
Dynamically Managed Multithreaded Reconfigurable
Architectures for Chip Multiprocessors

Matthew A. Watkins
Computer Systems Laboratory
Cornell University, Ithaca, NY

maw72@cornell.edu

David H. Albonesi
Computer Systems Laboratory
Cornell University, Ithaca, NY
albonesi@csl.cornell.edu

ABSTRACT
Prior work has demonstrated that reconfigurable logic can
significantly benefit certain applications. However, recon-
figurable architectures have traditionally suffered from high
area overhead and limited application coverage. We present
a dynamically managed multithreaded reconfigurable archi-
tecture consisting of multiple clusters of shared reconfig-
urable fabrics that greatly reduces the area overhead of re-
configurability while still offering the same power efficiency
and performance benefits. Like other shared SMT and CMP
resources, the dynamic partitioning of the reconfigurable re-
source among sharing threads, along with the co-scheduling
of threads among different reconfigurable clusters, must be
intelligently managed for the full benefits of the shared fab-
rics to be realized.

We propose a number of sophisticated dynamic manage-
ment approaches, including the application of machine learn-
ing, multithreaded phase-based management, and stability
detection. Overall, we show that, with our dynamic man-
agement policies, multithreaded reconfigurable fabrics can
achieve better energy×delay2, at far less area and power,
than providing each core with a much larger private fab-
ric. Moreover, our approach achieves dramatically higher
performance and energy-efficiency for particular workloads
compared to what can be ideally achieved by allocating the
fabric area to additional cores.

Categories and Subject Descriptors
C.5.3 [Computer System Implementation]: Microcom-
puters—Microprocessors; C.1.3 [Processor Architectures]:
Other Architecture Styles—Adaptable Architectures

General Terms
Design, Performance

Keywords
Shared Resource Management, Reconfigurable Architecture

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PACT’10, September 11–15, 2010, Vienna, Austria.
Copyright 2010 ACM 978-1-4503-0178-7/10/09 ...$10.00.

1. INTRODUCTION
Reconfigurable logic has been proposed as one possible

way to improve the performance and power efficiency of mi-
croprocessors [23, 41]. Researchers have proposed special-
ized fabrics that are specifically designed for more efficient
integration with general purpose processors than conven-
tional FPGAs [4, 22, 44]. Despite these advances in fab-
ric architecture, reconfigurable logic still incurs non-trivial
power and area costs relative to the fixed hardware function-
ality of commercial microprocessors [28]. These costs are
especially important given the disparity in benefit that dif-
ferent applications can expect to receive from reconfigurable
fabrics, from orders of magnitude benefit to no benefit at all.

The ability to integrate multiple cores and reconfigurable
logic on a single die afforded by the billion transistor era
provides a new opportunity to address these issues. This
paper proposes dynamically managed multithreaded recon-
figurable fabrics that, similar to shared SMT resources and
last level caches, are shared among several cores of a CMP in
order to save area and increase fabric utilization. Since the
degree of fabric sharing must necessarily be limited, multiple
clusters of cores sharing a common Specialized Programmable
Logic (SPL) fabric may be implemented, depending on the
expected percentage of applications that can be accelerated
by the SPL. Like other shared resources in a CMP of SMT
cores, where the partitioning of resources among the com-
peting threads on a given SMT core and the co-scheduling of
threads to multiple SMT cores significantly impact perfor-
mance, the control of multiple multithreaded SPL clusters
must be intelligently managed for good performance to be
achieved. Specifically, such a manager must make two inter-
related decisions: (1) determine the best match of threads
to the multiple clusters of SPL, considering the interplay be-
tween different threads; and (2) decide when and how best
to spatially partition each fabric on-the-fly in order to re-
duce contention among the threads, at the potential cost of
degraded throughput.

In this paper, we explore a number of approaches to this
complex management problem that range in sophistication
from simple interval-based heuristic approaches to more ad-
vanced techniques that apply machine learning, multi-
threaded phase optimization, and stability analysis. Our
algorithms permit the use of very compact SPL fabrics that
are performance competitive (on multiple mixed sequential
and parallel workloads with high SPL demand) with large
private SPL attached to each core, while consuming several
times less die area and energy. Moreover, we show that re-
placing the SPL with additional cores degrades performance

L2

Cluster 2Cluster 2Cluster 1Cluster 1

8-bit
Cell

8-bit
Cell

8-bit
Cell

8-bit
Cell

8-bit
Cell

8-bit
Cell

8-bit
Cell

8-bit
Cell

8-bit
Cell

8-bit
Cell

32×32 Full Crossbar32×32 Full Crossbar

(c)

(a)

Core
L1

Core
L1

Core
L1

Core
L1

SPL

= SPL Row

To C0 StQueue To C3 StQueue

From C0 L1D

(b)

Core0 SPL Output Core3 SPL Output

Core0 SPL OutputConf ID

From C3 L1D

Core3 SPL OutputConf ID

SPL Cluster
Manager

SPL Cluster
Manager

Monitors Monitors

(d)

Thread Assignment
and SPL Partitioning

L2 L2
L2

4-LUT

2-LUT

DDD

Interconnection NetworkInterconnection Network

High Speed Carry TreeHigh Speed Carry Tree

Interconnection NetworkInterconnection Network

BShifterBShifter
BShifterBShifter

1 1

7 7

DDD

2-LUT

DDD DDD

Figure 1: Overview of SPL integration in a CMP. (a) Depiction of overall chip, with two SPL clusters and
one conventional cluster, and blow-up of one SPL cluster, (b) four-way multithreaded SPL, (c) design of SPL
cell (unless otherwise indicated all data paths in SPL are 8 bits wide), and (d) SPL Cluster Manager.

by 62-143% for our workloads, demonstrating the benefit of
dynamically managed clusters of multithreaded SPL.

In the next section, we describe the architecture of a CMP
with embedded SPL, followed by our management policies
in Section 3. Our evaluation methodology is presented in
Section 4. Section 5 evaluates our approach. We describe
related work in Section 6 and conclude in Section 7.

2. MULTITHREADED RECONFIGURABLE
ARCHITECTURES

Figure 1(a) shows an overall depiction of a hypothetical 18
core CMP with three clusters1, with the external interface
not shown for simplicity. Each of the two clusters on the left
hand side consists of a multithreaded SPL fabric shared by
four single issue out-of-order processor cores. In our previ-
ous work [43], we evaluated the use of SPL with a range of
in-order and out-of-order core types and found that a simple
out-of-order core coupled with SPL provided the best area-
equivalent performance and power efficiency. Moreover, sim-
ilar to SMT processors where adding additional contexts
provides limited benefit beyond a certain point [42], sharing
an SPL among four cores was shown to be the best trade-off
between SPL fabric utilization and contention among com-

1Although relative sizes of the cores and SPL are accurate,
this is not intended to represent an actual floorplan.

peting threads. To confirm that this result holds true for
our set of workloads, we evaluated systems with both two 4-
way and one 8-way shared SPL and found that, in all cases,
two 4-way shared SPL clusters outperformed a single 8-way
shared SPL. While the techniques presented in this paper
apply to any degree of sharing, we assume a 4-way shared
SPL in the remainder of this paper.

In the “conventional” cluster on the right hand side of
Figure 1(a), each SPL has been replaced by one additional
core, giving 10 cores in total. Applications that do not ben-
efit from the SPL run on this conventional cluster, while
those that can exploit the SPL run on one of the two left
clusters. Of course, different mixes of SPL and conventional
clusters (as well as other cluster types) are possible, but this
consideration is beyond the scope of this paper.

Each SPL, adopted from [43] and shown in more detail in
Figures 1(b) and (c), is a highly pipelined row-based [22, 44]
programmable fabric that is temporally shared among the
four cores. Each of the two clusters incorporates hardware
monitors that capture cycle-level event counts relevant to
application characteristics and SPL usage. As is shown in
Figure 1(d), the SPL Cluster Manager periodically reads the
monitored information in order to assign threads to clusters,
and to spatially partition each SPL as appropriate to opti-
mize performance and power efficiency. In the remainder of
Section 2, we provide an overview of the SPL microarchitec-
ture. A more complete treatment is available in [43].

