
Enabling Parallelization via
a Reconfigurable Chip Multiprocessor

Matthew A. Watkins
Cornell University

Computer Systems Laboratory

David H. Albonesi
Cornell University

Computer Systems Laboratory

ABSTRACT
While reconfigurable computing has traditionally involved attach-
ing a reconfigurable fabric to a single processor core, the prospect
of large-scale CMPs calls for a reevaluation of reconfigurable com-
puting from the perspective of multicore architectures. We present
ReMAPP, a reconfigurable architecture geared towards application
acceleration and parallelization. In ReMAPP, parallel threads share
a common reconfigurable fabric which can be configured for indi-
vidual thread computation or fine-grained communication with in-
tegrated computation. The architecture supports both fine-grained
barrier synchronization and fine-grained point-to-point communi-
cation for pipeline parallelization.

The combination of communication and configurable computa-
tion within ReMAPP provides the unique ability to perform cus-
tomized computation while data is transferred between cores, and
to execute custom global functions after barrier synchronization.
We demonstrate that ReMAPP achieves significantly higher per-
formance and energy efficiency compared to hard-wired communi-
cation-only mechanisms, and over what can ideally be achieved by
allocating the fabric area to more cores.

1. INTRODUCTION
Reconfigurable computing has traditionally involved attaching a

reconfigurable fabric to a single conventional processor core. How-
ever, the prospect of large-scale chip multiprocessors (CMPs) with
tens to hundreds of cores on a die calls for a reexamination of re-
configurable computing from the perspective of multicore archi-
tectures. This paper presents ReMAPP (Reconfigurable Multicore
Architecture for Parallel Processing), a general-purpose reconfig-
urable architecture that accelerates both sequential and parallel work-
loads and allows parallelization of otherwise sequential applica-
tions in an area- and power-efficient manner.

While past reconfigurable architectures have been shown to sig-
nificantly outperform general purpose architectures for certain ap-
plication classes, this has come at high area and power costs relative
to the overall performance achieved across a broad set of applica-
tions. Large-scale CMPs, however, are likely to be heterogeneous
in nature, with different areas of the die dedicated to accelerating
particular types of applications. Within this context, CMPs offer a
more cost-effective way to incorporate reconfigurable fabrics into
commodity microprocessors for two reasons. First, the die area
dedicated to reconfigurable fabrics may be sized in proportion to
the expected proportion of applications that will benefit. Second,
the area and power costs of the fabric may be amortized by shar-
ing the fabric among multiple cores, thereby forming a cluster of
cores+fabric. Through intelligent fabric management, the fabric
utilization may be increased, and the overall fabric area and power
costs reduced, while achieving nearly the same performance as pro-
viding each core with its own, much larger, private fabric [28].

Sharing the reconfigurable fabric among multiple cores creates
optimization opportunities not possible with per-core private fab-
rics. In particular, shared fabric clusters – in addition to increasing
fabric area and power efficiency – can be organized on-the-fly in
multiple ways to accelerate and help parallelize applications. Fig-
ure 1 provides a simplified view of the three ways that the ReMAPP
architecture is dynamically organized to these ends. Each figure
shows four cores sharing a single reconfigurable fabric. Figure 1(a)
depicts four threads (either from the same or different applications),
each of which is independently performing a function within the
fabric. In Figure 1(b), the fabric is being used for two instances of
fine-grain producer-consumer communication with integrated cus-
tomized computation. Finally, Figure 1(c) depicts four threads syn-
chronizing at a barrier within the fabric with a global function, e.g.,
a global minimum, computed in the fabric after the synchronization
point. The later two organizations allow the parallelization of ap-
plications that would not be possible with traditional software tech-
niques due to the fine-granularity of the communication and allow
the acceleration of sequential sections of parallel applications.

Having outlined the general principles of ReMAPP, the remain-
der of this paper presents the architecture of ReMAPP in detail and
analyzes its performance and energy efficiency. As the first pro-
posed reconfigurable architecture for accelerating computation and
communication, ReMAPP integrates the following features:

• A tightly integrated, row-based reconfigurable fabric to ac-
celerate the computation of threads operating independently
(Section 2.1);

• Mechanisms to temporally and spatially share the fabric be-
tween multiple cores (Section 2.1);

• Fine-grained inter-core data communication with custom com-
putation (Section 2.2.1);

• Fine-grained barrier synchronization with custom computa-
tion (Section 2.2.2).

Unlike previous proposals, ReMAPP supports multiple communi-
cation models and also provides the ability to perform customized
computation on communicated data. The later provides optimiza-
tion opportunities not possible with previous communication-only
options.

2. REMAPP ARCHITECTURE
ReMAPP pairs a specially designed Specialized Programmable

Logic (SPL) fabric with multiple cores of a CMP. An example fu-
ture CMP with integrated SPL is depicted in Figure 2(a). The
figure shows a 20 core CMP1 with two ReMAPP clusters on the

1Although relative sizes of the cores and fabric are accurate, this is
not intended to represent an actual floorplan.

f
1

f
2

f
3

f
4

(a)

f
1

f
2

(b)

f

(c)

Figure 1: Shared SPL being used for (a) individual computation, (b) producer-consumer communication with computation, and (c)
barrier synchronization with computation.

8-bit
Cell

8-bit
Cell

8-bit
Cell

8-bit
Cell

8-bit
Cell

8-bit
Cell

8-bit
Cell

8-bit
Cell

8-bit
Cell

8-bit
Cell

32×32 Crossbar32×32 Crossbar

(c)(a)

= SPL Row

To C0 StQueue To C3 StQueue

From C0 L1D

(b)

Core0 SPL Output Core3 SPL Output

Core0 SPL InputConf ID

From C3 L1D

Core3 SPL InputConf ID

L1
Core

L1
Core

SPL
L1
Core

L1
Core

L2
L2 L2

L2

Barr
ID

App
ID

Num
Arrived

Total
Thds

Participating
Thread IDs Dest

Barrier Table

Thd
ID

App
ID

In flight
Insts Core

Thread-to-Core Table

Conf ID
Dest

4-LUT

2-LUT

DDD

Interconnection NetworkInterconnection Network

High Speed Carry TreeHigh Speed Carry Tree

Interconnection NetworkInterconnection Network

2-LUT

BShifterBShifter
BShifterBShifter

1 1

7 7

DDD

Figure 2: ReMAPP integration in a CMP. (a) Depiction of overall chip, with two ReMAPP clusters and one conventional cluster, and
blow-up of one ReMAPP cluster, (b) four-way shared SPL including tables required for communication, and (c) design of SPL row.

left. Each cluster consists of four single issue out-of-order pro-
cessor cores sharing a SPL fabric, which is shown at a high level
in Figure 2(b). The fabric is temporally shared in a round-robin
fashion among the cores in the same cluster and can be spatially
partitioned to reduce contention among the threads. Contention is
further reduced by limiting the degree of fabric sharing, which also
limits the maximum wire delay. In this particular example, the pro-
portion of applications that benefit from the fabric is such that two
shared fabric clusters are implemented. In a large-scale heteroge-
neous CMP with many tens or hundreds of cores, there may be
several ReMAPP clusters as well as many other different cluster
types, such as the traditional many-core cluster shown on the right
hand side of Figure 2(a), on the die.

