
The Inherent Energy Efficiency of Complexity-Adaptive Processors

David H. Albonesi

Dept. of Electrical and Computer Engineering

University of Rochester

Rochester, NY 14627-0231

albonesi@ece.rochester.edu

Abstract

Conventional microprocessor designs that statically set
the functionality of the chip at design time may waste
considerable energy when running applications whose
requirements are poorly matched to the particular hard-
ware organization chosen. This paper describes how
Complexity-Adaptive Processors, which employ dy-
namic structures whose functionality can be modified at
runtime, expend less energy as a byproduct of the way
in which they optimize performance. Because CAPs at-
tempt to efficiently utilize hardware resources to max-
imize performance, this improved resource usage re-
sults in energy efficiency as well. CAPs exploit repeater
methodologies used increasingly in deep submicron de-
signs to achieve these benefits with little or no speed
degradation relative to a conventional static design. By
tracking hardware activity via performance simulation,
we demonstrate that CAPs reduce total expended energy
by 23% and 50% for cache hierarchies and instruction
queues, respectively, while outperforming conventional
designs. The additive effect observed for several appli-
cations indicates that a much greater impact can be re-
alized by applying the CAPs approach in concert to a
number of hardware structures.

1 Introduction

As power dissipation continues to grow in importance,
the hardware resources of high performance micropro-
cessors must be judiciously deployed so as not to need-
lessly waste energy for little or no performance gain.
The major hardware structures of conventional designs,
which are fixed at design time, may be inefficiently
used at runtime by applications whose requirements are
not well-matched to the hardware implementation. For
example, an application whose working set is much
smaller than the L1 Dcache may waste considerable en-
ergy precharging and driving highly capacitive word-
lines and bitlines. Similarly, an application whose work-
ing set far exceeds the L1 Dcache size may waste energy
performing look-ups and fills at multiple levels due to
high L1 Dcache miss rates. The most energy-efficient
(but not necessarily the best performing) cache orga-

This research is supported in part by NSF CAREER Award
MIP-9701915.

nization is that which is well-matched to the applica-
tion’s working set size and access patterns. However,
because of the disparity in the cache requirements of
various applications, conventional caches often expend
much more energy than required for the performance ob-
tained. Other major hardware structures, such as instruc-
tion issue queues, similarly waste energy while operat-
ing on a diverse workload.

Complexity-Adaptive Processors (CAPs) make
more efficient use of chip resources than conventional
approaches by tailoring the complexity and clock speed
of the chip to the requirements of each individual
application. In [1], we show how CAPs can achieve this
flexibility without clock speed degradation compared
to a conventional approach, and thus achieve signifi-
cantly greater performance. In this paper, we describe
how CAPs can achieve this performance gain while
expending considerably less energy than a conventional
microprocessor.

The rest of this paper is organized as follows. In the
next section, we discuss how the increasing use of re-
peaters in long interconnects creates the opportunity for
new flexible hardware structures. Complexity-Adaptive
Processors and then described in Section 3, followed by
a discussion in Section 4 of their inherent energy ef-
ficiency. In Section 5, our experimental methodology
is described. Energy efficiency results are discussed in
Section 6, and finally we conclude and discuss future
work in Section 7.

2 Dynamic Hardware Structures

As semiconductor feature sizes continue to decrease, to
a first order, transistor delays scale linearly with fea-
ture size while wire delays remain constant. Thus, wire
delays are increasingly dominating overall delay paths.
For this reason, repeater methodologies, in which buffers
are placed at regular intervals within a long wire to re-
duce propagation delay, are becoming more common-
place in deep submicron designs. For example, the Sun
UltraSPARC-IIi microprocessor, implemented in a 0.25
micron CMOS process, contains over 1,200 buffers to
improve wire delay [5]. Note that wire buffers are used
not only in busses between major functional blocks, but
within self-contained hardware structures as well. The
forthcoming HP PA-8500 microprocessor, which is also
implemented in 0.25 micron CMOS, uses wire buffers
for the global address and data busses of its on-chip
caches [3]. As feature sizes decrease to 0.18 micron and
below, other smaller structures will require the use of



Element1

Element2

Element3

Address Data

Bus Bus

Element8

Element7

Element6

Element5

Element4

disable1

disable2

disable3

disable4

repeater

Figure 1: A dynamic hardware structure which can be
configured with four to eight elements.