Rows/
SPL

Total
Area

Peak
Dynamic

Power

Total
Leakage
Power

Eight Cores N/A 1.00 1.00 1.00
Eight Private SPL 12 0.97 0.29 1.32

Two 4-way
Shared SPL

12 0.29 0.07 0.34

Table 1: Relative area and power of eight single-
issue out-of-order cores, eight private SPLs, and two
four-way shared SPLs.

2.1 SPL Hardware Microarchitecture
We adopt the row-based fabric of our earlier work [43]

in which the space of shared SPL configurations was ex-
plored using validated SPL delay, power, and area models.
The SPL is tightly integrated with the processor core as
a reconfigurable functional unit, and is interfaced to the
memory system via a queue-based decoupled architecture
(Figure 1(b)). The input queue matches the SPL row in-
put width (512 bits) and special SPL load instructions place
values into the queue at a particular data alignment. Like-
wise, the SPL writes to an output queue and the head entry
is written out to the Store Queue using special SPL store
instructions. Since the normal LSQ/cache datapath is used
for data transfer, no additional steps are needed to handle
memory dependencies with the processor core.

The SPL itself is composed of 8-bit wide computation
cells. The same operation is performed on all 8 bits within
a cell. Sixteen of these 8-bit cells are arranged in a row to
form a 128-bit wide row. Each cell in a row can perform a
different operation on its set of inputs and n of these rows
are grouped together to form the overall SPL fabric. Fig-
ure 1(c) shows the row and cell design. Feedback within
a single row is allowed. For our benchmarks, 12 rows of
private (per-core) SPL permits all but one of the configu-
rations, the major loop within crypt, to achieve maximum
performance2. In 65 nm technology, the SPL can be clocked
at 500 MHz, one-fourth that of the processor core frequency
of 2GHz (the same as the Pentium Core2 Duo [24] and the
AMD X2 Dual-Core [1], both of which are implemented in
65 nm). This latency permits each row to complete the
longest possible computation in a single cycle. The SPL
includes integrated on-chip storage for 12 configurations to
allow for fast switching between different configurations. For
our workloads, this permits all configurations for any phase
to reside on-chip. Thus, reconfiguration latency is not an is-
sue as all configurations are immediately available after the
initial configuration overhead is paid.

Using our analytical models [43], we arrive at the area
and power results for eight single issue out-of-order cores,
eight private 12-row SPLs, and two four-way shared SPLs
shown in Table 1. Although the area is prohibitive, the 12-
row private SPL serves as the baseline for comparison with
the dynamically managed multithreaded SPL architecture.
The latter is much more compact, requiring 4X less area
than the private SPLs, and is much more power-efficient as
well. While one might consider shrinking the private SPL
even further, our previous work [43] has shown that that this
yields poor performance.

2The major loop in crypt requires nearly 300 rows and so
achieves less than optimal speedup for any reasonably sized
fabric.

2.1.1 SPL Virtualization
Virtualizing reconfigurable hardware was proposed by [3]

to allow a fabric to execute a configuration that requires
more resources (i.e., rows) than are physically available. Al-
though throughput is reduced when the design must be vir-
tualized, virtualization permits the designer to trade per-
formance for area. As more area becomes available (or for
higher-end chips) larger fabrics can be created without re-
quiring any change to the application mappings.

Virtualization is accomplished by using the same physical
row to execute multiple virtual rows. For example, when
executing a configuration requiring six rows on a fabric with
only three physical rows, virtual rows 1 and 4 execute in
physical row 1, virtual rows 2 and 5 in physical row 2, etc.
In this example, this leads to a maximum 50% reduction in
throughput relative to the unvirtualized case as new data
can be inserted only half as often.

For shared fabrics the number of rows available to a func-
tion is not known at application design time even for a par-
ticular fabric implementation as the function may not be al-
located the entire SPL. As such, virtualization is especially
useful for shared fabrics as it allows all SPL functions to be
executed, albeit with possibly different throughput, regard-
less of the number of rows that are allocated at runtime.

2.1.2 Temporal Sharing and Spatial Partitioning
Figure 1(b) shows how the SPL design permits temporal

sharing among the threads executing on the four processor
cores, as well as spatial partitioning to permit private or
semi-private operation [43]. Spatial partitioning is enabled
by inserting additional multiplexers at each point where the
SPL pool might be partitioned. To keep the hardware over-
head reasonable, each of the two SPLs can only be divided
into two halves, four quarters, or one half and two quarters,
requiring a total of only four sets of input multiplexers.

With temporal sharing, all rows of the temporally shared
fabric (which may be the whole SPL or a subset, depending
on whether spatial partitioning is being used) are available
to the sharing threads in a time multiplexed fashion. The
control for temporal sharing is implemented in hardware on
a fine-grain, cycle-level basis to avoid thread starvation for
the shared SPL resource. Each SPL cycle, a round-robin
scheduler selects an instruction from one of the queues to
issue to the shared SPL.

2.2 SPL Function Mapping
The SPL is used to accelerate a wide range of operations.

We show one such example from the SPEC 2006 application
456.hmmer. We accelerate the P7Viterbi function, which ac-
counts for 85% of the program execution time. The core loop
of the function is shown in Figure 2(a). Figure 2(b) shows
how the portion of the code that calculates mc is mapped
to the SPL. In the optimized code, the core first loads the
input values needed to compute mc into the fabric, the SPL
computes the value of mc, and finally the core receives the
result. After receiving mc, the core computes the values of
dc and ic and repeats the loop.

3. DYNAMIC MANAGEMENT OF MULTI-
THREADED FABRICS

Having provided background on the fabric architecture,
we now present our dynamic runtime management policies

mpp iptpmm tpim

++

̶̶

++

dpp tpdm

++

̶̶xmb bp

++

̶̶

++

ms

̶̶

-INFTY

-INFTY

Row 1

Row 2

Row 3

Row 4

Row 5

Row 6

Row 7

Row 8

Row 9

Row 10

mc

for (k = 1; k <= M; k++) {
 mc[k] = mpp[k-1] + tpmm[k-1];
 if ((sc = ip[k-1] + tpim[k-1]) > mc[k]) mc[k] = sc;
 if ((sc = dpp[k-1] + tpdm[k-1]) > mc[k]) mc[k] = sc;
 if ((sc = xmb + bp[k]) > mc[k]) mc[k] = sc;
 mc[k] += ms[k];
 if (mc[k] < -INFTY) mc[k] = -INFTY;

 dc[k] = dc[k-1] + tpdd[k-1];
 if ((sc = mc[k-1] + tpmd[k-1]) > dc[k]) dc[k] = sc;
 if (dc[k] < -INFTY) dc[k] = -INFTY;

 if (k < M) {
 ic[k] = mpp[k] + tpmi[k];
 if ((sc = ip[k] + tpii[k]) > ic[k]) ic[k] = sc;
 ic[k] += is[k];
 if (ic[k] < -INFTY) ic[k] = -INFTY;
 }
}

(a) Source code (b) Calculation of mc in SPL

Figure 2: Mapping of SPEC2006 456.hmmer P7Viterbi to SPL.

Consideration Alternatives

Metrics
SPL Accesses, SPL Wait Time,

Avg. Rows, Grad. Insts.
Spatial
Partitioning

Yes, No

Granularity Various fixed intervals, phase change

Algorithm
Split Assignment, Equalize Assignment,

Hill Climbing, Hybrid

Stability
None, after n non-useful changes,

when average degradation < threshold,
after n random intervals

Randomness
Swap SPL threads, swap any threads,

swap with thread or empty core

Table 2: Management policy considerations.

for multiple multithreaded fabrics. The objective of these
policies is to achieve approximately the same performance
as private (per-core) fabrics with the dramatically lower area
and power consumption afforded by multithreaded fabrics.
When multiple sequential and parallel applications that are
compiled to use the SPL are simultaneously executing, the
SPL Cluster Manager (Figure 1(d)) optimizes overall perfor-
mance through two inter-dependent mechanisms: (1) thread
assignment among the clusters, and (2) spatial partitioning
and recombination of the SPL within each cluster.