2.1 ReMAPP Organization
The computational substrate of ReMAPP is the highly pipelined,

row-based SPL of [28]. The SPL is composed of 24 rows, in which
each row contains 16 cells and each cell computes 8 bits of data.
Figure 2(c) shows the row and cell designs. The major cell compo-
nents are a main 4-input look-up table (4-LUT), a set of 2 2-LUTs
plus a fast carry chain to compute carry bits (or other logic func-
tions if carry calculation is not needed), barrel shifters to properly
align data as necessary, flip-flops to store results of computations,

SPL Rows
Total
Area

Peak Dyn.
Power

Total Leak.
Power

Four Cores N/A 1.00 1.00 1.00
4-way
Shared SPL 24 0.51 0.14 0.67

Table 1: Relative area and power of four single-issue out-of-
order cores and four-way shared ReMAPP fabric.

and an interconnect network between each row. Within a cell, the
same operation is performed an all 8 bits. These 8-bit cells are ar-
ranged in a row to form a 16×8-bit row. Each cell in a row can per-
form a different operation on its set of inputs and 24 of these rows
are grouped together to form the overall SPL fabric. The SPL is
clocked at a fixed 500 MHz. This is one-quarter the 2 GHz core fre-
quency (the same as the Pentium Core2 Duo [17] and the AMD X2
Dual-Core [1], both of which are implemented in the same 65nm
technology assumed for ReMAPP) and allows each row to com-
plete the longest possible computation in a single cycle. Table 1
shows the relative area and power consumption of the SPL and as-
sociated single-issue cores.

The row-based nature of the fabric allows hardware requirements
to be indicated by the number of rows needed to implement a func-
tion. If the number of rows required by a function exceeds the
physical number on chip, the function can be virtualized over the

spl_load spl_init

(a) (b)

spl_store

(d)(c)

Figure 3: Walk through of intercore communication with inte-
grated computation.

fabric [15]. Virtualization uses the same physical row to execute
multiple virtual rows of the function. This comes at a possible
loss in throughput but guarantees that all functions can be executed,
even if fewer rows are available than originally anticipated.

The SPL is integrated with the processor core as a reconfigurable
functional unit and interfaces to the memory system via a queue-
based decoupled architecture as shown in Figure 2(b). Special SPL
load instructions place values into the input queue at a particular
data alignment. In addition to storing the input data itself, each byte
in the input queue includes a valid flag indicating that the position
contains data loaded for the current instruction. These flags are
needed for barrier synchronization when input data from multiple
queues is merged. For output, the SPL similarly writes to a local
output queue that is then written out to the Store Queue using a
special SPL store instruction.

The SPL supports both spatial partitioning, in which the fabric
is divided into multiple virtual clusters and each core accesses a
single virtual cluster, and temporal sharing, in which a partition is
shared among multiple cores in a time multiplexed fashion. Spa-
tial partitioning reduces contention from sharing threads, but also
reduces the amount of resources available to each core, possibly
leading to degraded throughput due to increased virtualization. The
fabric can be divided in up to 4 virtual clusters and a simple round-
robin schedulers selects the instruction to issue each shared virtual
cluster. Figure 2(b) shows the additional multiplexers and tristate
drivers necessary to support both forms of sharing.

2.2 Support for Fine-Grained Communication
with Computation

At a high level, communication requires the exchange of infor-
mation between threads, be it a notification that a thread has ar-
rived at a barrier or a producing thread passing results to a consum-
ing thread. ReMAPP facilitates fine-grain communication among
threads sharing the fabric, creating new opportunities for paral-
lelization that are too costly using conventional software-based meth-
ods. Moreover, the ability to perform computation within the fabric
during communication provides additional benefits over communi-
cation-only mechanisms.

2.2.1 Fine-Grained Interthread Communication+Com-
putation

Fine-grained interthread communication enables threads to com-
municate with each other much more frequently than would be
possible using the traditional memory system. Such fine-grained
communication is typically targeted at pipelined/streaming appli-
cations [7, 22]. To perform this type of communication, a queue

is established between the two communicating threads. The pro-
ducing thread places data into the queue and the consuming thread
reads data from the queue. Unless the queue is full/empty, the two
threads can continue to produce/consume data without concern for
how the other thread is progressing.

Since the fabric is shared between multiple cores, sending data
to a different core simply requires sending the fabric output to the
output queue of the consuming core. The input and output queues
provide queuing slots and the pipelined fabric serves as both a com-
putational substrate and as additional on-demand queue slots.

Figure 3 details the steps involved in interthread communication
with custom computation. First, the producing thread loads data
into its input queue (Figure 3(a)). Once all of the necessary data
is loaded, the producer issues an SPL instruction (Figure 3(b)).
The data progresses through the SPL to perform the computation
programmed into the fabric. Once any computation is complete,
the results are bypassed to the output queue of the consuming core
(Figure 3(c)). Finally, the consuming core stores the data from the
queue to memory (i.e., store queue) (Figure 3(d)).

Two features ease intercore communication via ReMAPP. First,
in order to fully utilize the queuing capacity of the fabric, instruc-
tions that have completed their computation but cannot yet be al-
located an output queue slot continue to progress through the rows
of the fabric, simply passing their output data through to the next
row. This continues until either an output queue slot becomes avail-
able, at which point the data is immediately written to the output
queue (bypassing any remaining rows in the fabric) or the instruc-
tion reaches the end of the fabric, at which point it stalls. When
the fabric is stalled, instructions immediately following the stalled
instruction stall as well. Bubbles in the SPL pipeline, however, are
allowed to collapse and so some progress may continue to be made
even if the head instruction is stalled. If the entire fabric is full,
then the producing thread will stall if it attempts to issue additional
SPL instructions.

