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ABSTRACT 
Future many-core microprocessors are likely to be heterogeneous, 
by design or due to variability and defects. The latter type of 
heterogeneity is especially challenging due to its unpredictability. 
To minimize the performance and power impact of these 
hardware imperfections, the runtime thread scheduler and global 
power manager must be nimble enough to handle such random 
heterogeneity. With hundreds of cores expected on a single die in 
the future, these algorithms must provide high power-performance 
efficiency, yet remain scalable with low runtime overhead. 

This paper presents a range of scheduling and power management 
algorithms and performs a detailed evaluation of their 
effectiveness and scalability on heterogeneous many-core 
architectures with up to 256 cores. We also conduct a limit study 
on the potential benefits of coordinating scheduling and power 
management and demonstrate that coordination yields little 
benefit. We highlight the scalability limitations of previously 
proposed thread scheduling algorithms that were designed for 
small-scale chip multiprocessors and propose a Hierarchical 
Hungarian Scheduling Algorithm that dramatically reduces the 
scheduling overhead without loss of accuracy. Finally, we show 
that the high computational requirements of prior global power 
management algorithms based on linear programming make them 
infeasible for many-core chips, and that an algorithm that we call 
Steepest Drop achieves orders of magnitude lower execution time 
without sacrificing power-performance efficiency.   

Categories and Subject Descriptors 
C.1.4 [Processor Architectures]: Parallel Architectures; C.4 
[Performance of Systems] – design studies, fault tolerance, 
modeling techniques; F.2.2 [Analysis of Algorithms and 
Problem Complexity]: Nonnumerical Algorithms and Problems 
– sequencing and scheduling. 

General Terms 
Algorithms, Management, Measurement, Performance, Design, 
Reliability, Experimentation, Theory. 
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1. INTRODUCTION 
As the semiconductor industry continues to deliver exponentially 
increasing transistor density over time, tens and eventually 
hundreds of cores are expected on a single chip [14]. These 
“many-core” processors will likely be heterogeneous, either by 
design or due to variability and intrinsic and extrinsic defects [4]. 
The latter form of heterogeneity is particularly challenging, as it 
means that chips with homogeneously designed cores may not 
only differ in their core-to-core characteristics (frequency, 
leakage, and hardware functionality) out of the manufacturing 
line, but aging defects may cause them to further change over the 
lifetime of the product. The ability to adjust per-core frequencies 
to account for variability and to deconfigure portions of the core 
pipeline in the face of defects [1,6,24,27,28,30] will allow these 
chips to remain operational. However, the challenge lies in 
keeping these randomly heterogeneous processors efficient in 
terms of maintaining acceptable levels of performance in the eyes 
of the user and staying within the power budget. 

Figure 1 illustrates an example of an eight core processor where 
different pipeline components have suffered from faults and have 
been deconfigured (represented by ‘X’s). In addition, due to 
variations, each core may have different frequency and leakage 
characteristics. Runtime schedulers that ignore this heterogeneity 
may incur large performance losses [34], and similarly oblivious 
global power managers may yield unacceptably high power 
dissipation [12]. Thus, while these chips may remain operational, 
they may no longer function at a level that is acceptable to the 
user. 

 
Figure 1: An illustrative example of an eight-core randomly 

heterogeneous microprocessor. 

Recent work has begun to address the challenge of mitigating 
power-performance efficiency losses in the face of hard errors and 



variability in small-scale chip multiprocessors (CMPs). For 
example, Bower et al. [5] and our previous work [34] motivate the 
need for intelligent thread scheduling policies for randomly 
heterogeneous processors. Both efforts demonstrate that 
scheduling algorithms that are oblivious to heterogeneity may 
yield unacceptably high performance losses. The latter effort also 
proposes new scheduling algorithms that largely mitigate the 
power-performance impact of hard errors and variability in small-
scale CMPs. Teodorescu and Torrellas [32] is the only work to 
our knowledge to consider both scheduling and power 
management in CMPs suffering from process variations. They 
conduct a design exploration, propose a number of schedulers to 
satisfy different objectives, and develop a linear programming 
solution for power management. Herbert and Marculescu [12] 
also study global power management (but not scheduling) for 
variability-affected CMPs and develop dynamic voltage and 
frequency scaling (DVFS) algorithms that are aware of both the 
frequency and the leakage heterogeneity. 

While prior research has developed scheduling and power 
management algorithms that provide good power-performance 
efficiency for small-scale multi-core processors, the proposed 
techniques may not be effective for many-core processors with 
tens to hundreds of cores. Furthermore, many previously proposed 
runtime algorithms employ brute-force approaches [15], require 
sampling numerous configurations [34], or execute 
computationally intensive algorithms such as linear programming 
[32]. For multi-core processors with only a few cores, the 
sampling requirements and decision overhead for running these 
scheduling and power management algorithms may be reasonable, 
especially if they are only employed at a coarse interval 
granularity. However, the move to many-core architectures brings 
the scalability of these prior algorithms into question, and calls for 
a detailed investigation of their sampling and computational 
requirements.  

This paper provides a detailed analysis of both thread scheduling 
and global power management for future many-core architectures. 
In particular, this paper makes the following key contributions: 

• The performance, power, sampling requirements, and 
runtime overhead of a wide range of scheduling and power 
management algorithms are studied on heterogeneous many-
core architectures with up to 256 processing cores. 

• The computational complexities of thread scheduling and 
global power management techniques are formally analyzed. 

• An experimental assessment is conducted to determine if 
coordination is needed between many-core scheduling and 
power management algorithms. 

• Highly scalable scheduling and power management 
algorithms that achieve close to optimal performance are 
developed for future many-core processors.  

The rest of this paper proceeds as follows. The next section 
discusses the problem of runtime management for randomly 
heterogeneous many-core architectures. Section 3 discusses a 
range of scheduling and power management algorithms, and 
proposes more scalable approaches suitable for many-core 
systems. Section 4 describes the evaluation methodology and 
Section 5 presents the experimental results. Finally, related work 
is described in Section 6 and conclusions presented in Section 7. 

