These more efficiently used cores can then be cooled using activity
migration across the cores of the CMP. While heat-and-run focuses on how to
schedule threads to cores to maximize processor use under thermal constraints,
our work examines how to manage a given set of threads within the core to
reduce the cost of DTM.

Li et al. [2005] compare the thermal behavior of a baseline superscalar
processor to that of a two-way SMT and a CMP of two cores. They also
compare the effectiveness of a variety of DTM techniques on these architec-
tures, including DVS and throttling of the fetch unit, rename, and the regis-
ter file. Unlike our DTM policies, they do not employ mechanisms that adapt
to application resource usage or exploit nonuniform thermal behavior to cool
hotspots.

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 1, Article 4, Publication date: May 2008.

4:26 • J. A. Winter and D. H. Albonesi

Chaparro et al. [2004a, 2004b] propose that clustered microarchitectures nat-
urally reduce temperatures in the processor, because they distribute resources
and computation among the back ends. They investigate single-thread clustered
processors and develop some simple steering mechanisms to mitigate thermal
problems. The also propose cluster hopping, a form of activity migration where
instructions are only sent to a subset of the back ends in the processor. Unlike
our simulated microarchitecture, their clusters are highly overprovisioned for
a single-thread workload and, thus, unused clusters can again be thought of as
spares. We study a whole new class of adaptive DTM techniques for clustered
multithreaded machines, which exploit workload nonuniformity and do not re-
quire spare or idle resources. Furthermore, we provide a comparison against
DTM mechanisms, such as DVS and global-dispatch gating, to demonstrate the
benefits of our steering-based techniques. Finally, orthogonal research to ours
explores the thermal benefits of front-end clustering [Chaparro et al. 2005]. The
enhancements in that paper could be combined with our work to provide DTM
for the entire processor.

7. CONCLUSIONS

In this work, we identify a class of SMT workloads where there is significant
room to improve on the performance of dynamic voltage scaling. For nonuniform
workloads with mixed integer and floating-point applications or different ther-
mal behaviors among the threads, DVS’s global effect cools one thread at the
performance expense of the other. To address this deficiency, we propose DTM
policies that leverage the built-in partitioning, steering, and thread-migration
mechanisms of clustered SMT architectures to provide effective temperature
control with low-implementation complexity. On nonuniform workloads, our
best policy, counter-based steering, provides effective DTM with only a 1%
worst-case slowdown compared to a 6.4% slowdown for DVS over a baseline
without thermal management. Furthermore, our steering-based policy is com-
petitive with DVS across all workloads.

Our clustered SMT DTM policies have the additional advantage of not re-
quiring the capability to scale frequency and voltage on a per-core level. This
makes them very attractive for implementation in future large-scale chip mul-
tiprocessors, where having numerous voltage domains will be undesirable, and
possibly infeasible. Furthermore, our steering-based DTM techniques will func-
tion effectively in future technologies with ultralow supply voltages, which may
pose problems for dynamic voltage scaling.

In order to take advantage of the complementary features of steering-
based DTM and DVS, we propose combining counter-based steering with dy-
namic voltage scaling. In this “best-of-both-worlds” policy, counter-based steer-
ing addresses nonuniform workloads by spreading the heat and minimiz-
ing the need to use DVS, while uniformly hot benchmark pairs are cooled
most effectively by dynamic voltage scaling. As a result, this hybrid policy
provides the best overall performance with a slowdown of 2.8% compared
to 4.3% for DVS and 3.5% for counter-based steering with cluster-dispatch
gating.

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 1, Article 4, Publication date: May 2008.

Addressing Thermal Nonuniformity in SMT Workloads • 4:27

REFERENCES

BALASUBRAMONIAN, R., DWARKADAS, S., AND ALBONESI, D. 2003. Dynamically managing the
communication-parallelism trade-off in future clustered processors. In Proceedings of ISCA 30
(June). 275–286.