The second feature is a small table to maintain a mapping of
threads to cores in order to virtualize the selection of the destina-
tion core (see Thread-to-Core Table in Figure 2(b)). When an SPL
instruction is issued, it obtains the core currently assigned to its
destination thread (which may be either itself or another thread)
from the table and stores its results to the appropriate output queue
upon completion. In our proposed 4-way shared fabric, each table
has four entries. Each entry contains the thread and application ID
currently running on that core as well as a count of the number of
in flight instructions destined for that core. Assuming a limit of
256 thread and application IDs and a maximum of 24 in flight in-
structions (as the fabric has 24 rows), each per-SPL table requires a
11.5B CAM (16 bits for IDs, 5 bits for number of in flight instruc-
tions, and 2 bits for hard coded core ID).

A side benefit of this table based approach is that instructions
will not issue to the fabric if the destination thread is not available
(not present in the table). This prevents the producing thread from
filling up the fabric if the consumer is not present, which could
impact other threads sharing the fabric. If both threads are present
but not well balanced, it is possible the fabric could still be full most
of the time. However, assuming that the program is even remotely
well written, the consumer would still be consuming values, even
if at a slow rate, and, because of the SPL’s round robin issue policy,
other threads would continue to be able to utilize the fabric.

2.2.2 Barrier Synchronization+Computation
Barriers are one of the most common synchronization opera-

tions. However, with a typical memory-based implementation, the
overhead of executing a barrier can be significant, especially as the

spl_init

(b)

IDID # Arriv.# Arriv. TotalTotal 00 11
11 1→21→2 22 11 11
-- -- -- -- --

==

4 5

6

(d)

IDID # Arriv.# Arriv. TotalTotal 00 11
11 22 22 11 11
-- -- -- -- --

==

(c)

IDID # Arriv.# Arriv. TotalTotal 00 11
11 22 22 11 11
-- -- -- -- --

==

spl_load

(a)

spl_init

IDID # Arriv.# Arriv. TotalTotal 00 11
11 0→10→1 22 11 00
-- -- -- -- --

==

2 3

1

Figure 4: Walk through of barrier synchronization with inte-
grated computation.

number of threads increases. This overhead prevents the use of
barriers at fine granularities. Various proposals [2, 4, 23, 25] have
suggested dedicated mechanisms to reduce this overhead, thereby
allowing parallelization of applications that would not otherwise be
possible. In cases where a barrier is followed by a serial function
that is performed by one of the threads and the output communi-
cated to all participating threads, ReMAPP may directly synthesize
the function into the fabric with the output communicated to the
participants’ output queues.

To implement barriers in ReMAPP, SPL barrier instructions (in-
dicated by a flag in the ReMAPP function configuration), must not
be allowed to issue to the fabric until all participating cores have
arrived at the barrier. To achieve this, each core participating in the
barrier loads some value(s) into its SPL input queue (Figure 4(a)¶).
Once the loads from all of the cores have reached the head of their
respective input queues and all threads have indicated arrival at the
barrier by executing a SPL initiate instruction, an instruction is is-
sued to the fabric by the ReMAPP controller, and the loaded values
from each core are passed into the fabric (Figure 4(c)). The valid
bits associated with every byte in the input queues are used to deter-
mine which values from each core should be loaded into the fabric.
The global function programmed into the fabric is performed, the
results are placed into the output queue of each participating pro-
cessor (Figure 4(d)), and the processor stores the data as appropri-
ate. A memory fence is executed following the stores to ensure that
no subsequent memory operations are performed until the barrier
is complete.

To determine that all threads have arrived at the barrier, each SPL
cluster maintains a table with information related to each active bar-
rier. Each table (see Barrier Table in Figure 2(b)) contains as many
entries as cores attached to a ReMAPP cluster, as each could be
participating in a different barrier. The table keeps track of the total
number of threads, the number of arrived threads, and the number
of cores that are participating in the barrier. The number of arrived
thread and participating cores are updated each time a thread ar-
rives (Figure 4 ·, ¸, ¹, and º) and the total and arrived threads
are compared to determine when to issue an instruction (»).

In a system with multiple ReMAPP clusters, each cluster com-
municates updates on the number of arrived threads with all other
clusters (even though other clusters may not have participating
threads). An alternative is to have clusters only monitor those bar-
riers in which they have threads actively participating. This, how-

ever, requires that clusters obtain the number of currently arrived
threads from another cluster each time a locally new barrier ar-
rives, which increases the complexity of the intercluster network.
Since the table is localized and is small in either case, whereas the
increase in interconnect complexity has global impact, we choose
to track all active barriers in every cluster to reduce interconnect
overhead at the cost of an increase in table size. A dedicated bus
communicates barrier updates among clusters. The bus transmits
the barrier ID as well as the associated application ID (as differ-
ent applications might use the same barrier ID). With a limit of
256 IDs, the shared bus requires only 12 data lines plus control.
Each table entry requires 8 bytes: 16 bits for IDs; 4 for number of
arrived threads; 4 for total number of threads; 4 to indicate partic-
ipating cores; 32 for participating thread IDs; and 4 to indicate if
each participating thread is currently active. In a four cluster (16
core) system, this requires a 128B table for each cluster.

All threads participating in a barrier must be actively running in
order for all input data to be available. Each table entry maintains
a list of the IDs of the local threads that are participating in the
barrier as well as a bit indicating if they are actively running. If a
barrier is ready to be released but not all participating threads are
active, the ReMAPP controller triggers an exception to switch the
missing threads back in. Once all threads are available, the barrier
can proceed. Since ReMAPP barriers are primarily intended for
fine grain synchronization, switching out a thread that arrives early
should be avoided in any event for performance reasons.

3. COMMUNICATION EXAMPLES
We propose using the SPL to perform both fine-grained inter-

thread communication and fine-grained barrier synchronization. In
this section we show example applications that benefit not only
from the enhanced communication, but also receive additional ben-
efits due to the computational power of ReMAPP that could not be
achieved with communication alone.

3.1 Interthread Communication+Computation
Example

To illustrate interthread communication, we show an example
parallelization of the SPEC2006 application 456.hmmer. We op-
timize the inner loop of the P7Viterbi function, which imple-
ments the dynamic programming Viterbi algorithm. The original
code for the optimized section is shown in Figure 5(a) along with
a flow chart summarizing the computation being performed. This
high level description will be used to show how the function is op-
timized for computation alone, communication alone, and for the
computation+communication case.

We first look at how the SPL can be used to accelerate a portion
of the computation, specifically the calculation of mc. As shown
in Figure 5(b), the core loads the input values needed to compute
mc into the fabric, the SPL computes the value of mc, and the core
receives the result. After receiving mc, the core computes the val-
ues of dc and ic and repeats the loop. Figure 6 shows the general
functionality performed within each row of the SPL for the opti-
mized section.