wire buffers in order to meet timing requirements [4].
For these reasons, we expect that many of the ma-

jor hardware structures of future high performance mi-
croprocessors, such as caches, TLBs, branch predic-
tor tables, and instruction queues, will be of the form
shown in Figure 1. The hardware structure in this figure
consists of replicated elements interconnected by global
address/control and data busses driven using repeaters
placed at regular intervals to reduce propagation delay.
The isolation of individual element capacitances pro-
vided by the repeaters creates a distinct hierarchy of el-
ement delays, unlike unbuffered structures in which the
entire wire capacitance is seen by every element on the
bus. By employing address decoder disabling control
signals as shown in Figure 1, we can make this structure
dynamic in the sense that the complexity and delay of
the structure can be varied as required by the applica-
tion. For example, this structure can be configured with
between four and eight elements, with the overall delay
increasing as a function of the number of elements. As-
suming this structure is on the critical timing path with
four or more elements, if the clock frequency of the chip
is varied according to the number of enabled elements1,
then the IPC/clock rate tradeoff of this structure can be
varied at runtime to meet the dynamic requirements of
the application. Due to their exploitation of repeater us-
age, such dynamic hardware structures can be designed
with little or no delay penalty relative to a fixed structure.

An alternative to disabling elements is to use them
as slower “backups” to the faster “primary” elements
as is shown in Figure 2. Here, the difference between
the primary and backup elements is the access latency in
clock cycles. For example, the four primary elements in
Figure 2 may be accessed in fewer cycles than the four
backup elements, due to the latter’s longer address and
data bus delays. Such an approach may be appropriate,
for example, for an on-chip Dcache hierarchy, in which
the primary and backup elements correlate to L1 and L2

1An alternative is to vary the latency in clock cycles of the structure.

Element1

Element2

Element3

Address Data

Bus Bus

current

section

Element8

Element7

Element6

Element5

Element4

repeater

"backup"

section
"primary"
current

Figure 2: A dynamic hardware structure with config-
urable “primary” and “backup” sets of elements.

caches, and the division between them is determined as
a function of the current working set size and the cycle
time and backup element latency of each configuration.

3 Complexity-Adaptive Processors

Having discussed how repeater methodologies will lead
naturally to the development of dynamic hardware struc-
tures, we now describe the overall organization of a
Complexity-Adaptive Processor.

The overall elements of a CAP hardware/software
system, shown in Figure 3, are as follows:

� Dynamic hardware structures as just described
which can vary in complexity and timing (latency
and/or cycle time);

� Conventional static hardware structures, used
when implementing adaptivity is unwieldly, will
strongly impact cycle time, or is ineffective due
to a lack of diversity in target application require-
ments for the particular structure;

� Performance counters which track the performance
of each dynamic structure and which are readable
via special instructions and accessible to the con-
trol hardware;

� Configuration Registers (CRs), loadable by the
hardware and by special instructions, which set the
configuration of each dynamic structure as well as
the clock speed of the chip; different CR values
represents different complexity-adaptive configu-
rations, not all of which may be practical;

� A dynamic clocking system whose frequency is
controlled via particular CR bits; a change in these
bits causes a sequence in which the current clock
is disabled and the new one started after an appro-
priate settling period;

2



structures
static hardware

..

.

application

instruction set

architecture

CAP

compiler

reconfiguration 

CAP hardware implementation

dynamic
reconfiguration
control logic

registers

structures

counters
performance

clocking system

dynamic hardware

runtime systemCAP config

executable with

instructions

CAP

oscillators

Figure 3: Overall elements of a CAP hardware/software system.

� The instruction set architecture (ISA) consisting of
conventional instructions augmented with special
instructions for loading CRs and reading the per-
formance counters;

� Configuration control, implemented in the com-
piler, hardware (dynamic reconfiguration control
logic), and runtime system, that acquires infor-
mation about the application and uses predeter-
mined knowledge about each configuration’s IPC
and clock speed characteristics to create a config-
uration schedule that matches the hardware imple-
mentation to the application dynamically during its
execution.