BROOKS, D. AND MARTONOSI, M. 2001. Dynamic thermal management for high-performance mi-
croprocessors. In Proceedings of HPCA 7 (Jan.), 171–182.

BROOKS, D., TIWARI, V., AND MARTONOSI, M. 2000. Wattch: A framework for architectural-level
power analysis and optimizations. In Proceedings of ISCA 27 (June), 83–94.

BURGER, D. AND AUSTIN, T. 1997. The SimpleScalar Toolset, Version 2.0. ACM SIGARCH Comp.
Arch. News 23, 3 (June), 13–25.

BUTTS, J. A., AND SOHI, G. S. 2000. A static power model for architects. In Proceedings of MICRO
33 (Dec.), 191–201.

CHAPARRO, P., GONZÁLEZ, J., AND GONZÁLEZ, A. 2004a. Thermal-aware clustered microarchitectures.
In Proceedings of ICCD (Oct.), 48–53.

CHAPARRO, P., GONZÁLEZ, J., AND GONZÁLEZ, A. 2004b. Thermal-effective clustered microarchitec-
tures. In Proceedings of the 1st TACS Workshop (June).

CHAPARRO, P., MAGKLIS, G., GONZÁLEZ, J., AND GONZÁLEZ, A. 2005. Distributing the frontend for
temperature reduction. In Proceedings of HPCA 11 (Feb.), 61–70.

CHAPARRO, P., GONZÁLEZ, J., MAGKLIS, G., CAI, Q., AND GONZÁLEZ, A. 2007. Understanding the ther-
mal implications of multicore architectures. In IEEE Transactions on Parallel and Distributed
Systems 18, 8 (Aug.), 1055–1065.

COLLINS, J. D., AND TULLSEN, D. M. 2004. Clustered multithreaded architectures—Pursuing both
IPC and cycle time. In Proceedings of IPDPS 18 (April), 76–86.

DHODAPKAR, A., LIM, C. H., CAI, G., AND DAASCH, W. R. 2000. TEM2P2EST: A thermal enabled
multi-model power/performance estimator. In Proceedings of the 1st PACS Workshop (Nov.).

DONALD, J., AND MARTONOSI, M. 2004. Temperature-aware design issues for SMT and CMP archi-
tectures. In Proceedings of the 5th WCED Workshop (June).

DONALD, J. AND MARTONOSI, M. 2005. Leveraging simultaneous multithreading for adaptive ther-
mal control. In Proceedings of the 2nd TACS Workshop (June).

DONALD, J., AND MARTONOSI, M. 2006. Techniques for multicore thermal management: classifica-
tion and new exploration. In Proceedings of ISCA 33 (June) 78–88.

EL-MOURSY, A., GARG, R., ALBONESI, D. H., AND DWARKADAS, S. 2005. Partitioning multi-threaded
processors with a large number of threads. In Proceedings of ISPASS (March) 112–123.

GHIASI, S. AND GRUNWALD, D. 2004. Design choices for thermal control in dual-core processors. In
Proceedings of the 5th WCED Workshop (June).

HASAN, J., JALOTE, A., VIJAYKUMAR, T. N., AND BRODLEY, C. E. 2005. Heat stroke: Power-density-
based denial of service in SMT. In Proceedings of HPCA 11 (Feb.) 166–177.

HEO, S., BARR, K., AND ASANOVIC, K. 2003. Reducing power density through activity migration. In
Proceedings of ISLPED (Aug.) 217–222.

HUANG, M., RENUA, J., YOO, S., AND TORRELLAS, J. 2000. A framework for dynamic energy efficiency
and temperature management. In Proceedings of MICRO 33 (Dec.), 202–213.

KUMAR, A., SHANG, L., PEH, L.-S., AND JHA, N. K. 2006. HybDTM: A coordinated hardware-
software approach for dynamic thermal management. In Proceedings of the 43rd DAC (July). 548–
553.

LATORRE, F., GONZÁLEZ, J., AND GONZÁLEZ, A. 2004. Back-end assignment schemes for clustered
multithreaded processors. In Proceedings of ICS 18 (June), 316–325.

