
Runtime Recon�guration Techniques for

E�cient General Purpose Computation

Bingxiong Xu and David H� Albonesi
Dept� of Electrical and Computer Engineering

Computer Studies Building� Box ������
University of Rochester

Rochester� NY �����	����
Phone
 ����� ��	����

fbixu�albonesig�ece�rochester�edu

Abstract� Because of their widespread use� general purpose microprocessors are called

upon to execute an increasingly diverse set of applications� Due to their static organiza	

tion� these devices often operate very ine�ciently under these conditions� which results in

lost performance opportunities and extra energy dissipation� By exploiting the partitioning

of major microprocessor hardware structures� and applying runtime recon�guration tech	

niques� microprocessor e�ciency can be greatly improved while retaining the bene�ts of fast

clock speed� dense functionality� and mature software and chip development tools� While

the functionality of each hardware structure remains �xed� its complexity is con�gured to

match application requirements at runtime� Two applications of this approach demonstrate

signi�cant improvements in both energy e�ciency and performance�

�

Introduction

The performance of general purpose microprocessors continues to increase at a rapid pace� In

the last � years� the performance of these devices has increased at a rate of roughly ��� times

per year ����� These performance gains have been fueled by continuing advances in semicon	

ductor technology� which allow for additional on	chip functionality and faster clock speeds

with each new microprocessor generation� As signi�cant as these technological advances

is the massive amount of design experience and infrastructure accumulated in developing

complex out	of	order speculative processors and associated software and development tools�

This mature machinery currently allows new generations of microprocessor hardware and

supporting compiler and operating system software to be delivered every �	� years�

This success story has led to the commoditization of the microprocessor and its prolifer	

ation throughout society� A single core processor design may �nd its way into such myriad

environments as desktop PCs� web servers� supercomputers� portable devices� and printers�

Thus� general purpose microprocessors are called upon to run an increasingly diverse work	

load� from traditional business and scienti�c programs to data mining� multimedia� virtual

work environments� and collaborative computing applications� These applications may vary

markedly in their characteristics� including their instruction	level parallelism and memory

access patterns� For a given chip area� the hardware features that provide the best balance

between exploiting these characteristics and optimizing clock speed and energy e�ciency is

a function of what application� or portion of an application� is running at any given moment�

However� because a conventional microprocessor is designed with unchanging� static hard	

ware structures� the task of designing such a device is one of compromises and tradeo�s

in an attempt to produce a design that provides best overall performance across a diverse

workload� As measured by the proliferation of the general purpose microprocessor� and its

�

annual ��� times performance improvement� it can be argued that this �best overall� ap	

proach has thus far been successful� However� the cost of this compromise approach is the

ine�cient operation of microprocessor hardware structures� a design issue that is growing in

importance with each processor generation�

A processor hardware structure� such as a branch prediction table� cache� or TLB� operates

ine�ciently when its elements are not well utilized by a given task� and when removing

a signi�cant fraction of the resource has little impact on the number of cycles required to

complete the task� Consider the core processor hardware for instruction issue� execution� and

commitment� The utilization of these resources may depend on many factors� including the

instruction and data supply demands and the inherent data dependencies of the application�

Simulation	based studies ��� ��� and measurements of real microprocessors ��� �� reveal that

the utilization of these core resources� as well as other resources such as caches� vary widely

from application to application� However� in order to more fully examine processor e�ciency�

some insight also needs to be acquired on how e�ectively these resources exploit parallelism

during di�erent periods of individual application execution�

Evaluating Processor E�ciency Via Dynamic Parallelism

Analysis

By quantifying the dynamic parallelism� the parallelism of an application during di�erent

periods of execution� insight can be gained as to how processor e�ciency changes during

the execution of a single program� To perform this analysis� parallelism measurements are

periodically taken during application simulation� A plot of these measurements as a function

of the number of executed instructions shows how parallelism changes during execution� A

comparison of parallelism plots for di�erent hardware con�gurations reveals the relative

�

Table �
 Simulator hardware parameters for full con�g�

Parameter Value

fetch width ����
decode width ����
RUU size ����
issue width ����
integer ALUs ����
integer multiplier�dividers ��
�t� pt� ALUs ����
�t� pt� mult�div ��
memory ports ��
commit width ����

e�ectiveness of these con�gurations in exploiting parallelism at various phases of application

execution�

Three aggressive processor designs� re�ecting the total processor resources that might be

available in the future� are modelled using a detailed� execution	driven simulator ��� of a

speculative out	of	order processor that implements a superset of the MIPS instruction set�

The simulator uses a centralized instruction queue called the Register Update Unit �RUU�

from which decoded instructions are issued and in which results are held before they are

committed� The RUU is similar to the Instruction Reorder Bu�er used in the HP PA	����

dynamic superscalar microprocessor �����

The three processor designs vary in their support for instruction issue� execution� and com	

mitment� The model full con�g uses the parameters in Table �� while the models half con�g

and quarter con�g have one	half and one	quarter� respectively� of the hardware resources

of full con�g� The instruction fetch� decode� branch predict� and data fetch mechanisms

of these con�gurations are only limited by the width of the processor instruction and data

paths� otherwise� perfect instruction and data streams are provided to the core processor