The process of compiling and running an application
on a CAP machine is as follows. The CAP compiler ana-
lyzes the application’s hardware requirements for differ-
ent phases of its execution. For example, it may analyze
data cache requirements based on working set analysis,
or determine the ILP based on the control flow graph.
With this information, and knowledge about the hard-
ware’s available configurations, the compiler determines
whether it can with good confidence create an effective
configuration schedule, specifying at what points within
the application the hardware should be reconfigured, and
to which organizations. The schedule is created by in-
serting special instructions at particular points within the
application that load the CRs with the desired config-
uration. In cases where dynamic runtime information
is necessary to determine the schedule, this task is per-
formed by the runtime system or the dynamic reconfig-
uration control logic. For example, TLB configuration

scheduling may be best handled in conjunction with the
TLB miss handler, based on runtime TLB performance
monitoring, while the optimal branch predictor size may
in some cases be best determined by runtime hardware.
A major CAP design challenge is determining the op-
timal configuration schedule for several dynamic struc-
tures that interact with each other as well as with static
structures, and which may be controlled by up to three
different sources (compiler, runtime, and hardware).

Through these various mechanisms, the CRs are
loaded at various points in an application’s execution,
resulting in reconfiguration of dynamic structures and
changes in clock frequency. For runtime control, the
performance counters are queried at regular intervals of
operation, and using history information about past de-
cisions, a prediction is made about the configuration that
will perform best over the next interval. Assuming tens
of cycles are required for each reconfiguration operation
(based on the time to reliably switch clock frequencies),
then an interval on the order of thousands of instructions
is necessary to maintain a reasonable level of reconfigu-
ration overhead.

4 Improving Energy Efficiency Via CAPs

There are two main aspects of CAPs that allow for re-
duced power consumption: the ability to disable or opti-
mally allocate (between primary and backup sections)
hardware elements, and the ability to control the fre-
quency of the clock. One option is to explicitly man-
age these features in order to reduce power consumption.

3



For example, in a portable environment, when battery
life falls below a certain threshold, a low power mode
in which the processor is still fully functional can be en-
abled by setting all dynamic hardware structures to their
minimum size, and selecting the slowest clock.

In addition, CAP designs have an inherent energy ef-
ficiency that is a byproduct of the way in which they op-
timize performance. Because the CAP hardware is con-
figured to match the characteristics of each application,
hardware structures are generally used more efficiently,
and thus expend less energy, for a given task. It is this in-
herent energy efficiency of CAPs that follows naturally
from optimizing performance that we explore in the rest
of this paper.

5 Experimental Methodology

We examined the results of our preliminary performance
analysis [1] of two-level on-chip Dcache hierarchies and
instruction issue queues to estimate the relative energy
expended by CAP and conventional approaches for these
structures. For the Dcache hierarchy, we assumed a to-
tal of 128KB of cache, and for the CAP design, allowed
the division between the L1 and L2 caches to be varied
in steps of 8KB up to a total L1 Dcache size of 64KB
on an application-by-application basis. We compared
this approach with the best overall-performing conven-
tional design: one with a 16KB 4-way set-associative
L1 Dcache with the rest of the 128KB allocated to the
L2 cache. We ran each benchmark on our cache sim-
ulator for 100 million memory references. The CAP
instruction queue varied in size from 16 to 128 entries
in steps of 16 entries. Unused entries were disabled.
The best-performing conventional design contained 64
entries. We used the SimpleScalar simulator [2] and
ran each benchmark for 100 million instructions. More
details on the evaluation methodology and benchmarks
used can be found in [1].

To estimate relative expended energy, we calculate
the activity ratio for each approach by tracking the num-
ber and types of operations, and estimating the activity
generated by each. For the two-level cache design, we
track the number of L1 and L2 operations, and calcu-
late the total number of cache banks activated consid-
ering the number activated for each operation and the
L1/L2 configuration. We then take the ratio of the total
activity for the CAP approach and for the conventional
design. Because we use an exclusive caching policy,
misses in the L1 Dcache to a valid location that hit in the
L2 Dcache result in a swap between the two caches. In
addition, the global miss ratio of the hierarchy remains
constant due to the use of a random replacement policy.
Thus, a CAP design that is optimized for performance in
general also promotes energy efficiency by optimizing
the amount of L1 Dcache allocated for a given applica-
tion, and reducing L2 Dcache activity.

For the instruction queue, we did not have the abil-
ity to track the number of instruction queue accesses.
However, because the rest of the design was almost
ideal (large caches and queues, perfect branch predic-
tion, plentiful functional units), we used the total number
of cycles executed to approximate the relative number of
instruction queue accesses for each benchmark and each
approach (CAP and conventional). We then multiplied
this number by the number of queue entries to get the
total activity factor.