There are a number of different factors that contribute
to the SPL usage characteristics of an application, includ-
ing the frequency of SPL accesses and the number of rows
needed by each optimized function. The applications that
are the biggest concern are those that either make frequent
accesses to the SPL or require a large number of rows and
therefore incur frequent virtualization. Applications that
make frequent SPL accesses can be substantially impacted
by poor scheduling, whereas applications with significant
virtualization can substantially degrade the performance of
other applications sharing the same cluster. We implemented
and evaluated a wide range of management policies given the
considerations listed in Table 2. We limit our discussion to
four representative dynamic management algorithms.

Threads can also be assigned to a particular cluster on a
CMP statically through the OS scheduler (in fact, we assume

some initial static assignment for our dynamic policies). As
we show later, the performance of static thread scheduling
varies greatly, with slowdowns ranging from less than 1% to
1028% compared to a 12-row private SPL. Moreover, static
scheduling requires dependable a priori knowledge about
the threads and their potential interactions. Finally, many
programs go through different phases during execution and
their SPL usage can differ substantially in each phase. Static
scheduling cannot exploit this dynamic phase behavior.

3.1 Per Interval Thread Assignment Policies
We first investigated a number of policies that determine

an assignment of threads to SPL clusters every interval based
solely on the performance of the previous interval and make
no use of the spatial partitioning capability of the SPL. We
found that, although all applications are impacted by poor
scheduling choices, certain applications are impacted more
than others. In particular, the largest performance losses
occur when threads that require large amounts of virtual-
ization share an SPL cluster with those that rely heavily
on the SPL. Based on this insight, the best interval-based
thread assignment policy that we devised is Average Row
Assignment. This policy uses the average number of rows
used by the functions of a particular thread as an indicator
of its degree of virtualization. Functions that require a large
number of rows on average will experience more virtualiza-
tion, assuming the amount exceeds the number of physical
rows available. Thread assignment based on the number of
rows alone, however, is insufficient; the SPL access frequency
should also be taken into account as an indication of how
much each thread relies on the SPL. Threads that heavily
utilize the SPL are more likely to be degraded by increased
wait time to access the fabric.

Average Row Assignment allocates threads to clusters
based on the ratio of the average number of rows used by
the thread to SPL accesses. Threads with high access rates
and low row usage will have small values while threads with
infrequent accesses and high row usage will have high values.
To assign threads to clusters we use a split assignment pol-
icy which aims to schedule threads with high and low values
on different clusters. The threads are sorted based on the
given metric, the first n/c threads are assigned to the first

cluster, the next n/c threads to the second, and so on, where
n is the number of threads and c is the number of clusters.

In order to compute the overall metric, each core main-
tains counters for instructions issued in the last interval. The
core also tracks the number of rows required by each SPL
instruction. This latter information is stored in the config-
uration information for each SPL function and is therefore
available to the SPL Cluster Manager.

3.2 Composite Thread Assignment / Spatial
Partitioning Policies

Average Row Assignment only considers thread assign-
ment. As described previously, each SPL can also be spa-
tially partitioned. This can be useful if SPL instructions are
queued for a long time due to virtualization or due to high
SPL usage from the number of threads sharing the SPL.
Spatial partitioning can reduce stalls due to either of these
cases as it reduces the number of threads that share the
same SPL partition.

When considering both thread assignment and spatial par-
titioning, the number of clusters is effectively dynamic, as
each SPL can be divided in half, in quarters, or in one half
and two quarters, and thread assignment must account for
this cluster size variability. As before, per-core metrics are
gathered to determine how to assign threads to however
many clusters currently exist. Moreover, the SPL Cluster
Manager must determine when to split and merge SPL par-
titions in each cluster.

To determine thread-to-cluster assignments, this policy,
henceforth referred to as Composite, uses the same SPL ac-
cess to average row ratio with split assignment used by the
Average Row scheduler. To determine when to split an SPL
cluster, each core tracks the number of cycles an SPL in-
struction is stalled in the SPL queue and the number of its
SPL instructions that are issued. If any thread spends too
long on average waiting to issue an SPL instruction, i.e., the
average wait time exceeds a threshold, then the SPL is split.
Similarly, to determine when to merge, each cluster tracks
the number of threads whose average wait time is less than
a second threshold. If the sum of this value for the two clus-
ters is greater than the current number of cores sharing a
single cluster, then the two clusters are merged. Neither a
split nor a merge will occur if both split and merge requests
are received for the same cluster in a given interval.

3.3 Learning-Inspired SPL Cluster Manage-
ment

The policies discussed thus far create their mappings of
threads to clusters based solely on the relative ranking of
some statistics for each thread during the last interval. Al-
though this generally leads to good mappings, it may not
produce the best possible mapping. In an attempt to achieve
the best – or at least a better – mapping, we apply machine
learning techniques to our cluster mapping problem.

3.3.1 Hill Climbing
Since we desire a fast, purely online approach, we focus

on hill climbing. Previous work by Choi and Yeung [10]
investigated hill climbing for SMT resource allocation among
concurrently running threads. Our scheduling problem is
significantly different, and arguably harder, as we have to
deal with both resource partitioning and determining which
threads should share those partitions.

PhaseID 1PhaseID 1
7:0

AppID 0AppID 0 PhaseID 0PhaseID 0
7:0 7:0

AppID 2AppID 2
3:0

PhaseID 2PhaseID 2 AppID 1AppID 1
7:4 3:0 7:4 3:0 7:4

PhaseID 4PhaseID 4
7:0

AppID 3AppID 3 PhaseID 3PhaseID 3
7:0 7:0

Figure 3: Hash function for phase IDs.

At each scheduling interval the manager may perform one
of the following actions: (a) swap two threads from differ-
ent SPL clusters; (b) split or merge an SPL cluster that is
not already at its minimum or maximum size; (c) create a
random number of partitions as well as a random mapping
of threads to those partitions. The last option adds an el-
ement of stochasticity which aims to escape local minima.
Each of these options is selected with a predefined proba-
bility. We investigate a variety of different restrictions on
thread swapping, from allowing only threads using the SPL
to be swapped, to allowing any threads to be swapped, to
allowing a single thread to be swapped into a cluster with
an unused core.

The new assignment is run for the next interval. At the
end, the performance of the interval is compared to the per-
formance of the best interval to date for the current phase.
If the new mapping achieves better performance, then it is
set as the new best mapping; otherwise, the mapping re-
verts to the previous best mapping. In either case, a new
local search step is applied to the current best mapping. Af-
ter some number of consecutive unbeneficial steps, the best
schedule is assumed to have been found and the phase is
declared stable. After this point all future intervals in this
phase use this stable mapping.

To identify phases, we developed a multi-threaded/multi-
programmed workload phase tracker. We use the phase
tracker of Sherwood et al. [33] to identify phases for each
thread. The phase tracker reports the current phase for
each running thread based on the mix of instructions exe-
cuted during the last phase interval. This phase information
is combined to index into a global management history ta-
ble, which contains the best mapping executed so far for the
given set of phases. In order to create a reasonably sized
index to access the history table, we developed a hash func-
tion to map the application and phase IDs of all currently
running threads to a reasonable number of bits. This func-
tion takes three byte groups of phase and application IDs
(where each phase or application ID is one byte) and XORs
them together as shown in Figure 3. The IDs are ordered
by application ID. The IDs within every other group are
rotated by four bytes to increase diversity. This hashing
scheme produces less than a 3% average false match rate for
our workloads, and more importantly, degrades performance
over a perfect hashing scheme by less than 0.1%.