The next implementation creates a producer/consumer thread pair
that uses the SPL solely for communication (Figure 5(c)). The pro-
ducer thread is responsible for calculating the values of mc and ic
and sending the value of mc from the previous iteration to the con-
sumer through the SPL. The consumer receives this value and uses
it to compute dc.

Finally, Figure 5(d) shows how computation and communication
can be integrated in the SPL. The producer thread computes ic and
loads the inputs needed for mc. The SPL computes the value of mc

Compute mc

Compute ic

Send mc[k-1]

Receive mc[k-1]

Compute dc

Queue

(c) Communication Only (d) Communication+Computation

Compute ic

Send mc inputs

Receive mc

Compute dc
Queue

Compute mc

for (k = 1; k <= M; k++) {
 mc[k] = mpp[k-1] + tpmm[k-1];
 if ((sc = ip[k-1] + tpim[k-1]) > mc[k]) mc[k] = sc;
 if ((sc = dpp[k-1] + tpdm[k-1]) > mc[k]) mc[k] = sc;
 if ((sc = xmb + bp[k]) > mc[k]) mc[k] = sc;
 mc[k] += ms[k];
 if (mc[k] < -INFTY) mc[k] = -INFTY;

 dc[k] = dc[k-1] + tpdd[k-1];
 if ((sc = mc[k-1] + tpmd[k-1]) > dc[k]) dc[k] = sc;
 if (dc[k] < -INFTY) dc[k] = -INFTY;

 if (k < M) {
 ic[k] = mpp[k] + tpmi[k];
 if ((sc = ip[k] + tpii[k]) > ic[k]) ic[k] = sc;
 ic[k] += is[k];
 if (ic[k] < -INFTY) ic[k] = -INFTY;
 }
}

Compute mc

Compute dc

Compute ic

(a) Original Sequential Version

Send mc inputs

Compute ic

Compute dc

Compute mc

Receive mc

(b) Computation Only

Figure 5: Parallelization of SPEC 2006 456.hmmer P7Viterbi.
mpp iptpmm tpim

++

̶̶

++

dpp tpdm

++

̶̶xmb bp

++

̶̶

++

ms

̶̶

-INFTY

-INFTY

Row 1

Row 2

Row 3

Row 4

Row 5

Row 6

Row 7

Row 8

Row 9

Row 10

mc

Figure 6: Mapping of mc calculation to SPL.

and sends it to the consumer. The consumer receives this value and
uses the value of mc from the previous iteration to compute dc.
Computing mc in the fabric reduces the amount of work for the
producer, which better balances the threads and further improves
the performance of the parallelization (see Section 5.1).

3.2 Barrier Synchronization+Computation Ex-
ample

To show the operation of ReMAPP barrier synchronization, we
consider a parallel version of Dijkstra’s Shortest Path Algorithm.
Parallel versions of Dijkstra’s Algorithm have previously been pro-
posed. These algorithms, however, tend to provide limited or no
speedups for small to moderate graph sizes. By using ReMAPP to
perform the barrier synchronization, we can improve the synchro-
nization while also using the fabric to perform computation during
the barriers to further improve performance.

In the parallel version of Dijkstra’s Algorithm, each thread is
given a portion of the entire graph to maintain. Figure 7(a) shows
pseudocode of the basic parallel algorithm and the high level flow

of the main and helper threads. The code consists of three sections,
delineated by code before, between, and after the two barriers. In
the first section, each thread determines the minimum value of all
unvisited nodes among its subset and places this value in a global
location. In the next section, the main thread computes the global
minimum from these local minimum values and makes this value
globally available. Finally, each thread reads the global minimum
and updates the distances for all of its nodes.

The first optimization that can be made is to replace the soft-
ware barriers with ReMAPP barriers, as shown in Figure 7(b). As
with previous dedicated barrier techniques [2, 25], replacing the
software barriers with ReMAPP barriers provides significant per-
formance improvements. Performance can be further improved be-
yond that possible with previous techniques by using the computa-
tional power of ReMAPP to compute the global minimum within
the fabric. Figure 7(c) shows this optimization for the case where
all threads share a single ReMAPP cluster. Each thread computes
its local minimum as before and then loads this value into the SPL.
While performing the barrier, the SPL computes the minimum of
the input values. Each participating core receives the global mini-
mum from the SPL and updates the distances for its nodes. Since
the SPL outputs the global minimum directly, one of the barriers is
eliminated.

If the threads are spread across multiple clusters, the fabric still
helps compute the minimum; however, this operation is performed
in multiple stages and requires an extra barrier to ensure proper ex-
ecution. The first stage computes regional minimum values (min-
imum values of all cores in a single cluster). The second barrier
ensures that all clusters have finished storing these results. At the
final barrier each cluster loads the regional minimum values and the
fabric computes the final global minimum. Despite the extra bar-
rier, performance is still improved over using ReMAPP for com-
munication only (see Section 5.2).

4. EVALUATION METHODOLOGY
We use a modified version of SESC [24] to evaluate our proposed

communication schemes. We assume processors implemented in
65 nm technology running at 2.0 GHz with a 1.1V supply voltage.
The major architectural parameters are shown in Table 2.

(a) Software Barriers

for(int k = 0; k<NUM_NODES; k++){
 getLocalMin(); //get min dist of my available nodes
 localMins[myId] = myLocalMin; //place min in global location
 barrier();
 mem_fence();
 if(myId == 0){
 globalMin = localMin[0];
 for(int n = 1; n<NTHREADS; n++){
 if(localMins[n] < globalMin)
 globalMin = localMins[n];
 }
 }
 barrier();
 mem_fence();
 if(globalMin == localMin[myId])
 removeMin(); //remove node from my queue
 for(int i = min; i<max; i++){
 //get cost between i and global min
 cost = getCost(globalMin, i);
 if(currDist > (globalMinDist+cost){
 currDist = globalMinDist+cost;
 }
 }
}

Compute global min

Update distances

Compute local min

BarrierBarrier

BarrierBarrier

Update distances

Compute local min

BarrierBarrier

BarrierBarrier

Main Thread Helper Threads

(c) Barrier+Computation

Compute local min

Barrier

Update distances

Input local min

Receive global min

Compute global min

Compute local min

Update distances

Input local min

Receive global min

(b) Barrier Only

Compute local min

Barrier

Update distances

Compute global min

Compute local min

Update distances

Barrier

Figure 7: Parallelization of Dijkstra’s Shortest Path Algorithm.
Fetch/Decode/Rename/
Issue/Retire Width 2/2/2/1/1
Branch Predictor gshare + bimodal
RAS Entries 32
BTB Size 512B
Integer/FP Registers 64/64
Integer/FP Queue Entries 32/16
ROB Entries 64
Int/FP ALUs 1/1
Branch Units 1
LD/ST Units 1
L1 Inst Cache 8kB 2-way, 2-cycle access
L1 Data Cache 8kB 2-way, 2-cycle access
L2 Cache 1MB per core, 10-cycle access
Coherence Protocol MESI
Main Memory Access Time 100 ns

Table 2: Architecture parameters.