2. RUNTIME MANAGEMENT OF 
RANDOMLY HETEROGENEOUS     
MANY-CORE ARCHITECTURES 
As the number of cores grows to hundreds on a single die, 
ensuring power-performance efficiency becomes a complex 
optimization problem for the runtime manager. This challenge is 
further exacerbated by the random heterogeneity created by 
manufacturing faults, wear-out, and process variations. Two 
runtime managers are chiefly responsible for controlling the 
operation of the applications running on a many-core processor: 
the thread scheduler and the global power manager (GPM). Both 
the scheduler and power manager operate over a quantum of time 
which consists of two phases, a short sampling period and a 
longer steady-state period. During the sampling period, the 
performance and power statistics of the applications and 
heterogeneous cores are assessed by running different scheduling 
assignments (for the scheduler) or power settings (for the power 
manager) over smaller intervals of time. The manager then 
employs an algorithm to use these interval statistics to make a 
decision – a scheduling assignment or DVFS settings – at the end 
of the sampling period. This decision is maintained for the steady-
state period until the next quantum. Figure 2 describes this 
process, assuming a 100ms quantum for thread scheduling and a 
10ms quantum for power management, in line with prior work 
[12,15,32,34]. 

 
Figure 2: The operation of the thread scheduler and GPM. 

2.1 Scalability Issues 
For the application scheduler and GPM to operate effectively, the 
performance and power statistics taken during the sampling period 
must be reflective of the true application behavior on the 
processor cores. This requires the manager to have sufficient time 
to take enough samples, each of reasonable length, to prevent 
thread migration effects, thermal time constants, and other effects 
of moving applications and changing power settings from 
dominating the statistics. Furthermore, the runtime of the 
algorithm used to make the decision must be short relative to the 
quantum. Otherwise, the steady-state period will be consumed by 
the algorithm’s execution and little time will be left to run in the 
selected scheduling assignment or designated power settings. This 
paper investigates how these dual issues of sufficient sampling 
time and algorithm runtime are impacted by scaling to hundreds 
of cores on a chip.  

Regarding algorithm execution time, a fundamental method for 
assessing algorithm scalability is to derive its computational 
complexity. We analyze the computational complexity of each 
scheduling and power management algorithm and then provide 
experimental results corroborating these findings. Traditionally, 
polynomial time algorithms were considered sufficiently scalable. 
However, when the runtime manager is tasked with making 
decisions tens or hundreds of times per second for architectures 
with hundreds of cores, we show that even O(n3) and O(n4) 
algorithms scale poorly, where n is the number of cores. 



In order to provide intuition for the importance of algorithm 
complexity, Figure 3 shows a comparison of the growth in 
runtime of algorithms of different complexity as the number of 
cores on the chip is increased. In this abstraction, we assume that 
the unit for measuring complexity is the number of processor 
cycles required to compute the solution to the scheduling or power 
management problem. It can be seen from this graph that 
algorithms with factorial (O(n!)) or exponential (O(pn)) 
complexity rapidly become extremely time-consuming to run 
even for a processor with sixteen cores, making them poor 
candidates for future many-core architectures. Likewise, an O(n4) 
algorithm takes over one billion cycles (250ms on a 4GHz 
processor) at 256 cores, making it impossible to run at millisecond 
granularities. Even an O(n3) algorithm requires tens of millions of 
cycles to execute, bringing into question its feasibility. 

 
Figure 3: The growth in the runtime of various algorithm 

complexity classes. 

2.2 Coordinating Thread Scheduling and 
Global Power Management 
Future randomly heterogeneous many-core processors will require 
intelligent scheduling and power management algorithms that are 
aware of hardware degradations in order to mitigate their 
performance loss. A key question in terms of scalability is 
whether a lack of coordination between the two algorithms 
significantly degrades performance or whether they can produce 
good results working independently. If no coordination is 
necessary, then the overhead of runtime management is greatly 
reduced because scheduling and power management can be 
optimized separately, thereby avoiding the exploration of the 
combined search space. 

We hypothesize that scheduling and power management can in 
fact be performed independently with little loss in efficiency and 
validate this claim in Section 5.1. The key intuition regarding the 
lack of interference comes from understanding how scheduling 
and power management affect application performance. In 
randomly heterogeneous many-core architectures, the runtime of 
thread i on core j can be considered a function of four components 
described in the following equation: 

Runtime(i,j) = IPC(i,j) × Base_Freq × 
Variation_Freq_Scale_Fac(j) × DVFS_Freq_Scale_Fac(i,j) 

The first component is instructions per cycle (IPC) which is a 
function of the application’s instruction-level parallelism (ILP) 
and its memory access patterns, as well as the degree to which 
hard errors in the core affect the application’s performance on that 

core. The base frequency of each core is the same since the 
processor was designed as a homogeneous architecture. The third 
component is a scaling factor that results from the impact of 
process variations on the frequency due to reduced transistor 
switching speeds. Together these three components dictate the 
inherent performance capability of an application on a core. The 
fourth component takes into account DVFS, which allows the core 
to operate at a range of frequencies below the core’s maximum 
inherent frequency established by the architecture and impacted 
by variability. While changing frequency has some impact on IPC 
due to off-chip memory access and other asynchronous activity, 
for the most part, DVFS affects application runtime by altering 
core frequency rather than influencing IPC. 

If the DVFS levels for all the cores on the chip were held 
constant, the application scheduler would optimize for the 
inherent performance capability of the applications on the cores. 
The resulting performance values would be modulated by the 
global power manager seeking to meet a power target by adjusting 
voltages and frequencies without impacting the benefit of the 
scheduling assignment. Thus, scheduling and power management 
tackle different elements of the application/core performance 
equation. In order to fairly assess different scheduling options, our 
application schedulers always sample applications at the same 
voltage levels to make DVFS independent decisions. We set all 
cores to the middle DVFS level to avoid exceeding the power 
budget during the scheduler’s sampling period. 