To determine the relative performance of different map-
pings, the manager tracks the peak number of instructions
graduated by each thread on a per phase basis and calculates
the performance degradation for the current phase relative
to this peak performance. The performance degradation of
all threads are averaged to produce the overall degradation

for the interval. The peak instruction count is determined
by averaging the five highest observed graduation rates in
that phase.

As will be shown in Section 5, our best hill climbing al-
gorithm is able to match the performance of the Composite
manager, but rarely exceeds it. This is due to the large
performance degradation that can occur during some of the
exploration intervals, and so any slight improvement in map-
ping over that found by the Composite algorithm is offset
by the degradation incurred during the exploration period.
Unlike typical pipeline resource allocation, small changes in
the thread to SPL assignment can substantially change per-
formance. This effect not only makes finding the optimal
mapping difficult, it also significantly degrades throughput
(by up to an order of magnitude) during intervals with poor
mappings. If too many of these poor mappings are explored,
performance degrades severely. Due to these large jumps,
the exploration space is not necessarily nicely hill shaped; it
is not only quite“bumpy”but there are likely to be numerous
local minima that may be difficult to escape.

3.3.2 Hybrid Heuristic-Hill Climbing Manager
Based on our experience with the previous techniques, and

additional experimentation, we devised a hybrid manager
that addresses three main sources of performance degra-
dation of the prior approaches. The first two sources are
present in the heuristic techniques and the last appears with
Hill Climbing. First, most programs experience different
phases in their execution, during which their use of the
shared SPL may vary significantly. As such, the best map-
ping for one phase may be suboptimal for another, and
reaching a new stable mapping may take multiple intervals
using the aforementioned interval-based policies. Second,
even within a phase there can be a small amount of vari-
ability in the performance of a thread. This variation can
lead to a ping-ponging effect where threads are constantly
being swapped between two clusters. This is especially true
for multithreaded workloads where multiple threads can be
performing the same task and performance can vary slightly
depending on interactions with memory and other threads.
This constant swapping can degrade performance due to the
overhead for context switching threads. Finally, as men-
tioned previously, excessive exploration of the assignment
space can degrade performance due to the significant per-
formance degradation experienced in certain assignments.
To address these issues, we devise a new algorithm that we
call Hybrid Heuristic-Hill Climbing (H3C) that combines el-
ements of the previous two approaches and incorporates a
stability threshold such that further changes are not made
if the performance is within some margin of “optimal.”

H3C evaluates performance and maintains current assign-
ments using the same phase-based approach as Hill Climb-
ing. Unlike Hill Climbing, no change is made to the assign-
ment for the next interval if the previous interval is deter-
mined to be stable. An interval is considered stable if the
average performance degradation (as indicated by the grad-
uation rate relative to peak, same as Hill Climbing) for all
threads is less than some threshold.

When not stable, the assignment for the next interval is
determined by one of two methods. During the first x inter-
vals of a particular multithreaded/multiprogrammed phase
the threads are assigned using the Composite algorithm from
Section 3.2. The goal of this step is to create a generally

Unstable

Composite
Unstable

Hill Climbing

Unstable
No Change

Stable

n=x

AD < Th

n
=

(x
+

y
)

AD<th

AD>Th

n≥(x+y)

AD<Th

A
D

>
T

h

 n
<

x

n<(x+y) AD≥Th

AD>Th
 n<(x

+y)

n≥
x

n<x AD≥Th

AD<Th AD≥Th

Th = Stable Thresh. AD = Avg. Deg. x = Composite Intvls

n = Num. Unstable Intvls y = Hill Climbing Intvls

Figure 4: H3C Cluster Manager.

good mapping that can be fine tuned in the next step. Dur-
ing the next y intervals a learning-based local search like
that described in Section 3.3.1 is used to try to improve
upon the mapping produced by the Composite algorithm.
After this step it is assumed that the “best” mapping has
been found and no further exploration is performed for this
phase, even if the average degradation is not less than the
stable threshold in some future intervals. The complete set
of H3C state transitions are shown in Figure 4. At each
interval, the management table keeps track of the best map-
ping found so far and H3C reverts back to that mapping
as a starting point for the next management interval if the
previous interval did not improve upon the performance.

4. EVALUATION METHODOLOGY
We use a highly modified version of SESC [32] to eval-

uate our proposed multithreaded SPL cluster management
policies. We assume processors implemented in 65 nm tech-
nology running at 2.0 GHz with a 1.1V supply voltage. The
major architectural parameters are shown in Table 3. We
use Wattch, Cacti, and HotLeakage to model power.

To model the overhead associated with performing thread
management, instruction fetch for all cores is stopped for
1000 cycles at the end of each interval. This value was de-
termined by executing code approximating the scheduling
algorithms on our simulator to get an accurate cycle esti-
mate. After this period, the instructions for any threads
being migrated are drained and execution is stopped for an
additional 500 cycles (again determined by running the req-
uisite code in the simulator) to model the time necessary
to context switch all state – including internal SPL state –
to the new core. Finally, the threads are started on their
new cores, where warm-up of caches and TLBs is modeled.
The processor undergoes a similar sequence when the SPL
is spatially split or merged by the manager, although in this
case the context switch and cache and TLB warm-up are
not needed as threads continue to execute on the same core.
We experimentally determined the best parameters for the
dynamic policies, which are shown in Table 4.

4.1 Phase Tracking
We use the same parameters for our phase tracker as Sher-

wood et al. [33] with the exception of the phase interval
length. We use a smaller 1 million instruction interval due
to the shorter phases of some of our applications. Given
these parameters, we estimate that the tracker would require
around 1 kB of storage per core. Actual phase changes in the
program as detected by the phase tracker may not exactly

Branch Predictor gshare + bimodal
BTB Size 512B
RAS Entries 32
Fetch/Rename Width 2
Issue/Retire Width 1
Integer Registers 64
FP Registers 64
Retire Width 1
Integer Queue Entries 32
FP Queue Entries 16
ROB Entries 64
Int ALUs 1
Branch Units 1
Int Mult/Div Units 1
FP ALU Units 1
LD/ST Units 1
L1 Inst Cache 8kB 2-way
L1 Data Cache 8kB 2-way
L1 Access Latency 2 cycles
L2 Cache 1MB per core
L2 Access Latency 10 cycles
Coherence Protocol MESI
Main Memory
Access Time

100 ns

Phase History Entries 256

Table 3: Architecture parameters.

Policy Parameter Value

Composite Split threshold
16×avg. rows
used by core

Composite Merge threshold
2×avg. rows
used by core

Hill Climbing Probability of splitting SPL 20%
Hill Climbing Probability of merging SPL 20%
Hill Climbing Probability of random mapping 10%
Hill Climbing Threads to consider swapping All
H3C Intervals of Composite Scheduling 5
H3C Intervals of Hill Climbing 5
H3C Stability threshold Avg. Deg. < 4%
All Interval granularity 100k cycles

Table 4: Parameters for dynamic management policies.

SPL
Functions

Max
Rows

% Optimized
Exec Time

% Dyn.
SPL Insts

SPL
Usage

300.twolf 1 21 32.7% 0.10% 3.8%
456.hmmer 1 10 85.0% 1.15% 40.2%
462.libquantum 1 11 40.1% 2.19% 13.5%
473.astar 1 2 33.7% 0.79% 2.7%
cjpeg 5 21 49.9% 1.22% 20.6%

MPGenc 4 16 69.1% 0.72% 17.2%
MPGdec-o0 5 20 44.8% 0.35% 15.3%
MPGdec-o3 12 20 47.8% 0.57% 19.3%
crypt 1 298 97.9% 4.48% 99.9%

Table 5: Benchmark description, number of SPL functions, max-
imum number of rows used by SPL functions, percentage of ex-
ecution time of SPL optimized regions, percentage of SPL in-
structions executed relative to total committed instructions, and
percentage of time with at least one SPL instruction in flight.

coincide with management interval boundaries as manage-
ment intervals are based on cycles whereas phase tracking
is based on instructions.