4.1 Benchmarks
We use a combination of MediaBench and SPEC benchmarks

and the unix utility wc to evaluate producer-consumer communica-
tion. Table 3 shows the benchmarks we use, along with the func-
tion we optimized in each, and the percentage of total program ex-
ecution time consumed by that function. We run four versions of
each application: the original source, a single-threaded version that
uses the SPL for computation; a dual-threaded version that uses the
SPL only for communication; and a dual-threaded version in which
computation is performed on the data communicated through the
SPL (as in Figure 1(b)). We run the MediaBench and wc work-
loads to completion. For the SPEC workloads, we run a set number
of calls to the optimized function such that in the base case at least
500 million instructions of the function are executed.

We use parallel versions of Dijkstra’s Algorithm and Livermore
Loop 3 in which the loop operates on integers to evaluate ReMAPP
barrier synchronization. In Dijkstra’s Algorithm, computation is

Function Optimized % Exec Time
wc wc 100%
unepic read_and_huffman_decode 22%
cjpeg rgb_ycc_convert 21%
adpcm adpcm_decoder 99%
300.twolf new_dbox_a 30%
456.hmmer P7Viterbi 85%
473.astar regwayobj::makebound2 33%

Table 3: Interthread communication benchmarks.

performed during the synchronization operation (as in Figure 1(c)).
LL3 makes use of two ReMAPP modes of operation: performing
computation on the data within the loop (Figure 1(a)), and using
the SPL to accelerate synchronization between iterations

The SPL is equipped with enough on-chip configuration storage
such that, for our workloads, once loaded, a configuration never
needs to be reloaded. Our simulations estimate that this initial load
time would consume less than 1000 cycles. Given that the SPL
functions are executed millions of times over hundreds of millions
of cycles, this configuration overhead is insignificant.

4.2 ReMAPP Programming
At the moment we modify our workloads by hand to create the

producer/consumer pairs and SPL mappings. Previous work has
shown that compilers can produce good mappings for reconfig-
urable architectures [3, 5, 14, 29] and good partitionings for pipe-
lined applications [16, 19]. We believe our design could leverage
this prior art in an actual implementation.

The procedure for identifying and mapping functionality to the
SPL is shown in Figure 8. The profiling phase identifies the most
important regions of execution. Each of these identified regions is
evaluated for SPL suitability in terms of the number of inputs and
outputs required, the type of required operations (e.g., integer ad-
dition/subtraction, Boolean operations, and conditional selection),
and inter-operation dependencies. SPL mappings, similar to that

Profile program executionProfile program execution

Identify critical sectionsIdentify critical sections

Evaluate SPL suitabilityEvaluate SPL suitability

Map functionality to SPLMap functionality to SPL

Create configuration bitsCreate configuration bits

Is Suitable?Is Suitable?

Yes

No

Figure 8: Procedure for mapping functions to SPL.

 0%

 50%

 100%

 150%

 200%

w
c

un
ep

ic

cj
pe

g

ad
pc

m

tw
ol

f

hm
m

er

as
ta

r

Pe
rfo

rm
an

ce
 Im

pr
ov

em
en

t

400% 300% 537%

1Th+Comp
2Th+Comm
2Th+CompComm

Figure 9: Performance improvement of optimized functions
relative to performance of single threaded baseline.

shown in Figure 6, are then generated for the selected regions, and
these mappings are transformed into SPL configuration bits.

5. RESULTS

5.1 Interthread Communication+Computation
Figure 9 compares the performance improvements achieved over

the single threaded baseline with a single thread using the SPL
for computation (1Th+Comp), dual threads with the SPL used for
communication (2Th+Comm), and dual threads with the SPL used
for computation and communication of the results to the consumer
thread (2Th+CompComm). We assume that only half the SPL is
available, i.e., the SPL is spatially partitioned so that the other two
cores can use the other half for other purposes. Similar to previous
work [28], we confirm that using the SPL for computation provides
significant performance improvements (104% on average for our
workloads), and focus on a comparison of the latter two cases.

Using the SPL for producer-consumer communication alone pro-
vides a 42% improvement in performance for the optimized region
relative to the single core baseline. By adding the speedups ob-
tained from communication and computation alone, we would ex-
pect to achieve an average speedup around 146% when the two
techniques are combined. The results for 2Th+CompComm, how-
ever, show an average improvement of 221%. Before delving into
the reasons for this behavior in the next section, we first quantita-
tively compare other options with the ReMAPP approach.

To confirm that similar results could not be achieved using a sim-
ple dual-threaded software solution (due to the fine-grain nature
of the communication), we also ran the benchmarks with software
queues, with and without SPL computation. The software versions
experienced more than a 175% slowdown on average relative to the
single threaded baseline in both cases.

The 2Th+Comm option also indicates the performance that would

be achieved with previously proposed dedicated producer-consumer
communication hardware [7, 22]. Assuming zero hardware cost
for these previous proposals, we ideally scale the 2Th+Comm re-
sults by 1.5X to account for replacing the SPL with more power-
ful cores. The 2Th+CompComm implementation outperforms this
ideally scaled producer-consumer alternative by 59% on average,
showing the clear performance benefit of integrated SPL computa-
tion and communication.

5.1.1 Benchmark Performance Factors
We analyze the benchmarks to identify the factors that contribute

to the performance improvements for combined SPL communica-
tion+computation. Primary among these factors is that the combi-
nation of SPL computation and communication reduces the amount
of time between successive SPL requests relative to using either
technique in isolation, often by 2X or more. This increased access
rate improves performance by increasing the amount of concurrent
processing in the SPL.

Relative to the single threaded case with SPL computation, split-
ting the application into a producer/consumer pair and performing
the computation during the communication means that each core
is now responsible for approximately half of the SPL instructions
(either the loads or the stores). This reduces the number of instruc-
tions that both threads need to process, which can lead to reduced
pressure on the ROB and other related structures. This leads to
fewer pipeline stalls and therefore better performance. By splitting
the threads we can also place sections of code with poor branch or
load performance in their own thread to reduce or eliminate their
impact on performance. In unepic, for example, the consumer is
responsible for a section of code with both an unpredictable branch
as well as a pointer chasing load. By placing just this code in the
consumer and the rest in the producer, the consumer can start pro-
cessing these unpredictable instructions earlier. This reduces the
impact of the unpredictability of these instructions and improves
performance.