�

hardware� In addition� all instructions execute in a single cycle� Thus� outside of data

dependencies� there are few inhibitors to exploiting application parallelism�

Despite this fact� the snapshots in Figure � of the dynamic parallelism of six of the SPEC�

benchmarks� demonstrate both the uniform and non	uniform e�ects of various levels of hard	

ware support for extracting parallelism� For tomcatv and fpppp� the most aggressive model

has a large and uniformly bene�cial impact on parallelism� For turb�d� in which the overall

parallelism of the full con�guration is less than �� greater than that with half the resources�

there is little di�erence between these two con�gurations throughout execution� Even the

quarter con�g model provides similar performance to the more aggressive models during

some periods of execution� For li� ijpeg� and hydro�d� the relative e�ectiveness of the three

hardware con�gurations in exploiting parallelism varies non	uniformly during execution� For

li for example� the full con�guration achieves a parallelism that is over ��� greater than that

with one	quarter the hardware resources during the ��� million instruction execution period

that we studied� and �� greater once the �rst ����M instructions have executed� Yet�

there are regular periods of execution that are signi�cant in length during which there is no

discernible di�erence in parallelism between these con�gurations� Similar non	uniformity is

observed with ijpeg and hydro�d�

These results demonstrate how the e�ciency of the core processor resources for extracting

application parallelism can vary from application to application� and even within the exe	

cution of an individual application� For tomcatv and fpppp� the ��	�� parallelism boost

provided by the full con�g model over the half con�g model justi�es the use of the more

aggressive con�guration for these applications� However� for turb�d� the full con�g model

provides little bene�t over the simpler models when one considers the additional hardware

cost of the more complex model� For li� ijpeg� and turb�d� the use of the most aggressive

hardware is bene�cial during some periods of execution� yet for others� the lesser models

5

10

15

20

25

30

35

40

0 1e+08 2e+08 3e+08 4e+08 5e+08 6e+08

P
a
ra

lle
lis

m

Committed Instructions

full config
half config

quarter config

10

12

14

16

18

20

22

24

1.8e+08 1.85e+08 1.9e+08 1.95e+08 2e+08

P
a
ra

lle
lis

m

Committed Instructions

full config
half config

quarter config

5

10

15

20

25

30

35

40

45

50

0 1e8 2e8 3e8 4e8 5e8 6e8 7e8 8e8

P
a
ra

lle
lis

m

Committed Instructions

full config
half config

quarter config

10

12

14

16

18

20

22

24

1.7e8 1.75e8 1.8e8 1.85e8 1.9e8 1.95e8 2e8

P
a
ra

lle
lis

m

Committed Instructions

full config
half config

quarter config

10

15

20

25

30

35

40

45

0 5e7 1e8 1.5e8 2e8 2.5e8 3e8 3.5e8 4e8

P
a
ra

lle
lis

m

Committed Instructions

full config
half config

quarter config

10

20

30

40

50

60

70

80

90

100

110

4.4e+08 4.5e+08 4.6e+08 4.7e+08 4.8e+08

P
a
ra

lle
lis

m

Committed Instructions

full config
half config

quarter config

ijpeg

fpppptomcatv

turb3d li

hydro2d

Figure �
 The dynamic parallelism of six di�erent SPEC� benchmarks under three hardware

con�gurations�

�

0

5

10

15

20

25

0 5e+07 1e+08 1.5e+08 2e+08 2.5e+08 3e+08 3.5e+08 4e+08

P
a

ra
lle

lis
m

Committed Instructions

half config, 32KB cache
half config, 16KB cache

Figure �
 The dynamic parallelism of ijpeg with ��KB and ��KB L� Dcaches�

provide almost identical performance�

Cache e�ciency can vary widely during application execution as well� Figure � shows

the dynamic parallelism of a portion of ijpeg for two models
 half con�g with a direct	

mapped ��KB L� data cache� and half con�g with a ��KB L� data cache� There are three

execution phases� representing di�erent phases of the compression�decompression process�

during which the di�erence in parallelism between these two caches varies widely� During

the startup phase of the application� which lasts for the �rst million instructions� there is

less than a �� di�erent in performance between the two organizations� During the second

phase� which lasts until about ��� million instructions have executed� two periods alternate

in sequence� These periods are about two and three million instructions in length� and

cache e�ectiveness di�ers radically between them� For the shorter periods� the ��KB cache

outperforms the ��KB cache by about a factor of eight� However� during the longer periods�

performance only di�ers by about �� During the next major phase� there is a steady ��

di�erence between the organizations� The second phase then repeats�

The results in this section illustrate how for some applications� a particular hardware re	

source may signi�cantly improve performance throughout execution� For other applications�

performance may not improve at all� or the improvement may be sporadic during execution�

�

Although the incorporation of the resource may be justi�ed based on overall performance

gain� for any given application the resource may operate very ine�ciently� Thus� despite

the impressive advances made by conventional microprocessors� their static nature renders

them far from ideal in terms of delivering the best possible performance in the most e�cient

manner�

The Growing Importance of Processor E�ciency

Achieving e�cient microprocessor operation is important for two reasons� First� there is

a fundamental performance tradeo� between achieving a high instructions per cycle �IPC�

rating with complex hardware versus a high clock rate with simpler hardware� A design

that is overly complex for a given task fails to reach its full speed potential due to this extra

complexity� A design that fails to exploit the parallelism or data locality of a program� when

the level of integration is such that this can be achieved� may expend additional cycles than

are necessary to execute the program� A modern microprocessor �nds the middle ground

of this tradeo� where most applications of interest perform well� but the inevitable result is

that the tradeo� is far from optimal for many of these applications� One can almost always

conjecture on an alternative� better performing design for any given application�

Second� the energy dissipation of a microprocessor is proportional to the switching ca	

pacitance of the hardware� which is a function of the amount of hardware functionality and

the number of signal transitions that take place within it� A hardware function that is

overdesigned for a given task wastes energy activating more logic and memory cells than are

necessary to perform the task� while a hardware function that is too simple wastes energy per	

forming an exceedingly large number of operations� Current microprocessors use conditional

clocking in which hardware functions are partitioned into smaller structures� a subset of

�

which are selectively enabled each cycle via hardware control� However� conditional clocking

creates large and rapid �uctuations in power supply current which signi�cantly complicates

the power delivery system design due to transient noise issues ���� ���� The Alpha �����

microprocessor required voltage and ground planes and the incorporation of decoupling ca	

pacitors that comprised �	��� of the total die area due to the transient e�ects of conditional

clocking� Embedded microprocessors are also subject to these transient e�ects� which may

eventually require expensive solutions that increase their cost and�or limit portability�

As semiconductor technology has continued to improve� allowing for increased integration

and higher clock rates� making e�cient use of processor resources has become more critical

than ever� Recent design decisions� such as the split instruction queues in the Mips R�����

and Alpha ����� and the dual integer clusters in the ������ provide evidence of how architects

are struggling to reconcile increased functionality and increased clock rates in current designs�

This is largely due to the limitations in scaling wire delays with new process generations�

which will become even more of a challenge in the future ���� Furthermore� chip functionality

and clock rates have increased to the point where unless countermeasures are taken� power

dissipation may eventually limit the functionality that may be included on a microprocessor

���� ���� By intelligently incorporating con�gurability into a conventional microprocessor�

processor e�ciency can be signi�cantly improved while retaining the dense functionality and

high clock rate that are critical for good general purpose computing performance�

Incorporating Con�gurability Into Commodity Micro�

processors

In contrast to the static organization of conventional processors� Con�gurable Comput	

ing Machines �CCMs� consist of �exible hardware whose functionality can be dynamically

�

adapted to changing program characteristics� A typical CCM contains a set of con�gurable

functional blocks and a con�gurable interconnect� Many of these machines use FPGAs in

order to �nely tune the hardware functionality on	the	�y to match algorithms from appli	

cations such as signal processing and imaging� However� the low density� slow clock speed�

and long recon�guration times of most CCMs make them incompatible with many general

purpose applications� which bene�t more from the high density and high clock rate of static

conventional microprocessors than from the �exibility a�orded by CCMs� In addition� the

development of many CCMs requires di�erent algorithms� programming models� and�or de	

velopment tools than those that have been successfully used to produce many generations

of commodity microprocessors�

However� techniques from con�gurable computing can be e�ectively applied to conven	

tional microprocessors in order to provide for better application	speci�c tailoring of the

hardware complexity� Speci�cally� techniques for runtime recon�guration �RTR� can be used

to dynamically adapt the complexity of the processor hardware to match changing applica	

tion characteristics� such as those evident in Figure �� Thus� design techniques for RTR and

conventional microprocessors can be combined so as to

� Produce clock rates that are competitive with conventional microprocessors�

� Implement aggressive hardware support for exploiting parallelism and memory locality�

� Dynamically con�gure the hardware complexity and �optionally� the operational speed

of the chip at runtime�

� Limit recon�guration overhead to tens of clock cycles in order to exploit the rapid

changes in hardware requirements demonstrated in Figure �� and

� Use the mature programming models and design methodologies of conventional micro	

��

processors�

The above criteria imply starting with a conventional microprocessor design and incorpo	

rating a limited level of adaptability in order to overcome the aforementioned limitations of

conventional static devices� This philosophy� which lies at the coarse	grain end of the CCM

spectrum� we refer to as Complexity�Adaptive Processing or CAP because its central theme is

allowing for hardware complexity to be dynamically adapted at runtime to match application

requirements� In contrast to conventional microprocessor design� CAP provides aggressive

hardware support for exploiting parallelism and memory locality in an on�demand fashion�

running with a subset of this full support enabled during lower demand periods� With this

performance on�demand approach to microprocessor design� a signi�cant reduction in the

switching energy can be realized by placing non	critical functionality into a quiescient state

during appropriate periods of execution� Furthermore� if a dynamic clocking circuit whose

frequency can be rapidly switched is incorporated into the design� then a faster clock can

be enabled on	the	�y during low demand periods� This ability to dynamically trade o�

hardware complexity and clock speed at runtime can signi�cantly improve microprocessor

performance�

Another facet of CAP techniques is the exploitation of the properties of a modern mi	

croprocessor in order to limit con�guration overhead� These properties are discussed in the

next section�

Exploiting Microprocessor Partitioning for High�Speed Adaptivity

In order to adapt quickly enough to meet the changing requirements of general purpose

applications� and to retain the density and clock speed of conventional microprocessors�

Complexity	Adaptive Processing exploits high	speed microprocessor circuit design techniques