LI, Y., BROOKS, D., HU, Z., SKADRON, K., AND BOSE, P. 2004. Understanding the energy efficiency of
simultaneous multithreading. In Proceedings of ISLPED (Aug.). 44–49.

LI, Y., BROOKS, D., HU, Z., AND SKADRON, K. 2005. Performance, energy, and thermal considerations
for SMT and CMP architectures. In Proceedings of HPCA 11 (Feb.), 71–82.

LIAO, W., LI, F., AND HE, L. 2003. Microarchitecture level power and thermal simulation consid-
ering temperature dependent leakage model. In Proceedings of ISLPED (Aug.), 211–216.

LIAO, W., HE, L., AND LEPAK, K. M. 2005. Temperature and supply voltage aware performance
and power modeling at microarchitecture level. In IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., 24, 7 (July), 1042–1053.

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 1, Article 4, Publication date: May 2008.

4:28 • J. A. Winter and D. H. Albonesi

LIM, C. H., DAASCH, W. R., AND CAI, G. 2002. A thermal-aware superscalar microprocessor. In
Proceedings of ISQED (March). 517–522.

POWELL, M. D., GOMAA, M., AND VIJAYKUMAR, T. N. 2004. Heat-and-run: Leveraging SMT and CMP
to manage power density through the operating system. In Proceedings of ASPLOS XI (Oct.).
260–270.

POWELL, M. D., SCHUSCHMAN, E., AND VIJAYKUMAR, T. N. 2005. Balancing resource utilization to
mitigate power density in processor pipelines. In Proceedings of MICRO 38 (Nov.), 294–304.

RAASCH, S. AND REINHARDT, S. 2003. The impact of resource partitioning on SMT processors. In
Proceedings of PACT 12 (Sept.), 15–26.

RABAEY, J. M. 1995. Digital Integrated Circuits: A Design Perspective. Prentice-Hall, Englewood
Cliffs, NJ.

SASANKA, R., ADVE, S. V., CHEN, Y. AND DEBES, E. 2004. The energy efficiency of CMP vs. SMT for
multimedia workloads. In Proceedings of ICS (June). 196–206.

SEMICONDUCTOR INDUSTRY ASSOCIATION. 2003. International Technology Roadmap for Semiconduc-
tors – 2003 Edition. In http://www.itrs.net/Links/2003ITRS/Home2003.htm.

SENG, J. S., TULLSEN, D. M., AND CAI, G. Z. N. 2000. Power-sensitive multithreaded architecture.
In Proceedings of ICCD (Sept.). 199–206.

SKADRON, K. 2004. Hybrid architectural dynamic thermal management. In Proceedings of DATE
(Feb.), 10–15.

SKADRON, K. 2006. Personal communication.
SKADRON, K., STAN, M. R., HUANG, W., VELUSAMY, S., SANKARANARAYANAN, K., AND TARJAN, D. 2003.

Temperature-aware microarchitecture. In Proceedings of ISCA 30 (Apr.), 2–13.
TULLSEN, D., EGGERS, S., LEVY, H., EMER, J. S., LEVY, H. M., LO, J. L., AND STAMM, R. L. 1996. Ex-

ploiting choice: Instruction fetch and issue on an implementable simultaneous multithreading
processor. In Proceedings of ISCA 23 (May), 191–202.

ZHANG, Y., PARIKH, D., SANKARANARAYANAN, K., SKADRON, K., AND STAN, M. 2003. HotLeakage: A
temperature-aware model of subthreshold and gate leakage for architects. The University of
Virginia, Department of Computer Science, Technical Report CS-2003-05 (March).

ZYUBAN, V. AND KOGGE, P. 2001. Inherently lower-power high-performance superscalar architec-
tures. IEEE Trans. Comput. 50, 3 (Mar.), 268–285.

Received March 2007; revised July 2007; accepted August 2007

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 1, Article 4, Publication date: May 2008.