Although this approach is not exact, we believe that
by tracking activity in this manner that we obtain a rea-
sonable first-order approximation of relative expended
energy.

6 Results

Table 1 shows event and activity counts as well as the ac-
tivity ratio (CAP/conventional) for the ten benchmarks
in which the CAPs configuration differs from the best
conventional approach. The eleven benchmarks which
use identical CAPs and conventional configurations are
not shown as the expended energy is the same. The
“L1 size (CAPs)” column denotes the CAPs configura-
tion which performed best for each benchmark. The last
column indicates the ratio of CAPs total activity to con-
ventional total activity.

For five of the benchmarks, a CAPs configuration
with an 8KB L1 Dcache outperforms the conventional
approach using a 16KB L1 Dcache due to the former’s
faster cycle time, despite the increase in L1 misses and
L1-L2 swaps incurred, as indicated in Table 1. Interest-
ingly, the total activity count for the CAPs configuration
is lower than the conventional approach. This is because
for the conventional approach, twice as much L1 Dcache
must be precharged and probed for each load operation
(we make the simplifying assumption that only the se-
lected way is activated on a store). This offsets the ad-
ditional L2 probe and L1-L2 swap activity incurred with
the CAPs configuration, and the fact that more L2 cache
must be probed in the CAPs case on an L1 miss. This
more efficient cache allocation reduces expended energy
by 33% in the case of mgrid.

The tradeoff is different for the five remaining
benchmarks where the CAPs L1 Dcache is larger than
the conventional 16KB cache. Here, the reduction in
L1 miss and L1-L2 swap activities must offset the addi-
tional L1 Dcache load activity for the CAPs configura-
tion to expend less energy. This is true in all cases ex-
cept for wave5, whose conventional cache experiences
fewer total L1 misses than the other four benchmarks in
this category. For benchmarks such as stereo and appcg
whose requirements are not well-matched to the conven-
tional organization, the energy savings with the CAP ap-
proach are significant: 44% for stereo and 62% for ap-
pcg. Because these benchmarks run significantly faster
on the CAPs configuration as well [1], the reduction in
the energy-delay product, an indicator of the efficiency
with which a particular performance level is obtained, is
even more striking: 70% for both benchmarks. Overall,
23% less energy is expended by the CAPs configuration
for these benchmarks as a byproduct of performance op-
timization.

Table 2 shows the relevant data for the best-
performing CAPs and conventional instruction queues
for those benchmarks in which the CAPs and conven-
tional configurations differ. Here, unused entries are dis-
abled for the CAPs approach. In the cases in which
the CAPs configuration performs best with fewer en-
tries than the 64-entry conventional approach (due to the
fact that the cycle time improvement overrides the IPC
penalty incurred), this means that fewer elements are ac-
tivated on each instruction queue access. However, more
issue operations are required as the smaller window re-
sults in fewer instructions issued on average per issue
operation. In all cases, the energy savings from acti-

4



benchmark L1 size (CAP) loads stores L1 misses L2 misses L1-L2 swaps total activity activity ratio

conv CAP conv CAP conv CAP (CAP/conv)

m88ksim 8KB 64.6 35.4 2.48 2.97 2.41 2.43 2.48 370.5 261.6 0.71

compress 24KB 80.0 20.0 12.3 6.32 0.23 0.22 0.22 697.2 671.1 0.96

airshed 8KB 81.2 18.8 32.0 32.5 0.03 3.24 3.73 1275.0 1193.6 0.94

stereo 48KB 74.1 25.9 54.1 7.39 6.06 11.6 1.91 1910.2 1078.0 0.56

radar 8KB 61.2 38.8 1.51 4.20 0.50 0.87 3.54 328.8 295.5 0.90

appcg 64KB 4.84 95.2 12.0 0.49 0.47 11.9 0.49 474.6 181.9 0.38

swim 24KB 75.9 24.1 13.8 5.27 5.27 3.25 2.66 737.1 629.9 0.85

mgrid 8KB 95.4 4.60 4.55 4.64 4.12 1.45 1.45 511.7 344.9 0.67

applu 8KB 72.2 27.8 8.53 9.20 8.22 5.03 5.29 577.2 470.9 0.82

wave5 24KB 72.9 27.1 7.05 3.83 0.64 5.17 2.27 529.1 571.0 1.08

total 7411.3 5698.4 0.77

Table 1: Cache hierarchy event counts, total activity counts, and CAP/conventional activity ratio for each benchmark.
All counts are in millions.