Compared to just communicating data through the SPL, perform-
ing computation on the data while in flight to the consumer pro-
vides a number of sources of improvement. For one, the added
computation removes instructions from one or both threads. This
can help to better balance the work done by both threads and allow
for more efficient pipelining. Both astar and adpcm, for exam-
ple, are consumer bound with just communication. By performing
computation in the SPL, computation previously performed by the
consumer is now performed in the SPL, leading to more balanced
producer/consumer threads. These more balanced threads spend
less time waiting on a full/empty SPL queue, which improves per-
formance. Removing instructions from one or both of the threads
can also reduce pressure on the ROB and related structures, again
improving performance. Cjpeg and unepic are two such examples
that see reduced ROB stall time from performing computation dur-
ing communication. Finally, moving computation inside the SPL
can improve branch prediction in one or both threads by moving
conditional operations into the SPL. Adpcm, twolf, and wc are three
cases that see such a reduction in misprediction rate. The improved
branch prediction improves processor efficiency which again im-
proves performance.

5.1.2 Energy Efficiency Results
While adding SPL communication or computation improves per-

formance relative to a single threaded implementation, energy ef-
ficiency may degrade given the energy costs of the extra core and
SPL. Figure 10 shows energy×delay (ED) of the three SPL im-
plementations relative to the single threaded baseline without SPL.

 0.00

 0.20

 0.40

 0.60

 0.80

 1.00

 1.20

 1.40

wc unepic cjpeg adpcm twolf hmmer astar

R
el

at
iv

e
En

er
gy

×D
el

ay
Base 1Th+Comp 2Th+Comm 2Th+CompComm

Figure 10: Energy×delay relative to single threaded baseline.

Using the SPL to perform computation in a single thread reduces
ED in all but one case. In the one exception the added power con-
sumed by the SPL outweighs the performance improvement. Simi-
larly, communication alone reduces ED in most case but must con-
tend with the extra energy consumed by the both second core and
the SPL. Using the SPL for custom computation during communi-
cation is the only option to reduce ED relative to the single core
baseline for all benchmarks. The net result is an average 70% ED
savings over the single threaded baseline without SPL.

5.2 Fine-Grain Barrier Synchronization
We evaluate the performance of software (SW) versus ReMAPP

barriers for our two applications when executing 2, 4, 8, and 16
threads. Figure 11 shows the performance for SW and ReMAPP
barriers (with and without computation where appropriate) for the
8 and 16 threaded cases (2 and 4 threads show similar trends and
are omitted for graph clarity).

Similar to other fine-grained synchronization techniques [2, 23,
25], performing barriers via ReMAPP significantly improves per-
formance over SW barriers. For the LL3, the parallel ReMAPP
versions start outperforming the sequential code for much smaller
vector lengths. For instance, with 16 threads, ReMAPP barriers
start outperforming the sequential case at a problem size between
32 and 64 whereas SW barriers only start outperforming the se-
quential case at a size between 64 and 128, demonstrating the ben-
efits of finer-grain synchronization using ReMAPP barriers.

It should be noted that the restructuring of the code required to
parallelize LL3 alone has a significant impact on performance even
without barrier overhead. This can be seen by comparing the per-
formance of the Seq and SW-p1 lines in Figure 11(a)2. The SW-p1
case executes the parallel version of the code without any barriers.
Despite having no barriers, it still performs notably worse than the
sequential version. This means that the parallel versions have to
overcome not only the degradation resulting from the barriers, but
also the inherent loss due to how the loops must be parallelized.

In dijkstra, both the software and ReMAPP barriers outperform
the single threaded case for all iteration sizes. ReMAPP barriers
outperform software barriers for the same number of threads in all
cases. In some cases, ReMAPP barriers also outperform software
barriers with two or four times the number of threads.

5.2.1 Fine-Grain Barrier Synchronization with SPL
Computation

The computational capabilities of the SPL can provide additional

2Dijkstra does not have a SW-p1 line because the code can be par-
allelized without restructuring.

speedups not possible with fast synchronization alone. This com-
putation is either performed as part of the barrier operation, as is
done in dijkstra (see the discussion in Section 3.2), or in a sepa-
rate SPL function that only performs computation, as in LL3. The
execution time and performance improvement relative to barriers
alone of barriers+computation for the two benchmarks are shown
in Figures 11 and 12, respectively.

For dijkstra, where the computation is performed as part of the
barrier, the benefits of adding computation are most pronounced as
the number of threads increases and at finer synchronization granu-
larities. This is due to the fact that thread synchronization, which is
the portion of code accelerated by ReMAPP computation, tends to
consume more time with smaller problem sizes and as the number
of threads increases. In the 16 threaded case, adding computation
provides up to a 9% improvement versus ReMAPP barriers alone.

In LL3, on the other hand, where the computation is a sepa-
rate function, the most benefit is received with smaller number of
threads and/or coarser synchronization granularities. This is due to
the fact that in either of these cases each thread has more work to do
between barriers. This means that the computation section makes
up a larger percentage of the execution time and so speeding it up
provides greater relative benefit. When there are an extremely small
number of loop iterations per thread, the Barrier+Comp case can
actually perform worse than synchronization alone as there are not
enough SPL instructions to take advantage of the pipelined nature
of the fabric. This can be seen in Figure 12(a) for small problem
sizes with 8 and 16 threads. In each of these cases each thread has
only 2 or 4 iterations to perform and so little pipelining occurs. For
the larger problem sizes, however, the performance improvement is
significant, ranging from 15-26%.

5.2.2 Energy Efficiency Results
Figure 13 shows energy×delay (ED) for the two synchroniza-

tion workloads relative to the single threaded case. In general,
the break even point for ED – the point at which the ED of the
parallel case drops below the sequential case – for both SW and
ReMAPP barriers requires a larger problem size (coarser grained
synchronization) than the performance break even point. This oc-
curs since, especially at very fine granularities, the performance
improvement achieved by increasing the number of threads is not
ideal (i.e., doubling the number of threads does not halve the run
time). ReMAPP barriers always achieve better ED than their SW
counterparts, despite the additional energy consumed by the SPL
which is not present with SW barriers.