��

d
e
c
o
d
e

d
e
c
o
d
e

d
e
c
o
d
e

d
e
c
o
d
e

tag index

address

d
e
c

precharge

tag

array

sense

d
e
c

data
select

data

precharge

sense

array

data

precharge

sense

array

data

precharge

sense

array

data

precharge

sense

array

data

data way 0 data way 1 data way 2 data way 3

=

hit0

=

hit1

=

hit2

=

hit3

precharge

array

sense

tag

Figure �
 A four	way set associative cache with the data array vertically partitioned and the

tag array horizontally partitioned�

to provide con�gurability at low cost� The functionality of a modern microprocessor is dom	

inated by large RAM and CAM	based structures such as caches� TLBs� branch predictor

tables� register rename tables� instruction queues� and register �les� Each of these memory

structures is often partitioned into multiple memories called subarrays for speed purposes�

Such partitioning decreases the long wordline and�or bitline delays of a single large RAM�

the net result of which is a faster access time� For example� Figure � shows a four	way set

associative cache with subarray partitioning� The data array is vertically sliced into four

subarrays� each with its own local wordline decoder and one	quarter the sense ampli�ers

��

d
e
c
o
d
e

partition n-1

enable partition n-1

precharge

sense

partition 0

data 0

arrayaddress

pre_clk

...

enable partition 0

Figure �
 A memory structure organized as n partitions� each of which can be individually

enabled or disabled�

of a single data array� Here� each wordline is roughly one	quarter the length of that in a

single array �although there may be a global wordline that spans one	half to the full array

length�� Two tag subarrays are formed by segmenting the bitlines� resulting in a halving of

the decoder width but a doubling of the number of sense amps relative to a single tag array�

Only one of the two sets of tag sense ampli�ers associated with the same column is activated

during each access�

These properties of major microprocessor hardware structures can be exploited in order

to provide low	cost con�gurability� In particular� a small amount of gating logic can be used

to rapidly enable or disable subarray partitions during execution� This logic transforms a

conventional static structure into a dynamic one whose complexity can be changed on	the	�y

at runtime� In a conventional CCM� the operation performed by each function block and

the interconnect are con�gurable� In contrast� our goal is for the function and interconnect

to be �xed as in a conventional microprocessor but for its complexity to be con�gurable�

Figure � shows a dynamic memory structure which has been partitioned into subarrays for

speed purposes� and the small amount of additional circuitry needed to selectively disable

each memory partition� which is comprised of one or more subarrays� The gating logic in

��

this diagram is based on that used to conditionally clock data subarrays in the Alpha �����

L� cache ��� Each enable partition signal controls the enabling of one of the n memory

partitions� If a particular enable partition line is at logic zero� then that partition is not

precharged� no word lines are selected� and its sense amps are prevented from �ring� Thus�

no switching activity ensues and thus this partition dissipates essentially no dynamic power�

Note that regularity in microprocessor logic structures and buses can be similarly exploited�

For example� a large logic function� such as a wide priority encoder� may be designed as a

tree of smaller structures� As with memory structures� this function can be made dynamic by

adding enable partition signals to di�erent groups of these smaller structures� By exploiting

this natural partitioning of high	speed circuits� only very minimal changes are required to

achieve con�gurability� However� additional hardware and software mechanisms are required

to adapt these dynamic structures at runtime to match changing application requirements�

Elements of Complexity Adaptive Processing

A conventional approach to processor design would implement decoder logic at each pipeline

stage to control dynamic structures on a cycle	by	cycle basis� The analysis of the benchmarks

of Figure � as well as other SPEC� benchmarks reveals that major changes in parallelism

and cache requirements frequently occur in applications at a medium	grain level� no faster

than every ������� instructions ����� or every ���� clock cycles on a future processor that

sustains an IPC of �� At this rate� to limit the recon�guration overhead to �� of the

execution time� recon�guration can take as much as �� clock cycles� With the exception

of some functions� such as data caches and instruction queues which may require time to

preserve data before partitions are disabled� partitions can be enabled or disabled in only a

few cycles using the mechanisms of Figure ��

��

For these reasons� Complexity	Adaptive Processing uses the RTR approach of software

control of the con�gurable hardware layer� obviating the need for hardware decision logic�

The simple mechanism used in the hardware to enable or disable partitions leaves ample

time for executing special instructions to load the CR while maintaining low con�guration

overhead� Thus� a CAP implementation is a combined hardware�software system that is

composed of most� if not all� of the elements shown in Figure

� Dynamic hardware structures�

� Conventional static hardware structures�

� Performance counters which track the performance of each dynamic structure as well

as the overall processor� and which are readable via special instructions and accessible

to the control hardware�

� A Con�guration Register �CR� which is readable and writable via special instructions

and by the hardware� and whose outputs drive the enable partition inputs for each

dynamic structure and �optionally� control the clock speed of the chip�

� An optional dynamic clocking system whose frequency is controlled via particular CR

bits� a change in these bits causes a sequence in which the current clock is disabled

and the new one started after an appropriate settling period�

� An instruction set consisting of conventional instructions augmented with special in	

structions for loading the CR and reading the performance counters�

� Con�guration control� implemented in the compiler� the runtime system� and �op	

tionally� the dynamic recon�guration control logic �DRCL�� that acquires information

about the application and uses predetermined knowledge about the complexity and

clock speed of each hardware con�guration to create a con�guration schedule that

�

..