The global SPL Cluster Management history table con-
tains 256 entries. Each entry contains the phase IDs for
each thread, the mapping of threads to clusters, and the
size of each cluster. We estimate this table would require 4
kB worth of storage.

4.2 Benchmarks
We create four workload mixes to evaluate the perfor-

mance and power efficiency of our approach. Each work-
load consists of a combination of parallel and sequential
benchmarks. These mixes reflect the type of workloads sys-
tems are apt to see in the future as different applications
are likely to be parallelized to different degrees. We choose
three single threaded benchmarks from SPEC2006 [37], one
from SPEC2000 [36], and one from MediaBench [29]. Our
multithreaded workloads consist of two benchmarks from
ALPBench [30] and a version of the JavaGrande [34] crypt
benchmark ported to C++. We run the ALPBench ver-
sion of MPGdec with two different command line parame-
ters (-o0 and -o3) as they produce different execution char-
acteristics. Specifically, the o3 version enables additional
processing which makes use of the SPL, leading to increased
overall SPL usage. A complete list of the benchmarks as well
as their SPL usage characteristics can be found in Table 5.
Table 6 lists the benchmarks in each workload mix.

In order to create SPL mappings, we profile each bench-
mark to determine which functions consume the largest por-
tion of total execution time. Following this, we examine

Name Benchmarks

Mix A
MPGenc-2, MPGdec-o0-2, crypt-2,

456.hmmer, 473.astar

Mix B
MPGdec-o3-2, crypt-2, 456.hmmer,
300.twolf, 473.astar, 462.libquantum

Mix C
MPGdec-o3-4, crypt-2, 300.twolf,

462.libquantum
Mix D MPGenc-4, crypt-2, cjpeg, 462.libquantum

Table 6: Workload composition. For parallel work-
loads the number after the name indicates the num-
ber of threads spawned during the run.

each of the functions in order to determine which ones can
be efficiently mapped to the SPL. Configurations are then
created for those functions by hand, although previous work
has shown that compilers can produce good mappings for
reconfigurable architectures [2, 4, 45].

Since dynamic thread scheduling is most useful when ap-
plications experience phase changes, we need to run the
benchmarks long enough to witness these phase changes.
The best option is to run benchmarks to completion. Due
to the long running time of SPEC benchmarks with refer-
ence inputs, however, we are only able to run our non-SPEC
benchmarks to completion. For our SPEC benchmarks we
use Early SimPoints [31] to select two 250 million instruc-
tion SimPoints from the original source code (i.e., code not
utilizing the SPL). Since using the SPL changes the number
of instructions executed, we determine where each of the two
SimPoints begin and end and augment the code to fast for-
ward through all but these two intervals. In this way both
the original and SPL versions of the code execute function-
ally equivalent amounts of code. We select relatively long

 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12

11
11

22
22

11
12

12
22

11
12

21
22

11
12

22
12

11
12

22
21

11
21

12
22

11
21

21
22

11
21

22
12

11
21

22
21

11
22

11
22

11
22

12
12

11
22

12
21

11
22

21
12

11
22

21
21

11
22

22
11

12
11

12
22

12
11

21
22

12
11

22
12

12
11

22
21

12
12

11
22

12
12

12
12

12
12

12
21

12
12

21
12

12
12

21
21

12
12

22
11

12
21

11
22

12
21

12
12

12
21

12
21

12
21

21
12

12
21

21
21

12
21

22
11

12
22

11
12

12
22

11
21

12
22

12
11

12
22

21
11

R
el

at
iv

e
Ex

ec
 T

im
e

MPGenc2
MPGdec2o0

crypt2
hmmer

astar
Mean

Figure 5: Performance of Mix A for multithreaded
SPL clusters with all possible static schedules rela-
tive to private 12-row SPL.

intervals to capture phase changes within an interval. In or-
der to make our comparison fair, we continuously respawn
threads that finish early so that longer running threads still
experience contention for the SPL due to the shorter running
threads. We stop the simulation when the longest running
benchmark completes and report the execution time for each
benchmark averaged over all completed runs.

5. RESULTS
We first motivate the need for dynamic thread assign-

ment and spatial partitioning by showing the varied per-
formance achieved with static thread assignment relative to
large private SPLs. We then compare dynamic manage-
ment to the best, worst, and median-case static assignments.
We also compare our approach with the performance and
energy×delay2 that would be ideally achieved by replacing
the SPL with additional cores.

5.1 Static Assignment Performance
The OS scheduler could statically assign threads to clus-

ters (i.e., maintain the schedule throughout execution) using
information regarding expected SPL usage gleaned from the
compiler. For each workload, we simulate all 35 possible
static assignments, and extract the best, worst, and median
static assignments based on the mean relative execution time
of all benchmarks. This information tells us what an oracle
static scheduler could achieve, the worst performance that
could occur if SPL usage is not taken into account by the
scheduler at all, and the margin for error, i.e., whether most
schedules are closer to the best or the worst schedule.

Figure 5 shows the performance of each benchmark for
one of the workloads for all static assignments (results for
the other three workloads show similar overall trends). The
labels on the x-axis indicates the cluster, 1 or 2, to which
each thread is assigned. A label of 12112212, for example,
indicates the first spawned thread is assigned to cluster 1,
the second thread to cluster 2, the third thread to cluster
1, etc. The performance is highly variable, varying by as
much as 1028% between the best and worst static schedules
for some benchmarks. The mean performance for the best,
worst, and median static schedules for each workload rela-
tive to the 12-row private SPL baseline is shown in Figure 6
(second, third, and fourth bars). Individual benchmark per-

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

Mix A Mix B Mix C Mix D

R
el

at
iv

e
Ex

ec
 T

im
e

2.1 4.0 3.5 1.6 4.4 4.0 1.9 4.0 3.7 2.4 2.9 2.8

Ideal 10 Core
Best Static
Worst Static
Median Static
AvgRow
Composite
Hill Climbing
H3C

Figure 6: Average execution time for each workload
relative to 12-row private SPL.

formance for each workload is shown in Figure 73. While in
some cases the best (oracle) static scheduler performs rea-
sonably well, the results for the worst schedule indicate that
a static scheduler that is oblivious to SPL usage may per-
form poorly relative to the private 12-row SPL organization.
Moreover, Figure 6 shows that the median schedule is much
closer to the worst case schedule than the best case sched-
ule. Thus, there is little margin for error in static scheduling;
such errors could easily arise due to the lack of static infor-
mation regarding the fabric contention among applications.

5.2 Performance of Dynamic SPL Cluster Man-
agement

The individual benchmark and average workload perfor-
mance of the four representative dynamic management poli-
cies presented in Section 3 relative to the performance of
private 12-row SPL is shown in Figures 7 and 6, respectively.

5.2.1 Average Row and Composite Policies
Overall, the Average Row and Composite policies out-

perform the best possible static assignment by 21.9% and
23.6%, respectively. The benefits of permitting the manager
to control spatial partitioning as done in the Composite pol-
icy are demonstrated by comparing the overall results for
both policies (Figure 6). Compared with the much higher
overhead private 12-row SPL organization, the Average Row
approach experiences a 7.0% slowdown and the Composite
policy experiences a 5.3% slowdown.

For a few of the benchmarks, the dynamic algorithms oc-
casionally improve performance relative to the 12-row pri-
vate SPL. This occurs because we simulate private L2 caches.
When scheduled on several different cores, threads may make
use of multiple L2 caches. Thus, on an L2 cache miss, the
data might be sourced from another L2 cache rather than
the slower main memory. To ensure that this effect is not the
primary reason for the improvement of our policies, we ran
tests where all L2 misses are forced to access main memory.
We found that the cache“sharing”effect on performance was
negligible in comparison to the effect of the Cluster Manager.

5.2.2 H3C Policy
As mentioned previously, and shown in the results, the

Hill Climbing manager typically does not outperform the
simpler Composite approach due to the performance loss in-

3Note that the best schedule is based on mean performance,
and as such might not be best for an individual benchmark.

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

M
PG

en
c2

M
PG

de
c2

o0

cr
yp

t2

hm
m

er

as
ta

r

R
el

at
iv

e
Ex

ec
 T

im
e

3.0 3.2 2.8 2.8 2.8 11.0 8.3 2.1 2.1

Best Static
Worst Static
Median Static
AvgRow
Composite
Hill Climbing
H3C

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

M
PG

de
c2

o3

cr
yp

t2

hm
m

er

tw
ol

f

as
ta

r

lib
qu

an
tu

m

R
el

at
iv

e
Ex

ec
 T

im
e

1.6 8.4 8.2 10.3 8.4 2.1 2.1 3.3 3.2

Best Static
Worst Static
Median Static
AvgRow
Composite
Hill Climbing
H3C

(a) Mix A (b) Mix B

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

M
PG

de
c4

o3

cr
yp

t2

tw
ol

f

lib
qu

an
tu

m

R
el

at
iv

e
Ex

ec
 T

im
e

10.4 9.1 3.6 3.5

Best Static
Worst Static
Median Static
AvgRow
Composite
Hill Climbing
H3C

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

M
PG

en
c4

cr
yp

t2

cj
pe

g

lib
qu

an
tu

m

R
el

at
iv

e
Ex

ec
 T

im
e

3.2 3.3 3.2 3.5 3.5 3.7 3.6

Best Static
Worst Static
Median Static
AvgRow
Composite
Hill Climbing
H3C

(c) Mix C (d) Mix D

Figure 7: Performance of multithreaded SPL clusters with dynamic scheduling algorithms and best, worst,
and median static schedules, relative to private 12-row SPL.

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

Mix A Mix B Mix C Mix D

R
el

at
iv

e
En

er
gy

×D
el

ay
2

27 3.3 124 61 18 143 102 26 179 125 33 19 18

Ideal 10 Core
Best Static
Worst Static
Median Static
AvgRow
Composite
Hill Climbing
H3C

Figure 8: Average energy×delay2 for each workload
relative to 12-row private SPL.

curred during exploration. The H3C manager achieves the
best all around performance, outperforming all other op-
tions in all but one case. In the one exception, Mix C under
the Composite manager, the performance with H3C is less
than 1% worse than the Composite scheduler. Overall the
H3C policy achieves 25.3% better performance than the best
static schedule. Compared to the 12-row private SPL, the
H3C management approach experiences only a 3.6% slow-
down while consuming 4X less area.

When energy×delay2 (ED2) is considered (Figure 8), the
benefits of multithreaded SPLs incorporating both schedul-
ing and spatial partitioning are further accentuated. The
H3C manager achieves 5.4% better ED2 than the 12-row pri-
vate baseline on average (again with a 4X lower area cost due

to the shared fabrics). By contrast, the best static sched-
ule experiences an average 179% worse ED2 than the 12-row
private SPL. H3C is the only approach that provides better
ED2 than the 12-row baseline for all four workloads.

Another benefit of the dynamic policies is fairness. For
most of the best static schedules, some of the threads achieve
near optimal performance while others experience significant
slowdown. With the dynamic policies, the performance im-
pact is quite uniform across the threads.

H3C Component Analysis
In Section 3.3.2 we detailed a number of factors that limit

the performance of the Composite and Hill Climbing man-
agers and how the H3C manager incorporates techniques to
address these issues. To assess the importance of each, and
also confirm that the proposed solutions achieve their stated
goals, we run simulations where one or more of H3C fea-
tures are modified. In particular we look at cases where the
stability threshold is eliminated (No Stability), where hill
climbing is eliminated (No Hill), and where additional hill
climbing is performed (Extra Hill). We also look at a case
where Composite scheduling is performed at every interval
(essentially adding phase information to the base Composite
manager) (Composite+Phase).

Figure 9 shows the performance loss of each case relative
to the H3C manager. The H3C manager outperforms all
of these alternatives in every instance. This confirms that
hill climbing, stability detection, and phase analysis are all
important and that eliminating any one of them degrades
the quality of the manager. The most important factor is the
stability threshold, without which performance degrades by

 0%

 1%

 2%

 3%

 4%

 5%

Mix A Mix B Mix C Mix D

Pe
rfo

rm
an

ce
 D

eg
ra

da
tio

n
Extra Hill
No Hill
No Stability
Composite+Phase

Figure 9: Performance degradation relative to H3C.

2.3%. Continuously running the Composite scheduler with
phase information leads to a similar losses. Both indicate
the benefits of limiting unnecessary exploration.

Phase Analysis
One of the key features of our management schemes is

their ability to dynamically adapt to different application
phases. Figure 10 shows an example of the thread schedul-
ing and cluster partitioning for a section of Mix D with H3C
management. The graph shows the thread-to-core assign-
ment for the four main threads along with the SPL access
patterns of the two threads that change phases during the
given period. The horizontal dotted lines in the graph show
which cores share a SPL partition and the vertical line indi-
cates when one of the clusters is partitioned.

At the start of the example, four threads are actively using
the SPL. The two crypt threads share one cluster and the
two single threaded applications share the other in order to
minimize conflicts. Around 134M cycles, MPGenc starts a
section that uses the SPL. The H3C manager monitors SPL
usage and determines how to schedule threads and partition
the fabric to adapt to this change. In particular, one of the
clusters is divided so that crypt still has its own partition,
and the assignment of threads to clusters is rearranged based
on current usage statistics.

The figure also shows how the manager can adapt to the
changing access pattern of cjpeg. During phases when its ac-
cess rate increases, cjpeg is rescheduled on the larger cluster
to achieve better performance. Unlike the Composite man-
ager, however, which always makes the same change, we can
see in the last two access peaks for cjpeg that the H3C man-
ager explores other options in an attempt to find an even
better mapping.

5.2.3 Replacing the SPL with Additional Cores
Figures 6 and 8 also show results for each workload in

which each SPL is replaced by one additional single issue
core; in other words, the workloads are run on the conven-
tional cluster on the right side of the chip diagram of Fig-
ure 1(a). These results were obtained by simulating a given
workload using the original benchmarks (no SPL code) with
eight cores (one per thread), and then ideally scaling the
results to 10 cores. This ideal scaling is achieved by linearly
reducing the execution time by 1/5, but optimistically in-
creasing the energy by only 12.5% (even though there are
now 25% more cores).

A comparison of the Ideal 10 Core and all of the dy-
namic scheduling results in these graphs substantiates previ-
ous work that demonstrated significant benefits with SPL on

 1

 2

 3

 4

 5

 6

 7

 8

126000000 131000000 136000000 141000000 146000000
 0

 600

 1200

 1800

 2400

 3000

 3600

 4200

C
or

e
As

si
gn

m
en

t

SP
L

Ac
ce

ss
es

Cycles

3 clusters2 clusters

MPGenc
crypt

cjpeg
libquantum

MPGenc-acc
cjpeg-acc

Figure 10: Thread-to-core assignment and SPL ac-
cesses for Mix D with H3C.

particular applications. Performance degrades by 62-143%
when the workloads are run on the 10-core cluster rather
than the two with multithreaded SPL, and the ED2 dif-
ferences are even more pronounced: up to 34X worse ED2

for Ideal 10 Core. We emphasize again that on a large-
scale CMP, those applications that are not compiled to use
the SPL can be scheduled on a non-SPL cluster. For those
threads that are compiled to use the SPL, effective assign-
ment of threads to multithreaded SPL clusters, coupled with
judicious dynamic spatial partitioning of the SPLs, is cru-
cial to achieving good performance, power efficiency, and
area efficiency.

6. RELATED WORK

6.1 Reconfigurable Processors
Several excellent survey papers [23, 41] provide an

overview of the contributions of prior reconfigurable com-
puting projects. The bulk of these efforts focus on a single
processor core with an attached reconfigurable fabric. There
is a dearth of prior work in addressing how reconfigurable
logic can best benefit future CMPs. In this section, we focus
on those ideas most related to our proposed thread assign-
ment and spatial partitioning policies.

Caspi et al. [6] propose SCORE, a reconfigurable system
which uses a stream programming model. Their design in-
corporates a single CPU and multiple reconfigurable blocks.
Configurations can map to these blocks both spatially and
temporally. A number of research efforts [5, 13, 20] have
investigated the high level integration of a reconfigurable
fabric on-chip. All of these, however, only investigate the
integration with a single core, although Garcia and Comp-
ton [20] state that their technique could be extended to a
multicore system.

In [21], configuration data for a reconfigurable coproces-
sor is shared among multiple cores in order to increase fabric
utilization by allowing a larger number of configurations to
coexist in the fabric. Chen et al. [8] investigate the bene-
fits of including reconfigurable ISA support in a multicore
processor and find that combining program parallelization
with custom ISA support provides larger speedups than the
product of the two techniques applied in isolation.

Our previous work [43] identifies a number of character-
istics of past reconfigurable proposals that are found to be
highly amenable to incorporating reconfigurable fabrics in
CMPs. We designed a shared SPL based on these fea-

tures, and analyzed the impact of incorporating the fab-
ric with processors of different complexity. While the em-
phasis of [43] is on the fabric design, this paper proposes
a complete hardware/software approach to managing mul-
tithreaded SPL clusters in future CMPs, including spatial
partitioning and thread scheduling policies.

Reconfigurable computing has recently been gaining in-
creased attention from industry. Both Intel and AMD per-
mit tighter integration of FGPAs with general purpose pro-
cessors through HyperTransport, QuickPath, and licensing
of front side bus technology [18, 19]. Convey Computer’s
HC-1 pairs an Intel processor with a reconfigurable copro-
cessor and allows different instruction sets to be loaded into
the coprocessor [12].

6.2 Thread Scheduling and Dynamic Resource
Sharing

The benefits of dynamic thread scheduling in small scale
CMP/SMT systems has been explored for a number of pur-
poses, including cache-aware scheduling [17, 26, 40], thermal
management [11], and SMT resource-aware scheduling [16,
35]. Most of these efforts deal with temporally scheduling
threads between time slices where the number of threads is
greater than the number of processor contexts. They aim to
minimize contention or maximize sharing between threads
scheduled in the same interval. Our work is different in a
number of aspects, including that we perform spatial parti-
tioning with all threads running at the same time.

Numerous SMT resource management techniques exist
that aim to either directly [7, 10] or indirectly [15, 42] control
the amount of processor resources that any thread consumes.
These techniques aim to maximize the benefit each thread
realizes from its share of resources, particularly by limit-
ing threads with outstanding misses from hogging resources.
With SPL resource management, on the other hand, threads
that are “hogging” the SPL are actually the ones receiving
the most benefit from the fabric, and so SPL management
is not as simple as just limiting threads that use a lot of the
SPL. Also, unlike front-end resources, which can be reallo-
cated quickly at a fine granularity, there is nontrivial over-
head involved in both supporting and dynamically switching
between different SPL sharing degrees, which impacts the
techniques that can be employed.

Previous research has proposed sharing other architec-
tural components among multiple cores. Several efforts in-
vestigate how to best allocate shared L2 cache space among
multiple threads [9, 25, 38]. Sun’s UltraSPARC T1 [39]
shares a single floating point unit between its eight SMT
cores. Kumar et al. [27] investigate sharing FP units, cross-
bar ports, and L1 instruction and data caches between two
cores. Their work focuses on temporal sharing, and does
not consider dynamic spatial techniques such as splitting a
cache in half if inter-thread conflicts are too high. We also
propose more advance policies that combine machine learn-
ing, phased-based analysis, and stability control. Prior work
in optimizing resource allocation during different phases [14,
33] only address single applications. In our multithreaded
environment, each thread has its own current phase and we
must deal with optimizing thread assignment and resource
allocation as phases change across multiple applications.

Our situation is more difficult than any of this previous
work as we must concurrently manage both cluster thread
assignment and fabric partitioning.

7. CONCLUSIONS
We propose dynamically managed multithreaded recon-

figurable fabrics for future CMPs. We examine a range of
dynamic management policies that vary in their approach
mapping threads to clusters, as well as how they exploit
the ability to spatially partition each SPL to mitigate inter-
thread conflicts.

Of the four representative approaches that we present,
our best policy judiciously combines elements of machine
learning, phase-based analysis, and stability detection to
assign threads to SPL clusters and spatially partition the
SPLs on-the-fly. This approach outperforms an oracle static
scheduler, and experiences only a small slowdown compared
with much larger private SPLs dedicated to each core. We
also demonstrate dramatic improvements over allocating the
SPL area to additional cores. Overall, we demonstrate that
sharing reconfigurable fabrics and managing their resources
on-the-fly are key to making reconfigurable fabrics an at-
tractive, cost-effective, option for future CMPs.

ACKNOWLEDGMENTS
This research was supported by an NSF Graduate Research
Fellowship; NSF grants CCF-0916821, CCF-0811729, and
CNS-0708788; and equipment grants from Intel.

8. REFERENCES
[1] Advanced Micro Devices. AMD Athlon X2 Dual-Core

Details. http://www.amdcompare.com/us-en/
desktop/details.aspx?opn=ADH2350IAA5DD, 2007.

[2] M. Budiu and S. C. Goldstein. Fast Compilation for
Pipelined Reconfigurable Fabrics. In Proc. 1999
ACM/SIGDA 7th Int’l Symposium on Field
Programmable Gate Arrays, pages 195–205, Feb. 1999.

[3] S. Cadambi, J. Weener, S. Goldstein, H. Schmit, and
D. Thomas. Managing Pipeline–Reconfigurable
FPGAs. In Proc. 1998 ACM/SIGDA 6th Int’l
Symposium on Field Programmable Gate Arrays,
pages 55–64, Feb. 1998.

[4] T. Callahan, J. Hauser, and J. Wawrzynek. The Garp
Architecture and C Compiler. Computer, 33:62–69,
Apr. 2000.

[5] J. Carrillo and P. Chow. The Effect of Reconfigurable
Units in Superscalar Processors. In Proc. 2001
ACM/SIGDA 9th Int’l Symposium on Field
Programmable Gate Arrays, pages 141–150, 2001.

[6] E. Caspi, M. Chu, R. Huang, J. Yeh, J. Wawrzynek,
and A. DeHon. Stream Computations Organized for
Reconfigurable Execution (SCORE). In Proceedings of
the 10th Int’l Workshop on Field-Programmable Logic
and Applications, pages 605–614, Aug. 2000.

[7] F. J. Cazorla, A. Ramirez, M. Valero, and
E. Fernandez. Dynamically Controlled Resource
Allocation in SMT Processors. In Proc. IEEE/ACM
37th Annual Int’l Symposium on Microarchitecture,
pages 171–182, 2004.

[8] Z. Chen, R. N. Pittman, and A. Forin. Combining
Multicore and Reconfigurable Instruction Set
Extensions. In Proc. 18th ACM/SIGDA Int’l
Symposium on Field Programmable Gate Arrays,
pages 33–36, 2010.

[9] S. Cho and L. Jin. Managing Distributed, Shared L2
Caches through OS-Level Page Allocation. In Proc.
IEEE/ACM 39th Annual Int’l Symposium on
Microarchitecture, pages 455–468, Dec. 2006.

[10] S. Choi and D. Yeung. Learning-Based SMT Processor
Resource Distribution via Hill-Climbing. In Proc. 33rd

IEEE/ACM Int’l Symposium on Computer
Architecture, pages 239–251, 2006.

[11] T. Constantinou, Y. Sazeides, P. Michaud, B. Fetis,
and A. Seznec. Performance Implications of Single
Thread Migration on a Chip Multi-Core. SIGARCH
Computer Architecture News, 33(4):80–91, 2005.

[12] Convey Computer. The Convey HC-1 Computer.
White Paper, Nov. 2008.

[13] M. Dales. Managing a Reconfigurable Processor in a
General Purpose Workstation Environment. In Proc.
of the Design, Automation, and Test in Europe
Converence and Exhibition, pages 980–985, 2003.

[14] A. S. Dhodapkar and J. E. Smith. Managing
Multi-Configuration Hardware via Dynamic Working
Set Analysis. In Proc. 29th IEEE/ACM Int’l
Symposium on Computer Architecture, volume 30,
pages 233–244, 2002.

[15] A. El-Moursy and D. H. Albonesi. Front-End Policies
for Improved Issue Efficiency in SMT Processors. In
Proc. 9th IEEE Symposium on High Performance
Computer Architecture, page 31, 2003.

[16] A. El-Moursy, R. Garg, D. Albonesi, and
S. Dwarkadas. Compatible Phase Co-Scheduling on a
CMP of Multi-threaded Processors. In Proc. of the
20th Int’l Parallel and Distributed Processing
Symposium, page 10, 2006.

[17] A. Fedorova, M. Seltzer, C. Small, and D. Nussbaum.
Performance of multithreaded chip multiprocessors
and implications for operating system design. In
USENIX 2005 Annual Technical Conference, pages
395–398, Berkeley, CA, 2005.

[18] M. Feldman. FPGA Acceleration Gets a Boost from
HP, Intel. HPCWire, Sept. 2007.

[19] M. Feldman. Reconfigurable Computing Prospects on
the Rise. HPCWire, Dec. 2008.

[20] P. Garcia and K. Compton. A Reconfigurable
Hardware Interface for a Modern Computing System.
In Proc. 2007 IEEE Symposium on
Field–Programmable Custom Computing Machines,
pages 73–84, April 2007.

[21] P. Garcia and K. Compton. Kernel Sharing on
Reconfigurable Multiprocessor Systems. In Int’l
Conference on Field Programmable Technology, pages
225–232, 2008.

[22] S. Goldstein, H. Schmit, M. Moe, M. Budiu, and
S. Cadambi. PipeRench: A Coprocessor for Streaming
Multimedia Acceleration. In Proc. 26th IEEE/ACM
Int’l Symposium on Computer Architecture, pages
28–39, May 1999.

[23] R. Hartenstein. A Decade of Reconfigurable
Computing: A Visionary Retrospective. In Proc. of
the Conference on Design, Automation, and Test in
Europe, pages 642–649, 2001.

[24] Intel Core 2 Extreme Processor X6800 and Intel Core
2 Duo Desktop Processor E6000 and E4000 Sequences,
2007. Intel Datasheet: 313278-004.

[25] S. Kim, D. Chandra, and Y. Solihin. Fair Cache
Sharing and Partitioning in a Chip Multiprocessor
Architecture. In Proc. 13th IEEE/ACM Int’l
Conference on Parallel Architectures and Compilation
Techniques, pages 111–122, 2004.

[26] P. Koka and M. H. Lipasti. Opportunities for Cache
Friendly Process Scheduling. In Workshop on
Interaction Between Operating Systems and Computer
Architecture, 2005.

[27] R. Kumar, N. Jouppi, and D. Tullsen. Conjoined-core
Chip Multiprocessing. In Proc. IEEE/ACM 37th
Annual Int’l Symposium on Microarchitecture, pages
195–206, 2004.

[28] I. Kuon and J. Rose. Measuring the Gap Between
FPGAs and ASICs. IEEE Transactions on

Computer–Aided Design of Integrated Circuits and
Systems, 26(2):203–215, 2007.

[29] C. Lee, M. Potkonjak, and W. Mangione-Smith.
MediaBench: A Tool for Evaluation and Synthesizing
Multimedia and Communications Systems. In Proc.
IEEE/ACM 30th Int’l Symposium on
Microarchitecture, pages 330–335, 1997.

[30] M.-L. Li, R. Sasanka, S. V. Adve, Y.-K. Chen, and
E. Deves. The ALPBench Benchmark Suite for
Complex Multimedia Applications. In Proc. of the
IEEE Int’l Symposium on Workload Characterization,
pages 34–45, 2005.

[31] E. Perelman, G. Hamerly, and B. Calder. Picking
Statistically Valid and Early Simulation Points. In
Proc. 12th IEEE/ACM Int’l Conference on Parallel
Architectures and Compilation Techniques, pages
244–255, Sept 2003.

[32] SESC Architectural Simulator.
http://sourceforge.net/projects/sesc, 2007.

[33] T. Sherwood, S. Sair, and B. Calder. Phase Tracking
and Prediction. In Proc. 30th IEEE/ACM Int’l
Symposium on Computer Architecture, pages 336–349,
June 2003.

[34] L. Smith, J. Bull, and J. Obdrzálek. A Parallel Java
Grande Benchmark Suite. In Supercomputing ’01:
Proc. of the 2001 ACM/IEEE conference on
Supercomputing (CDROM), pages 8–17, 2001.

[35] A. Snavely and D. M. Tullsen. Symbiotic
Jobscheduling for a Simultaneous Multithreaded
Processor. In Proc. 9th ACM Symposium on
Architectural Support for Programming Languages and
Operating Systems, pages 234–244, 2000.

[36] Standard Performance Evaluation Corporation. SPEC
CPU Benchmark Suite.
http://www.specbench.org/cpu2000/, 2000.

[37] Standard Performance Evaluation Corporation. SPEC
CPU Benchmark Suite.
http://www.specbench.org/cpu2006/, 2006.

[38] G. E. Suh, L. Rudolph, and S. Devadas. Dynamic
Partitioning of Shared Cache Memory. J.
Supercomputing, 28(1):7–26, 2004.

[39] Sun Microsystems, Inc. UltraSPARC T1 Supplement
to the UltraSPARC Architecture 2005, Mar. 2006.

[40] D. Tam, R. Azimi, and M. Stumm. Thread Clustering:
Sharing-Aware Scheduling on SMP-CMP-SMT
multiprocessors. In Proceedings of the 2007 Conference
on EuroSys, pages 47–58, 2007.

[41] T. Todman, G. Constantinides, S. Wilton, P. Cheung,
W. Luk, and O. Mencer. Reconfigurable Computing:
Architectures and Design Methods. IEE Proc. –
Computers and Digital Techniques, 152(2):193–205,
March 2005.

[42] D. M. Tullsen, S. J. Eggers, J. S. Emer, H. M. Levy,
J. L. Lo, and R. L. Stamm. Exploiting Choice:
Instruction Fetch and Issue on an Implementable
Simultaneous Multithreading Processor. In Proc. 23rd
IEEE/ACM Int’l Symposium on Computer
Architecture, pages 191–202, 1996.

[43] M. Watkins, M. Cianchetti, and D. Albonesi. Shared
Reconfigurable Architectures for CMPs. In Proc. of
the 18th Int’l Conference on Field-Programmable
Logic and Applications, Sept. 2008.

[44] M. Wirthlin and B. Hutchins. A Dynamic Instruction
Set Computer. In Proc. 1995 IEEE Symposium on
Field–Programmable Custom Computing Machines,
pages 99–107, 1995.

[45] Z. A. Ye, N. Shenoy, and P. Banerjee. A C Compiler
for a Processor with a Reconfigurable Functional Unit.
In Proc. 2000 ACM/SIGDA 8th Int’l Symposium on
Field Programmable Gate Arrays, pages 95–100, Feb.
2000.