benchmark IQ entries (CAP) executed cycles total activity activity ratio

conv CAP conv CAP (CAP/conv)

m88ksim 16 29.1 40.6 1862.6 649.1 0.35

compress 128 32.6 22.2 2088.9 2847.2 1.36

ijpeg 32 22.8 23.1 1461.9 738.0 0.50

airshed 32 23.7 25.0 1517.2 799.8 0.53

radar 16 110.1 141.8 7046.1 2268.9 0.32

appcg 16 48.4 49.8 3099.7 796.9 0.26

applu 128 27.6 19.8 1765.7 2535.0 1.44

fpppp 16 90.1 101.5 5766.3 1624.4 0.28

total 24608.5 12259.1 0.50

Table 2: Instruction queue executed cycles, total activity counts, and CAP/conventional activity ratio for each bench-
mark. All counts are in millions.

vating fewer elements overrides the energy cost of more
queue accesses. This translates into as much as a 74%
reduction in queue activity (in the case of appcg). Again,
this benefit is achieved not through explicit power man-
agement, but simply as a byproduct of optimizing per-
formance.

The opposite effect is observed for compress and ap-
plu which perform best with a larger 128-entry queue.
The result is a significant increase in expended en-
ergy with the CAPs approach, despite the reduction in
queue accesses. However, as these are the only two
benchmarks using more entries than the conventional ap-
proach, the overall result is a 50% reduction in expended
energy with the CAPs approach. Clearly, if more bench-
marks performed best with more entries than the best
average-performing configuration, then the energy sav-
ings would be less, perhaps significantly so. In addition,
if configurations with more than 128 entries were avail-
able and some applications performed best with these
configurations, then even a greater increase in expended
energy would be incurred for these applications with the
CAPs approach. However, it is likely that the inclusion
of these applications into the benchmark suite would
change the best-performing conventional approach to
one with more entries. Thus, we expect that even with
a wide range of benchmark behavior, that the CAPs ap-
proach will expend less energy overall due to its better
use of hardware resources. However, the benefit is less
clear with a structure in which elements are disabled
than one in which the resources are allocated between
primary and backup elements.

Examining Tables 1 and 2, we see that some appli-
cations, such as m88ksim, experience significant reduc-
tions in expended energy for both the CAP cache hierar-
chy and instruction queue. Thus, by applying the CAPs

approach to other structures such as TLBs and branch
predictors, we expect that a one to two order of mag-
nitude reduction in expended energy is possible for ap-
plications whose hardware requirements are particularly
poorly-matched to those in a conventional microproces-
sor design. A key point is that CAPs can achieve this im-
provement without adversely impacting the performance
or expended energy of well-matched applications.

7 Conclusions and Future Work

The energy efficiency of a microprocessor is highly de-
pendent on how well the hardware design matches the
requirements of a particular application. In this paper,
we have described how Complexity-Adaptive Proces-
sors inherently achieve energy efficiency as a byproduct
of performance optimization by dynamically configur-
ing their hardware organization to the problem at hand.
By exploiting repeater methodologies used increasingly
in deep submicron designs, CAPs achieve this benefit
with little or no cycle time degradation over a conven-
tional approach. By examining our performance results
for a number of benchmarks, we found that the CAPs de-
sign reduced overall expended energy by 23% for cache
hierarchies and 50% for instruction queues. We also
discovered an additive effect for some benchmarks in-
dicating that a much greater impact can be realized by
applying the CAPs approach in concert to a number of
hardware structures. In the future, we plan on obtaining
results using more precise energy models for these and
other hardware structures.

5



References

[1] D.H. Albonesi. Dynamic IPC/clock rate optimiza-
tion. Proceedings of the 25th International Sympo-
sium on Computer Architecture, June 1998.

[2] D. Burger and T.M. Austin. The simplescalar
toolset, version 2.0. Technical Report TR-97-1342,
University of Wisconsin-Madison, June 1997.

[3] J. Fleischman. Private communication. November
1997.

[4] D. Matzke. Will physical scalability sabotage per-
formance gains? IEEE Computer, 30(9):37–39,
September 1997.

[5] K.B. Normoyle et al. UltraSPARC-IIi: Expanding
the boundaries of a system on a chip. IEEE Micro,
18(2):14–24, March 1998.

6