.

structures
static hardware

application

instruction set

architecture

configuration

CAP hardware implementation

dynamic
reconfiguration
control logic

register

structures

counters
performance

dynamic hardware

runtime systemCAP config

executable with

instructions

CAP

oscillators

CAP

compiler

dynamic clocking system

Figure
 Overall elements of a CAP hardware�software system�

matches the hardware complexity to application requirements dynamically during its

execution�

The process of compiling and running an application on a CAP machine is as follows�

The CAP compiler analyzes application hardware requirements for di�erent phases of its

execution� For example� it may analyze dynamic data cache requirements based on working

set analysis� or determine the dynamic parallelism based on the data and control �ow graphs�

With this information� and knowledge about available hardware con�gurations� the compiler

determines whether it can with good con�dence create an e�ective con�guration schedule�

specifying at what points within the application the hardware should be recon�gured� and to

which organizations� The schedule is created by inserting special instructions at particular

points within the application that load the CR with the desired con�guration� In cases where

��

dynamic runtime information is necessary to determine the schedule� this task is performed

by the runtime system or �optionally� the DRCL� For example� TLB con�guration scheduling

may be best handled in conjunction with the TLB miss handler� based on runtime TLB

performance monitoring� while the optimal branch predictor size may in some cases be best

determined by a hardware	based predictor� Although software control is preferred due to its

low hardware overhead� CAP implementations may choose to use DRCL in order to rapidly

predict the optimal con�guration based on runtime information�

Through these various mechanisms� the CR is loaded at various points during application

execution� resulting in con�guration of dynamic structures and changes in clock frequency

when a dynamic clocking system is implemented� For runtime control� the performance

counters are queried at regular intervals of operation� and using history information about

past decisions� a prediction is made about the con�guration that will perform best over the

next interval� The runtime system may also use a binary rewriting tool to perform continuous

optimization of the application�

In contrast to conditional clocking� the enabling of the partitions in a structure such as that

in Figure � is under software control� and changes in enabled and disabled functionality occur

over the longer time intervals in which application requirements change �typically hundreds

of thousands of instructions or more�� Thus� the transient current e�ects encountered with

conditional clocking can be controlled by gradually transitioning to the new con�guration�

The transition from a con�guration in which the minimal number of partitions are enabled to

one in which all are enabled can be made in several intermediate steps� thereby lengthening

the period over which this signi�cant change in supply current is made� Because each

recon�guration requires a few tens of cycles� and changes occur over these long execution

periods� this extra cost can be absorbed with negligible performance impact� Conditional

clocking may also result in a delay penalty in cases where parallel access of partition groups

��

is desired� e�g�� in attempting to select only the data way in which there is a hit in a set

associative cache� With the CAP approach� in contrast� a subset of the data cache ways

can be enabled for a given period of execution while still allowing for parallel tag	data

array access� This is discussed in the next section in which some speci�c applications of

Complexity	Adaptive Processing are presented�

Applications of Complexity�Adaptive Processing

Complexity	Adaptive Processing can be applied to isolated hardware structures or to large

slices of a microarchitecture� to synchronous� asynchronous� or mixed timing systems� These

techniques can be used at the process level or within an individual application� to improve

performance� energy e�ciency� or both� Two CAP applications are described in this sec	

tion� The �rst addresses improving the energy e�ciency of the L� data cache in a present	

day microprocessor on an application	by	application basis� The second explores how the

core processor resources of a future microprocessor can be partitioned to provide more op	

timal complexity and speed balance dynamically at runtime� Additional applications of

Complexity	Adaptive Processing can be found in ����

Selective Cache Ways

As was shown in Figure �� the L� cache requirements of a particular application may vary

widely during execution� with periods of high demand followed by periods in which perfor	

mance will not su�er considerably when only a subset of the full cache is enabled� Cache

requirements may also vary considerably from application to application ���� During low

demand periods� considerable energy may be wasted accessing more cache cells than are

needed by the application� This ine�cient operation may occur even with conditional clock	

��

ing� which� in addition� increases transient current noise as discussed in the previous section�

Accessing the tag array �rst� and then activating only the data partition containing the

requested data� considerably reduces energy but at the cost of higher cache latency� The

result can be a signi�cant performance degradation for many applications�

The energy e�ciency of a conventional L� cache can be dramatically improved with only a

small performance impact and without the high transient currents of conditional clocking by

disabling cache subarray partitions during appropriate periods of execution� One approach is

to allocate the individual ways of a set associative cache in an on	demand fashion according

to application requirements� This CAP technique� called Selective Cache Ways ���� allows

for full	speed cache operation as the tag and data arrays are accessed in parallel as in a

conventional cache� Thus� by anticipating low demand periods� the performance degradation

of this approach can be kept to a tolerable level�

Hardware Organization

Figure � is an overall diagram of a four	way set associative cache using selective cache

ways� The wordlines of the data array are segmented four times according to the optimal

partitioning determined by the Cacti cache cycle time model ����� creating four separate data

way elements� The bitlines of each data way may be segmented as well� although this is not

shown in the diagram� Note however� that the tag portion of the cache �which also includes

the status bits� is identical to that of a conventional cache� Cacti	based timing estimates

indicate that for the cache organizations studied� segmenting the tag wordlines will result

in a signi�cant cache cycle time degradation relative to the optimal tag partitioning� For

these reasons� this CAP approach only saves energy in the data portion of the cache� but

this comprises roughly ��� of the total energy dissipation for the cache organizations that

were studied�

��

d
e
c
o
d
e

d
e
c
o
d
e

en_way0 en_way1 en_way2 en_way3

precharge

sense

pre_clk

array

data

=

...