We also evaluate the ED achieved by replacing the SPL with
additional cores and dedicated fine-grain barrier support [2, 25].
We simulate a system where each SPL is replaced by two addi-
tional cores (yielding a total of 24 cores for the case that originally
had 16 cores+SPL) and the cores are connected with a dedicated
barrier network that incurs no hardware cost. We find that, com-
pared to such a homogeneous cluster, ReMAPP barriers+compu-
tation achieve up to 25.9% and 62.7% lower ED for dijkstra and
LL3, respectively, demonstrating the benefits of ReMAPP custom
computation with fine-grain barrier synchronization.

6. RELATED WORK

6.1 Reconfigurable Processors
A number of research efforts [6, 9, 13] have investigated the

high level integration of a reconfigurable fabric on-chip. All of
these, however, only investigate the integration with a single core,
although Garcia and Compton [13] state that their technique could
be extended to a multicore system.

 100

 1000

 10000

 32 64 128 256 512 1024

C
yc

le
s

Problem Size

Seq
SW-p1
SW-p8
SW-p16
Barrier-p8
Barrier-p16
Barrier+Comp-p8
Barrier+Comp-p16

(a) LL3

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 20 40 60 80 100 120 140 160 180 200

C
yc

le
s

Problem Size

SW-p1
SW-p8
SW-p16
Barrier-p8
Barrier-p16
Barrier+Comp-p8
Barrier+Comp-p16

(b) Dijkstra

Figure 11: Per iteration execution time for (a) Livermore loop 3 and (b) Dijkstra’s Algorithm.
.

 -10%

 -5%

 0%

 5%

 10%

 15%

 20%

 25%

 30%

 32 64 128 256 512 1024

Pe
rfo

rm
an

ce
 Im

pr
ov

em
en

t

Problem Size

Barrier+Comp-p2
Barrier+Comp-p4
Barrier+Comp-p8
Barrier+Comp-p16

(a) LL3

 0%

 1%

 2%

 3%

 4%

 5%

 6%

 7%

 8%

 9%

 20 40 60 80 100 120 140 160 180 200

Pe
rfo

rm
an

ce
 Im

pr
ov

em
en

t

Problem Size

Barrier+Comp-p2
Barrier+Comp-p4
Barrier+Comp-p8
Barrier+Comp-p16

(b) Dijkstra

Figure 12: Performance improvement of barriers+computation over barriers alone for (a) LL3 and (b) Dijkstra’a Algorithm.

 0.1

 1

 10

 32 64 128 256 512 1024

R
el

at
iv

e
En

er
gy

×D
el

ay

Problem Size

SW-p1
SW-p8
SW-p16
Barrier-p8
Barrier-p16
Barrier+Comp-p8
Barrier+Comp-p16

(a) LL3

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 20 40 60 80 100 120 140 160 180 200

R
el

at
iv

e
En

er
gy

×D
el

ay

Problem Size

SW-p8
SW-p16
Barrier-p8
Barrier-p16
Barrier+Comp-p8
Barrier+Comp-p16

(b) Dijkstra

Figure 13: Energy×Delay for (a) Livermore loop 3 and (b) Dijkstra’s Algorithm relative to sequential execution.

Our previous work [28] identifies a number of features of past
reconfigurable proposals that are highly amenable to incorporating
reconfigurable fabrics within CMPs. That work proposed a fabric
architecture, summarized in Section 2.1, tailored to sharing and an-
alyzed its benefit for computation acceleration only (the scenario of
Figure 1(a)). Our work explores how shared reconfigurable fabrics
can be architected to accelerate multithreaded applications through
fine-grain producer-consumer communication and fine-grain bar-
rier synchronization with integrated custom computation.

Reconfigurable computing has recently gained increasing atten-
tion from industry. Both Intel and AMD allow tighter integration of
FGPAs with general purpose processors through HyperTransport,
QuickPath, and licensing of front side bus technology [11, 12].
Convey Computer’s HC-1 pairs an Intel processor with a reconfig-
urable coprocessor and allows different instruction sets to be loaded

into the coprocessor [8]. There is also growing industry interest in
on-chip integration of reconfigurability in future CMPs [10].

6.2 Fine-Grained Interthread Communication
StreamIt [16, 26] is a programming language and compiler in-

frastructure aimed at easing the use of pipeline parallelization. De-
coupled Software Pipelining (DSWP) addresses hardware options
for implementing fine-grain communication [22, 21], automatic ex-
traction of streaming threads [19], data parallelization of pipeline
stages [20], and speculative DSWP [27].

Caspi et al. [7] propose SCORE, a stream computing model tar-
geted at reconfigurable systems. Their design incorporates a single
CPU and multiple reconfigurable blocks and streaming occurs be-
tween reconfigurable blocks over a dedicated interconnect. In our
work, communication occurs between CPUs and the shared recon-
figurable fabric is used to perform the communication.

Furthermore, none of this prior work evaluates the energy effi-
ciency implications of streaming. Energy usage is a non-trivial con-
cern given the fact that streaming tends to provide less than ideal
speedups.

6.3 Fine-Grained Synchronization
Beckmann and Polychronopoulos [2] and Shang and Hwang [25]

both provide hardware mechanisms for performing barriers using
dedicated interconnect and hardware tables. IBM’s Cyclops archi-
tecture [4] provides dedicated hardware support for barriers through
a special purpose register and wired-OR. Sampson et al. [23] pro-
pose barrier filters to eliminate the dedicated interconnect required
in most barrier synchronization proposals. The Multi-ALU Pro-
cessor [18] provides an explicit barrier instruction in the ISA and
supports register to register communication between clusters.

7. CONCLUSIONS
We propose ReMAPP, a shared reconfigurable architecture de-

signed to accelerate otherwise sequential regions of code by en-
abling parallelization through multiple forms of fine-grained com-
munication. In contrast to previous fine-grain communication ap-
proaches, ReMAPP enables custom functions to be integrated with
communication. Combining computation with communication pro-
vides an average 221% performance improvement for fine-grained
interthread communication. In the case of barrier synchronization,
performing computation during the barrier provides up to a 9%
performance improvement over the SPL barrier alone. ReMAPP
achieves the aforementioned performance improvements while also
improving energy×delay.

8. REFERENCES
[1] Advanced Micro Devices. AMD Athlon X2 Dual-Core Details.

http://www.amdcompare.com/us-en/desktop/-
details.aspx?opn=ADH2350IAA5DD,
2007.

[2] C. J. Beckmann and C. D. Polychronopoulos. Fast Barrier
Synchronization Hardware. In Supercomputing ’90: Proceedings of
the 1990 ACM/IEEE Conference on Supercomputing, pages
180–189, 1990.