3. THREAD SCHEDULING AND GLOBAL 
POWER MANAGEMENT ALGORITHMS 
3.1 Overview 
The tasks of determining the best assignment of applications to 
cores and determining the optimal voltage/frequency settings in a 
many-core processor are essentially large-scale optimization 
problems. These optimization challenges can be approached from 
a number of perspectives. In this paper, we make an effort to be 
comprehensive and present a variety of algorithms for both 
problems that cover the basic styles of optimization. First, we 
discuss brute force approaches that find the optimal solution but 
have major scalability limitations. Next, we examine greedy 
approaches designed to be simple and fast to provide high levels 
of scalability. We then develop heuristic techniques based on 
well-known methods in combinatorial optimization. We also 
study variants of linear programming, a classical and effective 
approach for solving a wide range of optimization problems. 
Finally, we consider hierarchical algorithms designed to cut down 
the complexity of managing many-core processors, and hence 
reduce the number of samples and the execution time. In addition 
to evaluating the effectiveness of the solutions computed by the 
algorithms, we also assess their sampling requirements and 
computational complexity. Both of these components must scale 
efficiently to ensure the algorithms’ feasibility in future many-
core architectures. 

3.2 Thread Scheduling Algorithms 
Heterogeneous many-core processors present a distinctly complex 
scheduling problem. Asymmetry resulting from variations, 
manufacturing defects, and wear-out is particularly challenging as 
it cannot be anticipated at runtime, and it manifests itself in 
myriad ways. The possible number of distinctly degraded cores 



increases exponentially with the number of failure modes. 
Consequently, scheduling algorithms must be robust and broadly 
applicable. A further complication for scheduling is that there is 
no simple effective a priori way to model the power-performance 
tradeoffs of running a given application on a particular core. 
Unlike power management where it can be assumed that 
performance is linearly related to voltage and power is cubically 
related (see Section 3.3), there is no clear-cut method for 
estimating the interaction of core heterogeneity and application 
behavior. Consequently, our approach is to conduct online 
sampling of the applications on the degraded cores [32,34].  

In the following paragraphs, we describe the scheduling 
algorithms studied in this paper, including the rationale for each 
approach, the nature of the sampling required, and an analysis of 
their computational complexity. A summary of the thread 
scheduling algorithms can be found in Table 1. 

Table 1: A summary of the thread scheduling algorithms. 

Scheduling Algorithm Computational 
Complexity 

# of Sampling 
Intervals 

Brute Force O(n·n!) n 

Greedy Algorithm 
(VarF&AppIPC) O(n·logn) n 

Local Search (n/2 swaps) O(n2) n 

Hungarian Algorithm 
(Linear Programming) O(n3) n 

Sequential Hierarchical 
Hungarian Algorithm O(n) 32 

Parallel Hierarchical 
Hungarian Algorithm O(1) 32 

Brute Force: The simplest method for determining the best 
assignment of threads to cores is to try every possibility and pick 
the best one. However, this technique suffers from two critical 
drawbacks when cores can differ due to random heterogeneity. On 
a chip with n cores running n applications, there are n! ways of 
assigning applications to cores. This necessitates taking an 
infeasible number of samples as the number of cores increases 
even beyond four cores. If the scheduler assumes that the 
interactions between threads running on different cores are 
minimal and ignores them, the algorithm can reduce the sampling 
to trying every benchmark on every core once, for n2 samples. 
Since all applications can be sampled on one of the cores during 
each sampling interval, collecting these n2 samples requires n 
sampling periods. This approach is analogous to the sample-one 
dynamic scheduling heuristic from Kumar et al. [17], but for 
random rather than designed heterogeneity. While this heuristic 
greatly reduces the number of samples, the scheduler must still 
compute the sum of performances of each application/core pair 
(O(n) computation) for each of the n! assignments, leading to an 
infeasible O(n·n!) runtime algorithm. Due to the impractical 
runtime of this algorithm, it is not considered further. 

Greedy Algorithm: On the other end of the spectrum from brute 
force are greedy approaches. Greedy algorithms are popular due 
to their simple implementation and low runtime complexity. 
However, they are most effective when solving problems with 
straightforward solution spaces, such as convex optimization, 
since greedy solvers typically find local optima. For this study, we 

adapt the VarF&AppIPC scheduling algorithm from Teodorescu 
and Torrellas [32], which has been shown to be very effective 
when combined with global power management on multi-core 
processors that suffer from process variations (but without 
manufacturing defects and wear-out faults). This algorithm ranks 
the applications by average IPC and ranks the cores by inherent 
frequency (before applying power management) and matches 
applications and cores by rank in an effort to assign high ILP 
threads to high frequency cores and memory-bound threads to low 
frequency cores [32]. Since our cores are heterogeneous, we 
developed a modified version of VarF&AppIPC. Our approach 
samples the IPC of each thread on every core and averages the 
results to obtain an IPC value that can be fairly compared between 
benchmarks. This requires n2 samples as in the sample-one 
technique. The complexity of the Greedy Algorithm is O(n·logn) 
because the rate determining step sorts the applications by IPC to 
determine their rank. (Sorting the cores by frequency can be done 
offline, since the impact of process variations on frequency can be 
determined at manufacturing time and the degradation due to 
wear-out happens over months of use.) Consequently, the Greedy 
Algorithm executes far faster than Brute Force. 