hit0

datatag index

address
select
data

= =

hit1 hit2

=

hit3

array

tag

precharge

sense

data way 0 data way 3

sel_way0

L2_request

Cache

Controller

Configuration Register

Figure �
 A four	way set associative cache using selective cache ways� The details for data

ways �	� are identical to way � but are not shown for simplicity�

��

The Con�guration Register contains four bits in this example �en way�� en way�� en way��

and en way��� each of which signals the Cache Controller to enable a particular way� and

thereby allow it to operate� If a particular way enable bit is set to zero� the sel way signal

for that way is also zero �except in circumstances related to data sharing and coherency�

mechanisms for handling these situations are discussed in detail in ����� Therefore� no data

is selected from a disabled way and its data array dissipates no dynamic power� The replace	

ment decision logic within the Cache Controller also ensures that no new data is allocated

for a disabled way�

Saving Energy With Selective Cache Ways

Cache energy is reduced with selective cache ways during periods where the energy savings

of disabling cache ways outweighs the increase in energy due to servicing additional cache

misses� and where some small performance degradation can be tolerated�

The bene�ts of selective cache ways is assessed by simulating a four	way out	of	order

speculative processor with a two	level cache hierarchy that roughly corresponds to a current

high	end microprocessor such as the HP PA	���� ���� and Alpha ����� ����� Table � shows

the simulator parameters for the memory hierarchy� Selective cache ways is implemented for

only the L� Dcache� The data array of the L� cache is implemented as �� partions� only one

of which is selected for each access� similar to the approach used in the Alpha ����� on	chip

L� cache ���

Cache energy dissipations are calculated using a detailed cache energy dissipation model

���� that uses technology and layout parameters as well as counts of various cache events

�hits� writebacks� etc�� as inputs� These event counts� in addition to performance results� are

gathered from simulations of eight benchmarks
 the SPEC� benchmarks compress� ijpeg� li�

��

Table �
 Simulated memory hierarchy parameters�

Cache Organization

L� Icache ��KB� �	way set assoc�
��B block� random� � cycle latency

L� Dcache ��KB� �	way set assoc� selective cache ways�
� ports� ��B block� random� � cycle latency

L� cache ��KB� �MB� or �MB� �	way set assoc�
��B block� LRU� � cycle latency�

�� partitions
main memory ��B bus width� � cycle

initial latency� � cycles thereafter

turb�d� mgrid� fpppp� and wave�� as well as stereo� a multibaseline stereo benchmark from

the CMU benchmark suite ��� that operates on three �� by ��� integer arrays of image

data� The number of enabled cache ways is determined based on overall application cache

characteristics� and therefore the number of enabled cache ways is only changed during

context switches� Only L� Dcache and L� cache energy dissipations are calculated as the L�

Icache and main memory energy dissipations do not change signi�cantly for these applications

with the number of enabled L� Dcache ways or with the L� cache size�

The energy savings of selective cache ways depends on the amount of performance that

can be traded o� for energy� The Performance Degradation Threshold �PDT	 signi�es the

average performance degradation relative to a cache with all ways enabled that is allowable

for a given period of execution� If the PDT is ��� and� for a given period of execution�

performance is projected to degrade by �� with three ways enabled� and �� with two ways

enabled� then three ways are enabled for that period of execution� so long as the total energy

is less than that with all four ways enabled� This would not be the case if the extra misses

with three ways enabled increase L� cache energy more than the energy savings obtained with

disabling one of the L� Dcache ways� In this case� all four ways are enabled� In this study�

the optimum number of enabled ways for each benchmark is determined from comparing

��

0

5

10

15

20

25

30

35

40

45

50

512KB 1MB 2MB

E
n

e
rg

y
 S

a
v
in

g
s
 (

%
)

L2 Cache

PDT = 2%
PDT = 4%
PDT = 6%

0

1

2

3

4

5

512KB 1MB 2MB

P
e

rf
o

rm
a

n
c
e

 D
e

g
ra

d
a

ti
o

n
 (

%
)

L2 Cache

PDT = 2%
PDT = 4%
PDT = 6%

(a) (b)

Figure �
 �a� Combined L� Dcache and L� cache energy savings and �b� actual performance

degradation as a function of the performance degradation threshold�

performance and energy dissipation results� In an actual system� a pro�ling compiler or a

runtime system such as Compaq�s DCPI ��� can read cache hierarchy performance counter

information and make assessments based on knowledge of relative L� and L� cache energy

dissipations�

Figure � shows the energy savings and actual performance degradation incurred across all

benchmarks as a function of the PDT� The energy savings is calculated from the average

energy dissipation of all benchmarks with all ways enabled� and the average with the number

of disabled ways allowable for a given PDT value� The performance degradation is similarly

calculated from the corresponding IPC results� The actual performance degradation incurred

is signi�cantly less than the PDT value� Overall� roughly a ��� cache hierarchy energy

savings is realized with less than a �� performance degradation for a ��KB L� cache� The

bene�ts are less� yet still signi�cant� for larger L� caches due to the higher energy dissipated

servicing an L� Dcache miss� Even with a large �MB on	chip L� cache� a �� energy savings

is obtained with less than a �� performance degradation using this CAP technique�

��

...