[3] M. Budiu and S. C. Goldstein. Fast Compilation for Pipelined
Reconfigurable Fabrics. In Proc. 1999 ACM/SIGDA 7th Int’l
Symposium on Field Programmable Gate Arrays, pages 195–205,
Feb. 1999.

[4] C. Caşcaval, J. Castaños, L. Ceze, M. Denneau, M. Gupta, D. Lieber,
J. Moreira, K. Strauss, and H. Warren Jr. Evaluation of a
Multithreaded Architecture for Cellular Computing. In Proc. 8th
IEEE Symposium on High Performance Computer Architecture,
pages 311–321, 2002.

[5] T. Callahan, J. Hauser, and J. Wawrzynek. The Garp Architecture and
C Compiler. Computer, 33:62–69, Apr. 2000.

[6] J. Carrillo and P. Chow. The Effect of Reconfigurable Units in
Superscalar Processors. In Proc. 2001 ACM/SIGDA 9th Int’l
Symposium on Field Programmable Gate Arrays, pages 141–150,
2001.

[7] E. Caspi, M. Chu, R. Huang, J. Yeh, J. Wawrzynek, and A. DeHon.
Stream Computations Organized for Reconfigurable Execution
(SCORE). In Proceedings of the 10th Int’l Workshop on
Field-Programmable Logic and Applications, pages 605–614, Aug.
2000.

[8] Convey Computer. The Convey HC-1 Computer. White Paper, Nov.
2008.

[9] M. Dales. Managing a Reconfigurable Processor in a General
Purpose Workstation Environment. In Proc. of the Design,
Automation, and Test in Europe Converence and Exhibition, pages
980–985, 2003.

[10] J. Emer. An Evolution of General Purpose Processing:
Reconfigurable Logic Computing. International Symposium on Code
Generation and Optimization Keynote Address, Mar. 2009.

[11] M. Feldman. FPGA Acceleration Gets a Boost from HP, Intel.
HPCWire, Sept. 2007.

[12] M. Feldman. Reconfigurable Computing Prospects on the Rise.
HPCWire, Dec. 2008.

[13] P. Garcia and K. Compton. A Reconfigurable Hardware Interface for
a Modern Computing System. Proc. 2007 IEEE Symposium on
Field–Programmable Custom Computing Machines, pages 73–84,
April 2007.

[14] S. Goldstein, H. Schmit, M. Budiu, S. Cadambi, M. Moe, and
R. Taylor. PipeRench: A Reconfigurable Architecture and Compiler.
Computer, 33:70–77, 2000.

[15] S. Goldstein, H. Schmit, M. Moe, M. Budiu, and S. Cadambi.
PipeRench: A Coprocessor for Streaming Multimedia Acceleration.
In Proc. 26th IEEE/ACM Int’l Symposium on Computer Architecture,
pages 28–39, May 1999.

[16] M. I. Gordon, W. Thies, M. Karczmarek, J. Lin, A. S. Meli, A. A.
Lamb, C. Leger, J. Wong, H. Hoffmann, D. Maze, and
S. Amarasinghe. A Stream Compiler for Communication-Exposed
Architectures. In Proc. 10th ACM Symposium on Architectural
Support for Programming Languages and Operating Systems, pages
291–303, Oct. 2002.

[17] Intel Core 2 Extreme Processor X6800 and Intel Core 2 Duo Desktop
Processor E6000 and E4000 Sequences, 2007. Intel Datasheet:
313278-004.

[18] S. W. Keckler, W. J. Dally, D. Maskit, N. P. Carter, A. Chang, and
W. S. Lee. Exploiting Fine-Grain Thread Level Parallelism on the
MIT Multi-ALU Processor. In Proc. 25th IEEE/ACM Int’l
Symposium on Computer Architecture, pages 306–317, June 1998.

[19] G. Ottoni, R. Rangan, A. Stoler, and D. August. Automatic Thread
Extraction with Decoupled Software Pipelining. In Proc. IEEE/ACM
38th Annual Int’l Symposium on Microarchitecture, pages 105–118,
Nov. 2005.

[20] E. Raman, G. Ottoni, A. Raman, M. J. Bridges, and D. I. August.
Parallel-Stage Decoupled Software Pipelining. In CGO ’08:
Proceedings of the 6th Annual IEEE/ACM International Symposium
on Code Generation and Optimization, pages 114–123, Apr. 2008.

[21] R. Rangan, N. Vachharajani, A. Stoler, G. Ottoni, D. August, and
G. Cai. Support for High-Frequency Streaming in CMPs. In Proc.
IEEE/ACM 39th Annual Int’l Symposium on Microarchitecture,
pages 259–272, Dec. 2006.

[22] R. Rangan, N. Vachharajani, M. Vachharajani, and D. August.
Decoupled Software Pipelining with the Synchronization Array. In
Proc. 13th IEEE/ACM Int’l Conference on Parallel Architectures and
Compilation Techniques, pages 177–188, Oct. 2004.

[23] J. Sampson, R. Gonzalez, J.-F. Collard, N. P. Jouppi, M. Schlansker,
and B. Calder. Exploiting Fine-Grained Data Parallelism with Chip
Multiprocessors and Fast Barriers. In Proc. IEEE/ACM 39th Annual
Int’l Symposium on Microarchitecture, pages 235–246, Dec. 2006.

[24] SESC Architectural Simulator.
http://sourceforge.net/projects/sesc, 2007.

[25] S. Shang and K. Hwang. Distributed Hardwired Barrier
Synchronization for Scalable Multiprocessor Clusters. IEEE Trans.
Parallel Distrib. Syst., 6(6):591–605, 1995.

[26] W. Thies, M. Karczmarek, and S. P. Amarasinghe. StreamIt: A
Language for Streaming Applications. In CC ’02: Proceedings of the
11th International Conference on Compiler Construction, pages
179–196, 2002.

[27] N. Vachharajani, R. Rangan, E. Raman, M. J. Bridges, G. Ottoni, and
D. I. August. Speculative Decoupled Software Pipelining. In Proc.
16th IEEE/ACM Int’l Conference on Parallel Architectures and
Compilation Techniques, pages 49–59, Sept. 2007.

[28] M. Watkins, M. Cianchetti, and D. Albonesi. Shared Reconfigurable
Architectures for CMPs. In Proc. 18th IEEE Int’l Conference on
Field Programmable Logic and Applications, Sept. 2008.

[29] Z. A. Ye, N. Shenoy, and P. Banerjee. A C Compiler for a Processor
with a Reconfigurable Functional Unit. In Proc. 2000 ACM/SIGDA
8th Int’l Symposium on Field Programmable Gate Arrays, pages
95–100, Feb. 2000.