Local Search: For our combinatorial optimization algorithm, we 
implement the Local Search Algorithm from our previous work 
[34]. However, in our present work, we optimize for maximum 
overall throughput rather than energy-delay-squared (ED2). Local 
Search is an archetype for iterative optimization approaches and 
the basis for many more advanced approaches. The algorithm 
starts with a random assignment of applications to cores and 
proceeds by selecting another schedule in the neighborhood of the 
current one and accepting this new solution if it is better than the 
previous one. In this Local Search Algorithm, the neighborhood is 
defined as a scheduling assignment that can be derived from the 
current one by pair-wise swapping of the applications on the cores 
[34]. In our implementation, we swap all threads such that for an n 
core processor, there are n/2 pairs of threads. While Local Search 
algorithms are greedy by nature, the improvement introduced by 
[34] whereby a solution can be partially accepted offsets much of 
this limitation. Partially accepting a solution involves retaining 
any pair-wise swaps that locally improve the performance of the 
two benchmarks involved and rejecting those swaps that do not, 
rather than accepting a solution only in full. During each iteration 
of the algorithm, Local Search selects an assignment among the 
neighbors of the current best solution and then samples the 
applications on their assigned cores to determine the performance 
of this schedule. In our implementation, we run n iterations with n 
cores, which means that O(n2) samples are again required. 
Furthermore, each iteration does O(n) amount of computation, 
leading to an overall complexity of O(n2) for the algorithm. 

Hungarian Algorithm: Linear programming is a highly general 
solution method for solving any kind of optimization problem. 
The key requirement is finding a scheme for converting the 
constraints and optimization objective of a problem into linear 
equations or inequalities. While generalized linear programming 
solvers can be the most effective approach for finding a good 
solution, certain linear programming (LP) problems can be solved 
more efficiently by exploiting the special structure of the given 
problem. 

By simplifying the scheduling problem and assuming that the 
interactions between two sequential applications running on 
different cores is negligible, thread scheduling can be modeled as 



the classic Assignment Problem from operations research [34]. 
While general linear programming tools can be used to solve the 
Assignment Problem, the special structure of this problem where 
solutions are a one-to-one mapping of applications to cores, 
allows for the application of the Hungarian Algorithm [8]. One 
clear advantage of the Hungarian Algorithm over the Simplex 
Method (the most widely used general LP method) is that the 
Hungarian Algorithm has a bounded worst-case runtime of O(n3) 
for a processor with n cores [8]. On the other hand, the Simplex 
Method has an exponential runtime in the worst case and a 
polynomial-time average case complexity that is highly dependent 
on the nature of the objective function and constraints [11]. The 
Hungarian Algorithm must sample each application on each core, 
requiring n sampling intervals, to create a matrix of the benefit of 
assigning each application to each core before running the actual 
algorithm.  

An advantage of the Hungarian Algorithm over the above 
algorithms is that it finds the optimal solution to the simplified 
scheduling problem. Thus, provided that the assumption of 
negligible interference between applications holds and that the 
execution samples accurately reflect the applications’ behaviors, 
the Hungarian Algorithm can be the most effective thread 
scheduler.  

Hierarchical Hungarian Algorithm: The above four scheduling 
algorithms suffer from two main drawbacks. First, each algorithm 
requires n sampling intervals to provide the necessary 
performance evaluation of the different thread-core matchings. In 
future many-core processors, this will require hundreds of 
sampling intervals. These sampling intervals must be of 
reasonable length in order to ensure that they are reflective of the 
actual application behavior. In our experimental work, we found 
that sample lengths must be on the order of millions of cycles to 
amortize the impact of context switching and cache and branch 
predictor warm-up. However, running hundreds of million-cycle 
samples is impractical because most of the time between 
scheduling intervals would be consumed just with sampling. The 
second drawback is the time complexity of most of the above 
algorithms. Clearly brute force, with exponential runtime, is 
infeasible. Nonetheless, as our experimental results will 
demonstrate, even an O(n2) or O(n3) algorithm becomes too time 
consuming to perform at a desirable scheduling interval 
granularity. For these reasons, an alternative scheduling algorithm 
is required for future many-core chips. 

As we will show, the Hungarian Algorithm is the highest 
performing of the above techniques (Section 5.2), and thus we 
chose to develop a Hierarchical Hungarian Algorithm that 
requires significantly fewer samples and a far shorter runtime than 
the previously proposed methods. This algorithm divides the cores 
of the CMP into groups of 32 cores (experimentally determined to 
be the best group size) and obtains a locally effective scheduling 
assignment within each group. Rather than sampling all threads on 
all cores, applications are only sampled on those cores in their 
group and thus only 32 samples are required for each application. 
Likewise, since the size of the groups is fixed, the Hungarian 
Algorithm needs to solve constant-sized problems regardless of 
core scaling. With n cores, the Hungarian Algorithm must be run 
separately on n/32 groups, meaning that the computational 
problem grows linearly (O(n)). A further improvement can be 
made by noting that the sampling and computation for each group 
is completely independent and thus can be conducted in parallel 

by employing one core in each group to execute the Hungarian 
Algorithm. This parallelized version runs in constant time, since it 
is only a function of the group size, making it extremely scalable. 

3.3 Global Power Management Algorithms 
In addition to developing scalable thread scheduling algorithms, 
we investigate global power management (GPM) for many-core 
architectures suffering from manufacturing defects, lifetime wear-
out, and process variations. As per prior work [12,15,19,25,32], 
the objective is to maximize throughput under a chip-wide power 
budget. In this study, we focus on dynamic voltage and frequency 
scaling (DVFS), the most widely implemented GPM approach. 
Like [12,15,19,25,32], we assume that each core has independent 
frequency and voltage control. Future architectures may employ 
DVFS at coarser granularities, grouping multiple cores into single 
voltage domains. With coarser-grain domains, the scheduler, in 
addition to matching threads to cores, might also consider the 
affinity of threads for domains for which voltage would be 
similarly scaled. Likewise, the global power manager would need 
to consider balancing the needs of one thread versus another while 
scaling voltage and frequency domains. To allow a more direct 
comparison between our study and prior work, we focus on per-
core DVFS and leave a study of the voltage scaling granularity to 
future work. 

We consider a DVFS mechanism that scales frequency linearly 
with voltage (as per prior work) and has seven discrete voltage 
levels spaced out evenly between 0.7V and 1.0V (the nominal 
voltage). The corresponding frequency range is dependent on the 
impact of process variations on a given core (as described below) 
but would vary from 2.8 GHz to 4.0 GHz (the nominal frequency) 
on a core unaffected by variations.  

power  ∝  frequency  ×  voltage2 (1) 
frequency  ∝  voltage (2) 
(1)  &  (2)  →   power  ∝  voltage3 (3) 
throughput  ∝  frequency (4) 
(2)  &  (4)  →   throughput  ∝  voltage (5) 

Figure 4: GPM power-performance modeling assumptions. 

One distinct difference between GPM and scheduling is that the 
impact of changing the voltage and frequency of a core on 
application performance and power dissipation can be estimated 
effectively by knowing the power-performance characteristics of 
the application on the core at the current DVFS level. We employ 
the model of Isci et al. [15] described in Figure 4, and assume that 
within the narrow range of DVFS levels, performance is linearly 
proportional to voltage and power is a cubic function of voltage. 
Consequently, GPM algorithms using this model need only one 
sample per application/core pair. 

As with the scheduling algorithms, we examine five approaches to 
power management: a brute force method, a greedy algorithm, a 
heuristic combinatorial optimization scheme, linear programming, 
and a hierarchical approach. In the following paragraphs, we 
discuss these algorithms, their sampling requirements, and their 
computational complexity. A summary of the algorithms is given 
in Table 2. 

Brute Force: Isci et al. propose the MaxBIPS algorithm [15], 
which uses the model discussed above to calculate the 



performance and power dissipation achieved for each combination 
of power settings available on the chip. Assuming that DVFS can 
be set to p discrete levels (for Isci et al., p = 3 and for our work p 
= 7), there are pn possible power settings for a CMP with n cores. 
For each power setting option, the calculated performance and 
power of each core must be summed to determine the chip 
throughput and power, requiring O(n) time. While MaxBIPS is 
very effective at calculating a good DVFS assignment with a 
single sample per application/core pair taken at the middle voltage 
level, clearly even for p = 3, the O(n·pn) computation cost is 
prohibitive for many-core processors. Consequently, we do not 
consider MaxBIPS further in this paper. 

Table 2: A summary of the GPM algorithms. 
Global Power 

Management Algorithm 
Computational 

Complexity 
# of Sampling 

Intervals 
Brute Force (MaxBIPS) O(n·pn) 1 

Greedy Algorithm O(n·logn) 1 
Steepest Drop O(p·n·logn) 1 

LinOpt  
(Linear Programming) 

O(n4)  
(average case) 3 

Greedy Algorithm: We develop a simple greedy approach to 
power management which leverages a key intuition about global 
power management for maximum throughput. Essentially, 
performance is maximized by shifting power to applications that 
can individually generate the highest throughput. To achieve this, 
the Greedy Algorithm gives as much power as possible to 
application/core combinations with the greatest inherent 
performance capability. As with MaxBIPS, a single sample is 
taken for each scheduler-assigned application/core pair at the 
same voltage setting (the middle level) and the throughput is 
calculated. The throughput is a function of both the application 
IPC on the assigned degraded core and the core’s operating 
frequency due to variations.  

Using the samples and the voltage/performance/power model, the 
Greedy Algorithm estimates the power consumed by each core 
while running at the lowest DVFS setting. By subtracting the 
minimum power consumed by each core from the total power 
budget, the algorithm then determines how much extra power is 
available to assign to high throughput application/core 
combinations. The pairs are then ranked by throughput, and 
starting with the highest ranked pair, cores are greedily set to the 
highest voltage/frequency setting proceeding down the ranking 
until, according to the voltage/performance/power model, the 
power budget is reached. If there is some leftover power that was 
insufficient to allow the final core to be set to the highest setting, 
that core is set to the highest setting that still meets the budget. 
The rest of the lower ranked cores are then left at the lowest 
DVFS setting. Since the most complex step of the Greedy 
Algorithm is ranking the application/core pairs by throughput, the 
algorithm’s complexity is O(n·logn). 

Steepest Drop: We call our heuristic optimization algorithm 
Steepest Drop, which is a directed Local Search method. Rather 
than randomly select a configuration in the neighborhood of the 
current best known configuration as in Local Search scheduling, 
Steepest Drop exploits the known correlation between voltage, 
performance, and power to direct the search. We modify the 
algorithm from Meng et al. [19] that was designed to address the 
large search space resulting from applying multiple power 
optimizations simultaneously. In our work, we only use DVFS, 

but because of the large scale of our many-core architecture, the 
optimization problem is sufficiently challenging with DVFS 
alone. Again, only one sample at the middle DVFS level is needed 
to calibrate the voltage/performance/power model.  

The algorithm starts by assuming each core is set to the highest 
power setting. Then using the analytical model, if the power is 
estimated to be over the chip-wide budget, the algorithm selects 
the application/core pair that would provide the biggest ratio of 
power reduction to performance loss if the voltage was dropped 
one step. This new configuration’s power dissipation is estimated 
and, if the power is still over budget, the steepest drop is again 
calculated from the new configuration. This process is repeated 
until the power budget is met. To optimize the runtime of Steepest 
Drop, our version uses a max-heap data structure for storing the 
ranking of the power reduction to performance loss ratio for each 
application/core pair. In the worst case, the Steepest Drop 
algorithm would have dropped the voltage/frequency settings 
from the highest values all the way to the lowest for each core. 
This would involve n x p iterations for n cores and p power levels. 
By using the efficient heap data structure, our approach only takes 
O(logn) time to access the steepest drop and update the data 
structure during each iteration, for a total complexity of 
O(p·n·logn). 

LinOpt: Teodorescu and Torrellas [32] propose using linear 
optimization to solve the global power management problem in a 
multi-core chip afflicted with process variations. Their algorithm, 
LinOpt, involves three steps. First, the power management task is 
formulated as a linear programming problem. Then, the 
formulation is run through a linear programming solver that 
implements the Simplex Method. Linear programming requires 
continuous-valued variables, and thus the linear solver can return 
voltage settings that lie between the discrete DVFS levels. Thus, 
the third step conservatively drops any voltage values to the next 
lowest DVFS setting. As in all the other algorithms, performance 
is modeled as linearly dependent on voltage. However, the cubic 
relationship between voltage and power cannot be captured in a 
linear program. Instead, a linear approximation is found that 
minimizes the error with the true relationship as determined by 
three samples taken at the lowest, middle, and highest DVFS 
setting [32]. We implement this linear approximation using linear 
least squares fitting (LLSF), which can be computed in O(1) time. 
Since this must be done for each application/core combination, the 
total time is O(n).  

As mentioned above, the Simplex Method has exponential worst 
case complexity and polynomial time average case complexity 
and thus dominates LinOpt’s runtime. Experimental and 
stochastic analysis [11] have concluded that average case runtime 
estimates for linear programming are O(n4) when considering 
problems where the number of constraints is of the same order as 
the number of variables, such as in our case. In our results, we 
evaluate whether this high-order polynomial runtime becomes a 
problem for many-core processors. 

Hierarchical GPM Algorithms: A logical direction to pursue 
would be to design hierarchical algorithms for global power 
management to increase scalability in an analogous manner to the 
Hierarchical Hungarian Algorithm. For instance, a Hierarchical 
LinOpt Algorithm would divide the chip into groups that are 
given a fraction of the chip-wide power budget and then solve 
each resulting sub-problem by applying linear programming. 



However, our results in Section 5.3 show that Steepest Drop is 
very effective at finding a power-performance efficient DVFS 
setting and is also highly scalable from a computational 
complexity perspective, obviating the need for pursuing a 
hierarchical approach. 

4. EVALUATION METHODOLOGY 
4.1 Simulation Infrastructure 
To model many-core multiprocessors, we take an approach 
similar to [9,20] of building a hierarchical framework where 
cycle-accurate simulations of individual cores are combined by a 
top-level chip-wide simulator to model an entire many-core 
processor. Our framework is illustrated in Figure 5. 

 
Figure 5: Hierarchical and parallel many-core simulation 

framework. 

The lower level of the hierarchy consists of microarchitectural 
simulations of each core using an improved version of the SESC 
simulator [22]. We augmented SESC’s power and thermal 
modeling with Cacti 4.0 [31], an improved version of Wattch [7], 
the block model of Hotspot 3.0 [29], and an improved version of 
HotLeakage [35]. Our baseline core, unaffected by process 
variations and defects, is a single-threaded, four-way superscalar, 
out-of-order processor. Table 3 lists the main architectural 
parameters. 

The top-level chip-wide simulator performs two roles. First, it 
serves as a tool for managing the many-core simulations and is 
responsible for combining the performance, power, and thermal 
statistics from the SESC simulations of each core into the 
complete statistics for the whole processor. Second, the chip-wide 
simulator implements the application scheduler and global power 
manager. In this role, it directs the sampling and steady phases of 
the runtime managers, it executes the actual algorithms, and it 
manages the execution of the single-core simulations by migrating 
threads among the cores and changing DVFS settings as specified 
by the algorithms. 

4.2 Simulating Heterogeneous Many-Core 
Processors 
We evaluate many-core architectures with 4-256 cores, for which 
we consider three types of degradation that cause core-to-core 
heterogeneity. We model the disabling of all or part of a processor 
component such as an ALU or a set of queue entries as a 
consequence of a manufacturing defect or wear-out. We assume a 
processor core can have at most two faults of this type. Cores also 
have variable frequencies that are randomly assigned to be in the 

range of 60% to 110% of the nominal frequency of 4GHz, similar 
to prior work [13,32,34]. Finally, sections of the core can suffer 
from increased leakage causing higher than normal static power. 
Table 4 presents a list of the core degradations possible for each 
type of degradation. A heterogeneous n-core processor is 
generated by randomly picking n cores each affected by some or 
all of these three types of degradations. 

Table 3: Core microarchitectural parameters. 
Front-End Parameters 

Branch Predictor hybrid of gshare and bimodal 
 with 4K entries in each 

Branch Target Buffer 512 entries, 4-way associative. 
Return Address Stack 64 entries, fully associative. 
Front-End Width 4-way 
Fetch Queue Size 32 entries 
Re-Order Buffer 128 entries 
Retire Width 4-way 

Back-End Parameters 
Integer Issue Queue 48 entries, 4-way issue 
Integer Register File 80 registers 
Integer Execution 
Units 

4 ALUs/address calculation 
 units and 1 mult/div unit 

FP Issue Queue 24 entries, 1-way issue 
FP Register File 80 registers 
FP Execution Units 1 adder and 1 mult/div unit 

Memory Hierarchy 

L1 Instruction Cache 8KB, 2-way associative, 
1 port, 1 cycle latency 

Instruction TLB 32 entry, fully associative., 1 port 
Load Queue 48 entries, 4 ports 
Store Queue 24 entries, 4 ports 

L1 Data Cache 8KB, 2-way associative, 
2 ports, 1 cycle latency 

Data TLB 32 entry, fully associative., 2 ports 

L2 Cache 1MB, 8-way associative, 
1 port, 10 cycle latency 

Main Memory 1 port, 200 cycle latency 

4.3 Workloads 
We randomly generate workloads from among the 17 SPEC CPU 
2000 benchmarks for each many-core processor configuration. 
We use three fast-forward points (one, two, and three billion 
instructions) for each benchmark to add further diversity to the 
workloads. In the main scalability study of Sections 5.2 and 5.3, 
each algorithm is run on four different randomly generated 
workloads and four different randomly degraded many-core 
configurations, resulting in 16 different test cases for each size 
many-core processor. 

4.4 Assessing Algorithm Runtimes 
In addition to the computational complexity results presented in 
Sections 3.2 and 3.3, we empirically assess the execution 
requirements of our algorithms. Each of the algorithms is 
implemented in C and compiled with full optimizations into a 
special MIPS binary that can be executed with the SESC 
simulator. These binaries are then run on SESC while modeling 
the microarchitecture of the cores in our many-core processor in 
order to accurately characterize the runtime of the algorithms. 



Table 4: Possible forms of core degradation due to hard faults 
and variations. 

Type of 
Degradation List of Options 

none 
memory latency is doubled 

half the L2 cache 
half the L1  instruction cache 
a way of the L1 instruction 

cache is broken 
front-end bandwidth is reduced from  
4-way to 3-way fetch/decode/rename 

half the integer issue queue 
integer issue bandwidth  

is reduced by one 
one or more integer ALUs are disabled 

half the rename registers are broken 
half the load queue 
half the store queue 

half the L1 data cache 
a way of the L1 data cache is broken 

Degraded 
Component 

half the re-order buffer 
Frequency 

Degradation 
60 – 110 % of the nominal, 

set at intervals of 2.5% 
none 

2X nominal in L1 caches and TLBs 
2X nominal in front-end and ROB 

2X nominal in integer back-end 
2X nominal in floating point back-end 
2X nominal in load and store queues 

Increased 
Leakage 

2X nominal across core (excluding L2) 

5. RESULTS AND DISCUSSION 
5.1 Coordinating Thread Scheduling and 
Global Power Management 
Section 2.2 provides an analytical argument as to why scheduling 
and power management affect different components of the 
performance equation. In this section, we investigate the 
importance of coordinating thread scheduling and power 
management in future many-core architectures. We compare the 
performance and power dissipation of running independent 
schedulers and power managers against an oracle combined 
policy, which can compute the optimal scheduling assignment and 
power management settings without accounting for sampling or 
computational overheads. In every quantum, the oracle algorithm 
employs a brute force examination of all possible scheduling and 
power management combinations and then selects the application-
to-core assignment and DVFS settings that provide the maximum 
possible performance while staying within the chip-wide power 
budget. For the uncoordinated algorithms, we run the Hungarian 
Scheduling Algorithm together with MaxBIPS, LinOpt, and 
Steepest Drop. If these independent approaches can achieve 
performance results very close to that of the oracle scheduler and 
power manager, then there is no point implementing a coordinated 
technique. 

For our three uncoordinated algorithms, we always run the 
scheduler first and then the power manager in order to ensure that 
the chosen schedule does not lead to power overshoots. We 
verified experimentally that running power management first and 
then scheduling leads to less optimal power-performance 
efficiency and does indeed create over-budget scenarios. During 
the scheduler sampling period, the runtime manager sets the 
DVFS level of each core to the middle level, calculates the best 
schedule, and then employs the GPM during the scheduler’s 
steady phase to find the best DVFS assignment. 

The performance losses for the three combinations in comparison 
to the oracle are shown in Figure 6 for an eight core system with 
four different degraded configurations and four different 
workloads. The largest losses – at most 3% – occur when the 
uncoordinated algorithms slightly undershoot the power budget. 
These results validate our assertion that the algorithms can operate 
independently with near-optimal performance. 

 
Figure 6: A comparison of uncoordinated scheduling and 

GPM algorithms relative to the oracle manager. 

5.2 Thread Scheduling Algorithms 
We now evaluate the scheduling algorithms described in Section 
3.2 in terms of their performance relative to the Hungarian 
Scheduling Algorithm and their runtime overhead. Figure 7 shows 
the runtime overhead of each algorithm over a range of four to 
256 core organizations expressed as a percentage of the 
scheduling quantum. We implement both a sequential (SQ) 
version of the Hierarchical Hungarian Algorithm, where a 
centralized scheduler makes the assignments for all the groups, 
and a parallel (PA) version where the scheduling task is 
partitioned among the groups of cores, leaving each group 
responsible for its own local schedule. For both hierarchical 
algorithms, we experimented with groups of size 8, 16, and 32 and 
found that groups of 32 provided the best balance of algorithm 
runtime and performance. For a small number of cores, the 
overhead for all scheduling algorithms is minor, but grows rapidly 
for the less-scalable Hungarian and Local Search algorithms, 
which have O(n3) and O(n2) complexity to over 16% and 9% of 
the scheduling quanta. On the other hand, the Greedy Algorithm 
and Sequential Hierarchical Hungarian Algorithm have low 
overheads even for 256 cores, but only the Parallel Hierarchical 
Hungarian Algorithm remains scalable beyond 256 cores.  



 
Figure 7: Scheduling algorithm runtimes as a percentage of 

the scheduling quantum. 

While both the Sequential and Parallel Hierarchical Hungarian 
Algorithms are identically partitioned, the Sequential Algorithm is 
slowed down by the need to process sample results for the whole 
processor, the sequential computation of the Hungarian Algorithm 
for each group, and the time to construct the chip-wide scheduling 
assignment. Together, the factors slow down the sequential 
approach on a 256 core machine by an order of magnitude relative 
to the parallelized version. Furthermore, the Parallel Hierarchical 
Hungarian Algorithm runs 150X faster than the standard 
Hungarian Scheduler. 

 
Figure 8: Scheduling algorithm performance percentage loss 

relative to the Hungarian Algorithm. 

Figure 8 shows the performance loss of the different algorithms 
relative to the performance of the Hungarian Algorithm. The 
Greedy Algorithm experiences the largest loss by far, 8-10% for 
the larger organizations. This is not surprising considering that 
VarF&AppIPC’s method of ranking applications purely by IPC 
does not fully address the complexity of scheduling for randomly 
heterogeneous many-core architectures. A given application may 
suffer significantly due to the particular degradations on one core 
and have very high IPC on another. The average of this thread’s 
IPC across these cores can be misleading when trying to rank the 
thread as compute or memory bound. The performance of the 
Local Search Algorithm is quite good as the number of cores 
increases but it is more than offset by the higher runtime overhead 
associated with the extra search intervals. The Parallel 
Hierarchical Hungarian Algorithms offers the best combination of 
runtime overhead and performance of the scheduling assignment. 

 
Figure 9: GPM algorithm runtimes as a percentage of the 

power management quantum. 

 
Figure 10: GPM algorithm performance percentage loss 

relative to the LinOpt algorithm. 

5.3 Global Power Management Algorithms 
The runtime overhead and performance relative to LinOpt for the 
power management algorithms (from Section 3.3) are shown in 
Figures 9 and 10, respectively. Due to its high-order polynomial 
average runtime, the overhead of LinOpt grows rapidly with the 
problem size (number of cores), and even exceeds the length of 
the power management quantum (10ms) for 256 cores. Due to the 
fact that they have almost identical complexity (O(n·logn) versus 
O(p·n·logn)), the Greedy Algorithm and Steepest Drop have about 
the same overheads, less than 2% for 256 cores, and run 75X and 
62X faster (respectively) than LinOpt. Looking at the 
performance results shown in Figure 10, Steepest Drop 
outperforms the Greedy Algorithm and even slightly outperforms 
LinOpt in all cases. Overall, Steepest Drop has much more 
scalable runtime behavior than LinOpt and superior performance 
to the Greedy Power Manager. Given that LinOpt does not 
provide a performance benefit over Steepest Drop and linear 
programming is much more complex to implement in hardware or 
in the operating system, we see no reason to explore a hierarchical 
implementation of LinOpt. 

In summary, our results demonstrate that thread scheduling based 
on a Hierarchical Hungarian Algorithm coupled in an 
uncoordinated fashion with a Steepest Drop global power 
manager provides the most scalable and effective solution to the 
challenge of maintaining high performance and power efficiency 
for future many-core processors that suffer from process 
variations and intrinsic and extrinsic defects. 



6. RELATED WORK 
In the introduction, we discussed prior work addressing power 
management and scheduling for randomly heterogeneous small-
scale CMPs. In this section, we discuss remaining related research 
involving global power management in homogeneous multi-core 
processors as well as scheduling and power management in 
designed-heterogeneous CMPs.   
Juang et al. [16] argue for coordinated formal control-theoretic 
methods to manage energy efficiency in multi-core systems. Isci 
et al. [15] introduce the problem of trying to maximize total 
throughput under a chip-wide power constraint by dynamically 
tuning DVFS to workload characteristics and develop the 
effective (but limited in scalability) brute force MaxBIPS 
algorithm. Sharkey et al. [25] extend this work by exploring 
algorithms based on both DVFS and fetch toggling, and by 
studying design tradeoffs including the granularity at which the 
GPM is called and local versus global management. 
Sartori and Kumar [23] propose decentralized power management 
algorithms for homogeneous many-core architectures. They 
propose alternative approaches to DVFS such as setting cores to 
high and low power states at a coarse granularity and migrating 
benchmarks at a finer granularity to meet the power budget. In a 
similar vein, Rangan et al. [21] explore the use of scheduling on 
cores statically set to different voltage and frequency levels as an 
alternative power management approach to fine-grained DVFS. 
Wang et al. [33] propose a coordinated approach to global power 
and temperature management based on optimal control theory. 
They use multi-input-multi-output control strategies and model 
predictive control, which require matrix-matrix multiplication and 
either matrix inversion or factorization. Since these high-order 
polynomial-time matrix algorithms scale poorly, we do not 
consider them in our work. 
Some prior work addresses designed-heterogeneous CMPs with 
different issue widths and pipeline complexities. Kumar et al. [17] 
focus on multiprogrammed performance and develop algorithms 
to schedule applications on cores that best match their execution 
requirements. However, since only two types of cores are used, 
the solution space is small and thus a simple sampling scheme 
achieves good assignments. Becchi and Crowley [3] extend that 
work to use performance driven heuristics for scheduling. A 
number of research papers look at a restricted form of 
heterogeneity, where cores run at different frequencies, allowing 
their experimental evaluation to be conducted using real 
hardware. Balakrishnan et al. [2] study the impact of frequency 
asymmetry on multi-threaded commercial workloads. Others 
[10,18,26] develop scheduling algorithms for chip multiprocessors 
with this kind of restricted heterogeneity. In comparison to these 
earlier research efforts, we develop methods for many-core 
processors with significantly more forms of heterogeneity and 
scaling to far more cores. 

7. CONCLUSIONS 
In the future, microprocessors containing hundreds of cores will 
need to tolerate manufacturing defects, wear-out failures, and 
extreme process variations. The resulting heterogeneity of these 
systems requires intelligent, yet highly scalable, runtime 
scheduling and power management algorithms. In this paper, we 
perform a detailed analysis of the effectiveness and scalability of a 
range of algorithms for many-core systems of up to 256 cores. 

First, we show that there is no need to coordinate scheduling and 
global power management, which greatly reduces the search space 
for runtime power-performance optimization. We develop the 
Parallel Hierarchical Hungarian Algorithm for thread scheduling 
and demonstrate that it is up to 150X faster than the Hungarian 
Algorithm while providing only 1% less throughput. We also 
demonstrate that the Steepest Drop global power management 
algorithm has 75X less runtime overhead (for 256 cores) than the 
LinOpt algorithm and similar performance. Our results show that 
it is essential to consider runtime overhead and scalability when 
designing scheduling and power management algorithms for 
future many-core processors. 
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