...

...

...

...

...

N M

M

M

M

...

...N

N

N

N

N

N

N

enable
partition 2

enable
partition 1

enable
partition 0

enable
partition 3

Selection
Logic Units

Functional
repeater

Instruction
Queue

Figure �
 Partitioning the RUU and Functional Units using repeaters to electrically isolate

RUU partitions�

Optimizing Core Processor Performance and Energy

Earlier in this article it was demonstrated how the e�ectiveness of three di�erent aggressive

core processor models varies during the execution of six of the SPEC� benchmarks� CAP

techniques can be used to dynamically change the con�guration of the processor to match

changing application requirements� The core resources for instruction issue� execution� and

commit� consisting of the RUU and execution units� are partitioned into four sections as

illustrated in Figure �� Each partition of the instruction queue portion of the RUU is N

entries deep� Each of the entries in the enabled partition can become eligible for issue on

the next cycle if both operands and a functional unit of the correct type are available� The

��

height and thus delay of the selection tree ���� portion of the RUU� which each cycle selects an

instruction to issue to a given Functional Unit from the available pool of instructions� varies

depending on the number of RUU partitions enabled� Branches of the tree corresponding to

disabled RUU entries are themselves disabled� Similarly� trees that correspond to a disabled

Functional Unit are completely disabled�

Repeaters are placed between the instruction queue partitions to electrically isolate the

wires that run the length of each RUU section ���� With this organization� if the upper three

partitions are disabled� the instruction queue delay is no longer constrained by the long wire

delays to these upper partitions� and therefore the remaining partition can operate at a faster

speed� Delays for other combinations of partitions scale similarly� By globally partitioning

other core structures� as is done with the full con�g� half con�g� and quarter con�g models

discussed earlier� then several processor slices are de�ned that vary in complexity and critical

path delays� Therefore� the speed of the CPU core can be changed according to the number

of slices that are enabled� It is assumed in this analysis that changes in the core speed

necessitate a change in the clock speed of the chip�

Optimizing for Performance and Energy

With this sliced processor organization� performance can be improved over a static design

by dynamically trading o� core processor resource complexity and operational speed� Do	

ing so improves processor e�ciency by enabling the amount of hardware complexity that

is e�ectively used by the application� which in turn improves energy e�ciency� Thus� as

a byproduct of dynamically optimizing the complexity	speed tradeo� for performance pur	

poses� energy dissipation can be considerably reduced as well ���� The advantage of this

approach� as opposed to the alternative of optimizing the energy	delay product� is that

performance does not su�er at the expense of reducing energy consumption� an important

�

criteria in a high performance machine� For such an environment� an appropriate metric is

the Energy Throughput Ratio �ETR� which is given by ���

ETR � Power�Throughput��

A lower ETR is desirable as it indicates a more e�cient processor� The Throughput is

calculated as the average rate of committed instructions per second� while Power is given

by

Power � V �

DD
� fCLK � CEFF �

VDD is the supply voltage� fCLK the clock frequency� and CEFF the e�ective switched

capacitance� which is a function of the physical capacitance and the switching activity� This

equation for power ignores leakage and short	circuit power� both of which are typically small

in relation to the switching power in current CMOS circuits�

To quantify the combined improvements in performance and energy with this approach�

a CAP architecture which can switch �based on pro�le information� between the full con�g�

half con�g� and quarter con�g con�gurations is compared with full con�g� the organization

which achieves the best overall performance for the six SPEC� benchmarks� even when

accounting for cycle time� Based on the work of Palacharla ����� the relative cycle time of

full con�g is assumed ��� higher than that of half con�g� which in turn is ��� higher than

that of quarter con�g� The calculations for Power only take into account the processor core�

The CEFF for full con�g is assumed to be twice that of half con�g� which in turn is twice

that of quarter con�g�

For the tomcatv� fpppp� and turb�d benchmarks� the best	performing con�guration for each

individual benchmark is selected for its entire execution period� For ijpeg� hydro�d� and li�

the con�guration is changed dynamically during execution on average every ��� million�

million� and � million instructions� respectively� With the fast mechanism described earlier�

��

0

0.2

0.4

0.6

0.8

1

1.2

1.4

tomcatv fpppp turb3d hydro2d ijpeg li average

R
e

la
ti
v
e

 V
a

lu
e

Benchmark

Throughout
Power

ETR

Figure �
 The Throughout� Power� and ETR of the CAP processor core relative to that of

full con�g�

recon�guration overhead is less than ���� for the fastest rate �li�� However� when switching

from a more aggressive to less aggressive con�guration� instructions in an RUU partition

that is to be disabled must be allowed to complete and commit their results� This can be

handled by a two step recon�guration process� First� the priority of instructions in these

partitions is raised to allow these entries to empty quickly� In addition� no new instructions

are placed in this partition� In the worst case situation of recon�guring from full con�g to

quarter con�g� this period would last about ��	�� clock cycles assuming the average IPC rate

measured on the six SPEC� benchmarks� However� during this period new instructions are

still placed in the other RUU partition� and the processor is not idle as instruction execution

otherwise continues normally� Once these partitions are emptied� they are disabled and the

clock is changed accordingly�

Figure � shows relative values of throughput� processor core power� and processor core

��

ETR of the CAP con�guration compared with full con�g� These values were measured from

the steady	state behavior of all benchmarks� that is� after the initialization period� Both

tomcatv and fpppp perform best with full con�g used throughout execution and so there is

no di�erence for these benchmarks� On the other hand� turb�d performs best with quarter

con�g always selected� and the result is a dramatic improvement in throughput� power� and

ETR� The results for hydro�d� ijpeg� and li re�ect the bene�ts of on	the	�y recon�guration

of hardware complexity during application execution� For example� for hydro�d� the ETR

is �� lower than would have been achieved in running its best overall con�guration for its

entire execution�

Overall� the CAP processor core produces a ��� reduction in power� and �� improve	

ment in processor e�ciency �as calculated from relative ETR values� as compared to the

conventional approach� A key point is that in contrast to many conventional low power

techniques� this is achieved while improving processor throughout by ���� This dual bene�t

is a product of the dynamic runtime optimization of hardware complexity and clock speed

a�orded by Complexity	Adaptive Processing�

Conclusions

Complexity	Adaptive Processing capitalizes on the natural partitioning of microprocessor

hardware structures for speed purposes� and applies RTR techniques to dynamically improve

both performance and energy e�ciency� Two examples of CAP techniques demonstrate a

signi�cant improvement in both of these criteria� Our future plans include exploring CAP

organizations with multiple clocked regions� and implementing a prototype chip using CAP

memory hierarchy techniques in a leading industry architecture�

��

Acknowledgements

John Strasser coded the cache energy dissipation model� and to our knowledge� George Cai

of Intel �rst coined the term �performance on demand�� This research is supported by the

National Science Foundation under CAREER Award CCR	������ and grant CCR	��������

��

References

��� D�H� Albonesi� Dynamic IPC�clock rate optimization� Proceedings of the ��th Interna�

tional Symposium on Computer Architecture� pages �������� June �����

��� D�H� Albonesi� The inherent energy e�ciency of complexity	adaptive processors� Pro�

ceedings of the �

� Power�Driven Microarchitecture Workshop� pages �������� June

�����

��� D�H� Albonesi� Selective cache ways
 On	demand cache resource allocation� Proceedings

of the ��nd International Symposium on Microarchitecture� November �����

��� J� Anderson et al� Continuous pro�ling
 Where have all the cycles gone� Proceedings

of the ��th Symposium on Operating Systems Principles� October �����

�� W�J� Bowhill et al� Circuit implementation of a ���	MHz ��	bit second	generation

CMOS Alpha CPU� Digital Technical Journal� ����
�������� Special Issue ����

��� T�D� Burd and R�W� Brodersen� Energy e�cient CMOS microprocessor design� Pro�

ceedings of the ��th International HICSS Conference� pages �������� January ����

��� D� Burger and T�M� Austin� The SimpleScalar toolset� version ���� Technical Report

TR	��	����� University of Wisconsin	Madison� June �����

��� J� Dean et al� Pro�leMe
 Hardware support for instruction	level pro�ling in out	of	order

processors� Proceedings of the ��th International Symposium on Microarchitecture� pages

�������� December �����

��� P� Dinda et al� The CMU task parallel program suite� Technical Report CMU	CS	��	

���� Carnegie Mellon University� March �����

��

���� M�K� Gowan� L�L� Biro� and D�B� Jackson� Power considerations in the design of the

Alpha ����� microprocessor� Proceedings of the ��th Design Automation Conference�

June �����

���� J�L� Hennessy� Back to the future
 Time to return to some long standing problems in

computer systems� Federated Computer Conference� May �����

���� M�B� Kamble and K� Ghose� Analytical energy dissipation models for low power caches�

Proceedings of the International Symposium on Low Power Electronics and Design�

pages �������� August �����

���� R�E� Kessler� E�J� McLellan� and D�A� Webb� The Alpha ����� microprocessor archi	

tecture� International Conference on Computer Design� October �����

���� A� Kumar� The HP PA	���� RISC CPU� IEEE Computer� �����
������ March �����

��� D� Matzke� Will physical scalability sabotage performance gains� IEEE Computer�

�����
������ September �����

���� S� Palacharla� N�P� Jouppi� and J�E� Smith� Quantifying the complexity of superscalar

processors� Technical Report TR	��	����� University of Wisconsin	Madison� November

�����

���� V� Tiwari et al� Reducing power in high	performance microprocessors� Proceedings of

the ��th Design Automation Conference� June �����

���� D�W� Wall� Limits of instruction	level parallelism� Technical Report ����� Digital

Western Research Laboratory� November �����

���� S�J�E� Wilton and N�P� Jouppi� An enhanced access and cycle time model for on	chip

caches� Technical Report ���� Digital Western Research Laboratory� July �����

��

���� B� Xu and D�H� Albonesi� A methodology for the analysis of dynamic application

parallelism and its application to recon�gurable computing� Proceedings of the SPIE

International Symposium on Recon�gurable Technology FPGAs for Computing and

Applications� pages ������ September �����

��

