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Abstract

As device dimensions continue to be aggressively scaled, mi-
croprocessors are becoming increasingly vulnerable to the impact
of undesired energy, such as that of a cosmic particle strike, which
can cause transient errors. To prevent operational failure due to
these errors, system-level techniques such as redundant execution
will be increasingly required for fault detection and tolerance in
future processors. However, the need for redundancy is directly
opposed to the growing need for more power efficient operation.
Conventional techniques that use multi-core microarchitectures to
provide whole-thread duplication generally incur significant en-
ergy overhead which can exacerbate the already severe problem of
power consumption and heat dissipation given a certain through-
put requirement. In the future, approaches that supply the neces-
sary level of robustness at a given throughput level must also be
power-aware.

We propose a thread-level redundant execution microarchitec-
ture that significantly reduces the energy overhead of replication
without unduly impacting performance. Our approach exploits
the fact that with appropriate hardware support, the verification
operation can be parallelized and run on a chip multiprocessor
with support for frequency scaling together with supply voltage
scaling and/or body biasing. To further improve the efficiency
of verification, we exploit the information obtained by the lead-
ing thread to assist the trailing verification threads. We discuss
in detail the required architectural support and show that our ap-
proach can be highly energy-efficient: using two checkers, fully
replicated execution costs only an average 28% extra energy over
non-redundant execution with virtually no performance loss.

1 Introduction
Each new process generation provides increased transistor den-
sity but with a reduction in the critical charge required to maintain
proper device state. As a result, microprocessors are becoming in-
creasingly vulnerable to disturbances from unwanted energy from
the environment. In recent years, significant concern has arisen
over particle strikes (e.g., from neutrons and alpha particles) that
may result in transient or soft errors. Although such problems
have been dealt with for decades in machines used in particularly
vulnerable environments (such as in deep space), the usual solu-
tions of shielding, radiation hardening, or other advanced manu-
facturing techniques are very costly for general-purpose systems.

Redundancy at the architectural level, used today in specialized
database servers, will become more prevalent in future general-
purpose microprocessors as a means to detect, and recover from,
particle disturbances.

The majority of disturbances in today’s general-purpose micro-
processors occur in memory elements such as caches and main
memory DRAMs. Error detection and correction codes are com-
monly implemented to prevent failure in the event that a particle
strike changes the internal memory state. However, recent studies
indicate that the rate of potential soft errors in logic components
will rapidly increase in future technology generations [20], which
will call for more global solutions to the microprocessor soft error
problem. Unlike memories where error codes can be implemented
at a reasonably low cost, the usual solution for logic is to employ
some sort of replication. In the various thread-level redundancy
solutions that have been proposed in recent years (e.g., [8,16,17],
Simultaneous Multi-Threading (SMT) or Chip Multi-Processing
(CMP) is used to provide coarse-grain instruction replication in a
fairly straightforward manner, with a modest amount of additional
hardware support. In these approaches, the program is replicated
and the results (or a subset) from the multiple program copies
are compared to detect errors, and in some approaches, to correct
them. The main advantage of thread-level redundancy is that it
exploits the natural time or space redundancy inherent in an SMT
or CMP implementation. However, these approaches are largely
“power agnostic” in that, given a particular throughput require-
ment, replicating the program and running it on identical hard-
ware significantly increases the power consumption required to
complete a given set of tasks. Clearly, with power dissipation and
system robustness on an equal footing in future microprocessor
generations, new approaches must be devised that achieve the re-
quired level of soft error tolerance in a more power-aware fashion,
yet with very little impact on individual program performance.

In this paper, we propose an approach that leverages the re-
dundancy available in a CMP in a more power-efficient manner
than prior approaches. The key observation is that given appro-
priate hardware support, the task of verifying correct computation
can be parallelized and run on multiple processing cores set at a
slower, but more energy-efficient, operating point. CMPs are ex-
pected to have tens of cores in the future, and thus harnessing a
small subset to provide error tolerance when demanded by the ap-
plication may be a reasonable choice given a significant energy ef-
ficiency advantage. Parallelization of the verification process also
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permits operation at virtually an identical level of performance as
non-redundant computation, in contrast to prior approaches that
suffer non-trivial performance losses.

A key enabling factor to the effectiveness of our approach is
permitting the leading computation thread to run far ahead of the
verifying ones. This is necessary to create a large enough “ver-
ification workload” that can be efficiently divided up and run in
parallel on multiple cores, and to allow the memory latency to
be fully hidden by the prefetching generated by the lead thread.
The key challenge in creating such a large slack lies in the design
of an efficient memory buffering mechanism that holds a large
amount of unverified stores, and yet supports fast searching and
forwarding to ensure correct memory-based dependences. We
propose a novel memory buffering and disambiguation scheme
that uses the L1 data cache in a speculative fashion to hold unver-
ified stores. This removes the associative searching necessary in
the disambiguation process from the critical path, which in turn
significantly decouples the execution of the leading and the trail-
ing threads. Finally, we exploit the ability of the leading thread to
provide information to speed up the execution of the trailing ver-
ification thread. Overall, these various mechanisms permit fully
replicated operation with virtually zero slowdown and only an ad-
ditional 28% extra energy overhead compared to a processor with
no redundancy.

The rest of the paper is organized as follows. Section 2 dis-
cusses our approach at a high level and provides an overview of
the system, while Section 3 describes our proposed design in de-
tail. Section 4 presents the experimental methodology, while our
results are presented in Section 5. Related work is presented in
Section 6, and we conclude in Section 7.

2 Providing Flexible and Efficient
Thread-Level Redundancy

In thread-level redundancy (TLR), the entire program thread is
replicated and run under time or space redundancy. TLR provides
protection to the entire processor core, whereas other more local
techniques, such as the use of checksums with functional units, do
not protect control paths. Given that a large portion of the core is
devoted to control logic, protecting just the datapath or individual
local functions is insufficient. TLR is also compatible with the
multi-threaded approach, in the form of Chip Multi-Processing
(CMP), Simultaneous Multi-Threading (SMT), or a combination
of both, that is rapidly becoming dominant in microprocessors.

Nevertheless, the power costs of TLR are a major concern.
Replicating the entire thread (perhaps more than once, as in triple-
modular redundancy), comes at the high cost of increased power
dissipation at a time when power is perhaps the limiting factor in
achieving greater microprocessor performance levels.

Therefore, future TLR designs must be power-aware. Inflexi-
ble designs such as lock-stepping are inherently power inefficient.
A more decoupled approach which allows one thread to lead and
pass on information to optimize the trailing thread can greatly en-
hance power efficiency. Passing branch outcomes is already used
in some TLR designs (e.g., [11, 17]). Other examples include
the use of the results of long-latency instructions or scheduling
hints. We also envision a flexible design where an overall con-

trol mechanism can judiciously determine the optimal tradeoff be-
tween power, performance, and dependability at runtime. As one
example, otherwise idle cores can be harnessed to perform veri-
fication of the lead thread in parallel using a lower speed, more
energy-efficient, operating point.

Our approach to power-aware, thread-level fault tolerance re-
quires minor modifications to the processor core pipeline, and
consists of two major components: parallel verification and as-
sisted execution.

We exploit a widely-used strategy in energy-efficient comput-
ing: parallel processing. When processing is parallelized, the
same processing bandwidth can be achieved at a slower, more
energy-efficient operating point, for example through the use of
Dynamic Voltage Scaling (DVS). We exploit the fact that verifi-
cation is inherently deeply parallel, and divide the sequential in-
struction stream into a series of chunks to be verified in parallel.
Once all chunks are verified, the correctness of the entire stream is
instantly established. In practice, however, there are several chal-
lenges to implementing efficient parallel verification. Perhaps the
largest challenge is buffering and searching unchecked memory
stores: the performance requirement of a small, fast, buffer lim-
its the amount of unchecked instructions that can be parallelized.
We present a novel approach that uses the L1 data cache to facil-
itate disambiguation. This approach removes the buffer from the
speed-critical L1 hit path, thereby permitting a large buffer to be
used (to create a large “verification workload”) with virtually no
performance loss.

Another strategy for optimizing the verification process is as-
sisted execution, in which information acquired in some form
of pre-execution permits more efficient operation. Examples
of assisted execution include decoupled architectures [23], slip-
stream [26], and various “helper thread” implementations (e.g.,
[2, 6]). In a decoupled TLR design, assisted execution is straight-
forward: one thread runs ahead and executes the entire program
and provides information to the replicated trailing thread. Barring
transient errors, this information is always accurate. However, in
a realistic design, the key issue is the tradeoff between the benefit
of the information and the cost to gather it and communicate it. In
our design, we pass on branch information and L1 cache prefetch
hints.

3 Architectural Support
3.1 Verification and Recovery Overview
The architectural support for power-efficient redundant multi-
threading builds on a standard CMP with homogeneous processor
cores. Every computation thread is executed on a lead processor
and a verification copy of the thread is executed on one or more
checker processors (or checkers for short). The additional support
for redundant threading is largely off the critical timing path and
built into every core, permitting a single core with the same phys-
ical design to serve in the role of lead processor, checker, or by
itself in a non-redundant mode.

Since verification threads incur additional energy over non-
redundant execution, it is desirable to operate the checkers at a
more energy-efficient operating point to reduce this energy cost.
To achieve this, we use a lower supply voltage and/or increased
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threshold voltage (through body biasing) for the checkers. Con-
sequently, their operating frequency must be reduced. In order
for the checkers to keep up with the lead processor, we paral-
lelize the workload by dividing the dynamic instruction stream
into chunks of consecutive instructions, and distribute different
chunks to multiple checkers for parallel verification. This is done
by passing checkpoints – snapshots of architectural state gener-
ated by the lead processor – to the checkers. Given a checkpoint,
a checker can start execution in the same manner as loading a new
context after a context switch.

During execution, the checkers re-execute each chunk and ver-
ify the lead processor’s execution by comparing the address and
data of its stores to those of the lead processor. These stores are
buffered in the lead processor’s Post-Commit Buffer (PCB) before
the entire chunk is verified to be correct. Once the checker exe-
cutes its chunk in its entirety, checker compares its architectural
state to the next checkpoint generated by the lead processor. If a
discrepancy is found in the comparison of stores or between the
checkpoints, then a transient error is assumed to have occurred in
either the original or the redundant execution of the chunk. To re-
cover, we simply roll back to the starting checkpoint of the chunk.
This process is illustrated in Figure 1.

Chunk 2 Chunk 3Chunk 1

Redundant chunk 1
Error detected

Redundant chunk 2

Chunk 3

Reload checkpoint

Verifying checkpoint

Lead processor

Checker 1

Checker 2

Creating checkpoints

Figure 1. An example of two-way parallel verification
and recovery. The lead and checker threads are delayed by
a chunk as explained in Section 3.3.

In our system, a checkpoint only contains the content of the
architectural registers and a few microarchitectural pointers and
serves three purposes: to kick off redundant execution in a
checker, to detect errors, and to safe-keep state for roll-back re-
covery. As with other roll-back schemes, our mechanism can de-
tect and recover from infrequent transient errors. If there are hard-
ware defects or the error rate is extremely high, such an imple-
mentation may not guarantee forward progress. Special support
is needed to handle these cases.

In the next three subsections, we discuss the operation of the
lead processor, the checker, and the PCB. The added logic for
fault tolerance is shown in Figure 2. The circled numbers in this
figure correspond to those in the text that follows.

3.2 Operation of the Lead Processor
The lead processor operates very much like an ordinary proces-
sor: fetching, decoding, scheduling, and executing instructions.
However, before we allow the results of the computation to per-
manently affect the memory state, they need to be verified with
the independent computation performed by the checkers. Thus,
when stores are committed from the Store Queue (SQ) of the lead
processor, they are placed into the PCB in program order (②).

L2 Cache
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Processor 2
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Figure 2. Diagram showing the architectural support for
redundant threading.

Stores are not released until the entire chunk of instructions are
verified. As with the SQ, the PCB needs to be searched in order
to forward results as needed.

A buffer similar to the PCB is necessary whenever the lead and
checker threads do not retire stores in lock step but are permitted
to slip with respect to one another. Such a buffer is used in various
previously proposed fault-tolerant designs (e.g., [8]). However,
what is not addressed in these prior designs is the scalability issue
of the buffer. The PCB shares the serious issue of scalability with
its pre-commit counterpart, the SQ [19]. Every load is required
to check the SQ for memory disambiguation. If the queue is too
large, the associative search may take longer than accessing the
L1 data cache and thereby degrade performance. The addition of
the PCB further exacerbates this problem as it also needs to be
checked and its datapath merged with those of the cache and SQ.
Furthermore, with more than one checker operating in parallel,
the PCB needs to be large enough to permit the lead processor
to run far ahead to create a large enough verification workload
for the checkers. The delay in accessing such a large, associative
PCB can easily exceed that of an L1 data cache access.

To address this issue, we employ the L1 data cache to perform
most forwarding tasks as follows. When stores are committed, in
addition to placing them in the PCB, we allow them to update the
L1 data cache (②). This permits subsequent loads of the same
data to be obtained through checking the SQ and the L1 data
cache for matching addresses (①) just as in a conventional pro-
cessor, rather than searching through the larger and slower PCB.
Only in the infrequent case of an L1 miss is the PCB probed (③)
along with accessing the L2 cache. The results of these parallel
accesses are merged and written into the L1 cache (more details
in Section 3.4). In this sense, the PCB serves as a victim buffer.
Since stores written in the L1 data cache are yet to be verified,
they are not allowed to propagate to the L2 cache. Thus, when a
dirty cache line is replaced in the L1 data cache, it is not written
back to the L2 cache. Instead, it is simply discarded. In fact, in
this context, the very concept of dirty data is irrelevant since the
“write-back” is performed by the PCB after the correctness of the
data is verified (④). In essence, the store-load forwarding func-
tionality is largely removed from the PCB and assumed by the L1
data cache.
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Removing the PCB from the critical load-hit access path has
two main advantages. First, it permits very large PCBs to be
implemented without undue performance loss, and thus for the
lead processor to run far ahead of the checkers. Large verifica-
tion workloads can thus be created, parallelized, and run in a low
power mode on several checkers if desired. Second, it permits
a single processor to be constructed and used in non-redundant
mode, in redundant mode as the lead, and in redundant mode as
the checker, which simplifies the overall CMP design.

Each processor is equipped with a checkpoint buffer that main-
tains checkpoint state. Each entry of the buffer is a storage array
that captures the contents of the architectural registers including
the program counter. The lead processor periodically creates a
checkpoint by freezing the commit stage of the processor and
copying the architectural registers to the checkpoint buffer en-
try. In microarchitectures with a dedicated architectural register
file (e.g., Pentium III), this is straightforward. Otherwise, a retire-
ment map [9] is required, but this need not be updated every cycle.
Rather, it can be constructed on demand by retrieving the check-
point of the front-end map corresponding to the branch closest to
retirement, walking toward the head of the reorder buffer (contain-
ing the oldest instruction), and accordingly updating the mapping.
Of course, given the opportunity, we can create a checkpoint right
before a branch where we can get a ready-made map copy without
extra updates.

The entries in the checkpoint buffer are allocated and recycled
in FIFO order. When the execution up until the point of check-
point i has been verified, checkpoint i − 1 is no longer needed
and can be recycled. When a checker notifies the lead proces-
sor of an error in a particular chunk, the lead processor aborts
the current execution and rolls back to the prior checkpoint, and
instructs all associated checkers to abort as well. This rollback op-
eration includes flushing the pipeline and invalidating the L1 data
cache for the lead processor and all checkers. This invalidation
is necessary because the L1 data cache of the lead processor and
some of the checkers contain future (and thus incorrect) data with
respect to the point of roll back. Performing a full cache inval-
idation also simplifies corner-case handling for cache coherence
(Section 3.4). After the pipeline flush and cache invalidation, we
restore the appropriate checkpoint and restart execution. Addi-
tional microarchitectural information, such as the write pointer to
the PCB which points to the entry for the next committed store,
is also restored from the checkpoint. As we demonstrate in Sec-
tion 5, assuming that errors are relatively infrequent, full cache
invalidation has little overall performance impact.

As the lead processor usually runs far ahead of the checkers,
it can serve as a helper thread to assist the checkers in executing
more efficiently, for example, by reducing their branch mispredic-
tions and cache misses. One natural effect of the deep decoupling
between the threads is that the lead thread creates prefetches into
the shared L2 cache for the checkers. Therefore, in terms of re-
ducing cache misses, we only focus on L1 misses. We record
the lead processor miss addresses for every chunk of instructions
in the Execution Info Queue (EIQ). When the starting checkpoint
is dispatched to a checker, it includes this miss address array so
that the checker can prefetch from these addresses. For branches,
similar to prior approaches [16,17], we communicate branch out-

comes from the lead processor to the checkers also via the EIQ
(⑥).

3.3 Operation of the Checkers
As noted earlier, the lead and checker cores share the same physi-
cal design, and operate slightly differently. When a core is used as
a checker, it performs redundant execution from checkpoints gen-
erated by the lead processor. It runs in the same address space as
the lead processor, and thus the TLB and other aspects of address
translation are handled much like running a parallel program. The
content of the registers is copied from the checkpoint using the
same functionality that handles a rollback. The only difference
is that the checkpoint is fetched from a different processor’s (the
lead processor’s) checkpoint buffer (⑤).

Starting from the checkpoint, the checker fetches and executes
instructions as in a conventional processor. The branch predic-
tor, however, is disabled and branch predictions are provided by
the lead processor through the EIQ (⑥). The branch destination
addresses could be supplied from the buffer as well, but would
require much inter-processor communication bandwidth and a
larger branch buffer. Thus an alternative is keep branch target
buffer (BTB) operational and use it to obtain target addresses. In
Section 5, we study the effect of different alternatives.

In addition to the more obvious benefits of reducing mis-
speculation and branch predictor energy, passing branch out-
comes to the checker also enables other optimizations. For ex-
ample, the resulting performance improvement can permit the
disabling of aggressive techniques such as load speculation and
dynamic memory disambiguation (through the LSQ) to further in-
crease energy-efficiency for the same level of performance. Mem-
ory instructions can be simply issued in program order and stores
can be written into the L1 cache upon execution (rather than at
commit time). We examine these options in Section 5.

When a store is written to the L1 cache of a checker, its address
and data are also sent to the PCB. If both the address and data
match the result from the lead processor, the store entry in the
PCB is marked verified (otherwise a rollback is initiated). Note
that if a checker and the lead processor execute the chunk at the
same time, a checker may actually run ahead of the lead proces-
sor and try to verify against an invalid PCB entry. To avoid circuit
complications to handle such events, we simply delay dispatching
a chunk for verification until the lead processor has finished the
entire chunk. This delay between the lead and checker processors
is shown in Figure 1. This intentional slack also helps to hide the
communication latency in transferring the checkpoint and infor-
mation in the EIQ.

Load instructions operate on the checker in largely the same
way as on the lead processor. First the L1 cache and the SQ are
searched. If there is a miss, in parallel with the L2 cache access,
the checker searches the PCB of the lead processor (instead of its
own PCB) to make appropriate updates (⑦). When a cache block
is replaced from the checker’s L1 cache, it is also discarded.

Finally, when the checker commits all instructions in the cur-
rent chunk, it compares the architectural register file with the next
checkpoint. If all the registers (including the program counter)
match and there has been no mismatch in the PCB, then the entire
chunk has been correctly verified. If this is the oldest chunk, the
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Figure 3. The different logical time frames from the different cores’ perspectives. At any moment, a checker’s logical time is
in the “past” of the lead processor’s time. Correspondingly, the checkers only see part of the memory state in the PCB (shown in
different shades) in the backward search. A forward search starts from the next section of the PCB (corresponding to the next chunk
of instructions).

checkpoint representing the starting state of this chunk can be re-
cycled. If there is a mismatch in the register contents, a signal is
sent to the lead processor to roll back.

3.4 Operation of the PCB
The PCB enables rapid fault recovery, but more importantly, it is
essential to the efficient creation of multiple memory images for
the redundant threads. Consider the example shown in Figure 3.
When the lead processor is forging ahead executing chunk 6, the
checkers are verifying earlier chunks. At the same moment of
wall clock time, the checkers are actually “replaying the history”
of the lead processor, and the shared memory system needs to
provide the memory image as the lead processor saw it at the time
it executed the same instruction. In other words, when a load
executes on a checker, the combination of the SQ, the PCB, and
the memory hierarchy should capture the effect of all stores prior
to the load and none thereafter. With the use of the PCB, only the
common part of the different images is stored in the L2 cache and
the rest of the memory subsystem. The most up-to-date image
is constructed on-the-fly based on which processor initiates the
request. The processor’s identity determines which logical time
pointer of “now” to use.

Backward search To enhance efficiency, all cores use their
private L1 cache to store data consistent with their view of the
memory image. This makes it possible to only access the PCB
when there is a miss. Thus, cache lines must contain the most
up-to-date data from that processor’s point of view. Therefore,
when a cache line is filled, it is obtained from the L2 cache and
the PCB is searched to make appropriate updates. This is called
a backward search (see Figure 3). Note that to get an up-to-date
cache line, the most recent writes to all words in the line need to
be acquired in the backward search. While this can be done at the
circuit level so that a search to PCB returns multiple words, we

choose a simpler approach that only requires the circuit to return
one word at a time: When we search the PCB for the word being
loaded, we can simultaneously detect whether the PCB contains
other words of the same line. If so, we increment the word ad-
dress (with wrap around) and probe the PCB multiple times until
we cover the entire line. This, of course, delays the availability of
the cache line except the critical word.

Alternatively, to further simplify the circuit, we can limit the
forwarding to the word being loaded only. Thus, if during the
search, we detect the presence of other words in the same line,
we only allow the caching of that word. This requires the support
of per-word valid bits in the cache. Without this support, we will
need to disable the caching of the entire line. Both options (espe-
cially the latter) increase the cache miss rate and thus the number
of L2 accesses and PCB searches, and hence energy consumption.
As we will show in Section 5, with the support of per-word valid
bits, forwarding the loaded word only is a viable solution where
the energy and performance degradation is acceptable. However,
disabling the caching of the line completely increases the access
frequency and therefore the contention in PCB so much that the
performance and energy degradation becomes unacceptable.

Forward search Parallelizing the verification workload onto
multiple checkers creates a peculiar cache coherence issue. When
a chunk of instructions are being verified in one checker, other
checkers verifying the same program will not execute the stores
in that chunk and therefore may have stale data in the L1 data
cache when executing a subsequent chunk. Thus, when a checker
skips a chunk, we need to ensure that its L1 cache is brought up-
to-date with respect to the checker’s new logical time. Since by
accessing the PCB we can always obtain a cache line that is up-
to-date with respect to the requester’s current logic time, a naive
solution to this stale data problem is to force every single load
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from the checkers to consult the PCB. Alternatively, we can inval-
idate the entire cache when a checker receives a non-consecutive
chunk for verification. However, these solutions are clearly in-
efficient in that they introduce significant global communication
between cores. Another straightforward solution involves using a
state machine to walk through the sections of the PCB that corre-
spond to the skipped chunks, to update all necessary cache lines
before verifying a chunk. However, this is unlikely to be an attrac-
tive solution since such data structure traversal is usually ineffi-
cient to implement in hardware, and the resulted traffic burst may
be detrimental to system performance. Finally, without modifi-
cations, the conventional cache coherence mechanism would not
solve this special coherence issue as the L1 caches of different
cores contain data of different times of the same thread.

To solve this problem, we implement a selective invalidation
mechanism. When a chunk is skipped, since only the cache lines
modified in that chunk need to be updated, we only invalidate
those lines. To do so, we extend the support for the conventional
invalidation-based cache coherence mechanism. The first time in
a chunk the lead processor writes to a cache line (to determine
which write to a cache line is the first in a chunk, we flash-clear
all the dirty bits when the lead processor creates a checkpoint and
starts another chunk), it sends out a quasi-invalidation message
containing the cache line address and the current chunk ID to
the checkers. Upon receiving the message, the checkers mark
that cache line, if found in the L1, as volatile (this requires a
volatile bit for every cache line), and remember the chunk ID.
When a checker finishes checking one chunk and receives a non-
consecutive chunk, it invalidates all the volatile cache lines asso-
ciated with the IDs of the skipped chunks. Clearly, remembering
the chunk IDs requires a lot of storage per cache line as each line
can be modified in multiple chunks and all the IDs have to be re-
membered. In a degenerated implementation of this scheme, we
do not differentiate between chunk IDs and thus when a checker
skips a chunk, all volatile lines are invalidated. This scheme, how-
ever, can increase the L1 miss rate of the checkers and thus the
frequency of L2 and PCB accesses. Indeed, when the workload is
evenly distributed across two checkers, all the cache lines touched
by the lead processor are purged out of both checkers’ L1 cache.

Considering that two checkers verifying alternate chunks is a
very common pattern, we choose a design that is only slightly
more complex and reduces unnecessary invalidations. We assign
a different color to odd-numbered chunks and even-numbered
chunks (say, red and black). The quasi-invalidation messages sent
include one bit encoding the current chunk color. Two bits are
added to each cache line to record the color of the message. When
a checker skips, say, a black chunk, only the volatile lines with the
black bit set (including those with both red and black bit set) need
to be invalidated.

Marking the line volatile when receiving a quasi-invalidation
message alone is not enough as the line may be delivered to the
cache after the message. Therefore, when a checker handles an
L1 miss, it needs to obtain the volatility (and color) information.
A cache line is volatile if any store to that line exists in the future
chunks in the PCB. Thus, in addition to the backward search, we
also search the stores belonging to the future chunks in the PCB. If
there is a store sharing the same cache line address with the load,

we add the volatile bit and the color information of the matching
chunks in the reply. We call this the forward search (Figure 3).

Note that the forward and backward search are orthogonal:
even if the backward search returns no match, the forward search
can have a match, making the cache line volatile. Also, a volatile
line is not to be confused with a non-cacheable line. A volatile
line is cacheable (and cached) until the checker receives a non-
consecutive chunk to verify. Finally, the support for forward
search is quite simple, requiring only a cache line address match
in the future chunks.

Due to soft errors, the address used in the quasi-invalidation
message may be incorrect. This may cause a wrong line to be
invalidated by the end of the chunk leaving the truly volatile line
still in the cache. Eventually, this may cause a mismatch in the re-
sult comparison and trigger a rollback. Without removing the line
from the cache, simple re-execution will only cause endless roll-
backs. Hence, as mentioned before, when a rollback happens, we
invalidate the entire L1 cache for all involved cores even though
the data in the caches are not necessarily corrupted.

Access filtering Since the PCB is large and accessed in an as-
sociative manner, each access takes quite a bit of time and energy
and thus reducing unnecessary PCB accesses is desirable. Our
empirical findings show that a very significant portion of PCB
searches return no hit, especially for the lead processor: on aver-
age, no more than 0.3% of lead processor-initiated searches return
a match. Thus, intuitively, a quick membership test similar to that
used in [19] can filter out searches that are guaranteed not to find
a match in the PCB and thus reduce its access frequency.

In [19], a hash table is maintained to keep track of the number
of elements in the associative queue that have a particular address
hash. Any search can be avoided if the address hashes into an
entry with a zero counter. However, using counters requires the
handling of counter overflow [19], a complexity we want to avoid.
We thus adopt a “coarse-grain” presence tracking method. We use
one bit to represent the presence of an address hash in one section
of the PCB, regardless of the exact number of instances that have
the same hash in the section. This way, a single bit is enough
and we will never have an overflow. Since one bit represents one
section of the PCB, with K sections, each entry of our hash table
is thus a presence bit vector of K bits. When a store is sent to
the PCB, the cache line address is hashed to retrieve the bit vector
and the bit corresponding to the current PCB head section is set
to one. When any core has an L1 miss and requests a search
of the PCB, the cache line address of the request is hashed to
retrieve the entire bit vector, if none of the bits is set, the access to
the PCB sections can be avoided. (Even if the bit vector is non-
zero, the zero elements in the vector can still be used to “gate”
the corresponding sections to save energy in the search.) Finally,
when an instruction chunk has been verified and all the stores in
the corresponding PCB section are committed to L2, we clear the
bit representing that PCB section for each hash entry. To reduce
“false-sharing” of hash entries, we choose a prime number to be
the size of the hash table (257 in this paper).

3.5 Discussion
In terms of fault coverage, our approach can detect and recover
from transient errors in the processor core, including the entire

6



data path and the control logic. We assume that the baseline CMP
incorporates error correction codes (ECC) for the on-chip caches
and main memory, as is common today. Our redundant execution
strategy detects and recovers from L1 cache errors as well, which
obviates the need for L1 cache ECC bits.

In our approach, checkpointing, buffering, and comparisons
are largely performed outside of the core pipeline and the criti-
cal timing paths. For example, no comparison is performed in the
pipeline after executing each instruction. This permits the added
design complexity to be managed more easily and enables the
same fault-tolerance support to be integrated into different pro-
cessor implementations.

Handling of special operations There are certain types of
operations that require special handling, for instance, instructions
with global side effects such as I/O instructions and memory bar-
riers. An I/O operation, even a load, can have side effects. Thus,
a non-cacheable load can not be simply repeated for fault toler-
ance, and therefore requires the following: (a) instructions be-
fore the non-cacheable load must all be ensured to be correct to
eliminate the need to re-execute the load; and (b) the result of
the non-cacheable load must be buffered and fed to the trailing
thread. While (b) is straightforward to implement, (a) requires
forcing the lead processor to wait for the checker to catch up be-
fore executing the non-cacheable load. Support for memory bar-
riers also requires stalling the lead processor. Clearly, for an I/O
bound application or parallel workload, additional optimizations
are required to make the design efficient. We leave these topics
as future work and focus on single-threaded compute-intensive
applications in this study.

4 Experimental Setup
To evaluate the proposed architectural support for fault tolerance,
we simulate a CMP with one core running as the lead processor
and various configurations of checkers. Our simulator is a mod-
ified version of the SimpleScalar [5] 3.0b tool set simulating the
Alpha AXP ISA. The simulator is modified to model a CMP with
the structures necessary for inter-core communication. Table 1
provides the parameters for a single core of the CMP. Our experi-
ments are performed using the SPEC CPU2000 benchmark suite.
For each application, we simulate 100 million committed instruc-
tions after proper fast-forwarding [18].

To evaluate energy consumption, we model both dynamic
and leakage energy in detail. We use Wattch [3] to estimate
the dynamic energy component. Our leakage energy model is
temperature-dependent and is based on predictive SPICE circuit
simulations for 45nm technology using BSIM3 [4]. Device pa-
rameters such as Vth are obtained based on 2003 ITRS projec-
tions for the year 2010, which forecasts a 45nm technology node
with a clock frequency of 15GHz [7]. Temperature modeling is
carried out with HotSpot [21]. We use the Compaq Alpha 21364
as a model for our proposed floor plan, microarchitecture, and
power consumption. We model latency, occupancy, and energy
consumption of the PCB in detail.

Fetch Queue Size 16 instructions
Fetch/Dispatch/Commit width 4 / 4 / 12
Branch Predictor 2048 entry BTB, bimodal and 2-

level adaptive
Return Address Stack 32 entries
Branch Mispred. Lat. 12 cycles
Int. Units 3 ALU, 1 Mult
FP Units 3 ALU, 1 Mult
Reg. File 128 Int, 128 FP
Issue Queue 32 Int, 32 FP
LSQ / ROB 64 entries / 256 entries
L1 I/D cache 32 KB, 32B line, 2 way, 2 cycles
L2 Cache (shared) 8 MB, 32 way, 128B line, 20 cycles
TLB (I/D each) 128 entries, 8KB, fully associative
Memory latency 200 cycles
Post-Commit Buffer 128 entries per chunk, 8 chunks, 1

port, 8 cycles per search
Chunk size 2048 instructions or 128 stores

whichever comes first
Membership hash table 257 entries, 8 bits per entry
Checkpoint creation/loading 16 cycles (4 registers/cycle)

Table 1. Simulation parameters.

5 Evaluation
5.1 Main Results
Except in special-purpose environments, a fault-tolerant system
spends the vast majority of time in fault-free situations. For ex-
ample, at sea level, cosmic particle flux is around 1/cm2 · s [28].
Even the most pessimistic estimation would translate this to no
more than a few potential upsets per second. In terms of micro-
processor clock cycles, this constitutes an exceedingly rare event.
Therefore, the experimental analysis mainly focuses on the per-
formance and energy characteristics of the design under fault-free
situations.

We first evaluate the performance and energy impact of the
redundant execution. We use two checkers running at half fre-
quency to verify the computation run on the lead processor. In
this part of the evaluation, whenever we reduce the frequency we
also lower the supply voltage. To put the results into perspec-
tive, we show other configurations as well: using one checker
at full frequency, using one checker at half frequency, the fault-
tolerance mechanism proposed by Ray et al. (labeled Ray in this
section) [15], which protects a smaller portion of the core, and a
CRT-like design [8,11]. In all cases, the lead processor is running
at full frequency. We normalize the result to that of a single, non-
redundant core running at full frequency. In Figure 4, we show
the performance when turning on the fault-tolerance mechanism,
while in Figure 5, we show the energy overhead.

From these figures, two observations can be made. First, in
terms of performance, the degradation with two half-speed check-
ers is imperceptible. This is expected: although running at half-
speed, the combined verification bandwidth of the two checkers
is higher than the lead processor’s bandwidth. Thus the lead pro-
cessor rarely needs to stall because PCB sections run out. The
only slowdown is caused by stalls due to checkpoint creation, oc-
casional resource contention (e.g., PCB or cache port), and cache
conflicts. We also see that if the verification mechanism can not
keep up (such as when running a single half-speed checker), not
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Figure 4. Performance impact of different fault-tolerant configurations.
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Figure 5. Energy overhead of different fault-tolerant configurations.

only performance degrades significantly, but the energy cost due
to fault tolerance is also high.

Second, our design indeed improves energy efficiency of fault
tolerance significantly without sacrificing performance. When us-
ing one full-speed checker, our system is very similar to a CRT
microarchitecture. At about 66%, the energy overhead is similar
to that of CRT as well. In contrast, when using two half-speed
checkers, the overhead reduces to about 28% on average. (If we
discount the energy contribution of the L2 cache, the overheads
become about 110% and 40% for CRT and using two half-speed
checkers, respectively.) In fact, this overhead of using two half-
speed checkers is even lower than that of [15] which has a lower
degree of redundancy. To further understand this result, we break
down the energy consumption into different components in Fig-
ure 6. The normalized energy consumption is broken down into
leakage and dynamic contributions from the L2 cache, the lead
processor, and the checker(s). For clarity, we only show the av-
erage of integer and floating-point applications, as the variation
from application to application is moderate.

Clearly, the two half-speed checkers introduce only a moder-
ate amount of energy overhead. When we compare the dynamic
energy component in different configurations, we see that, thanks
to the reduced supply voltage, the combined energy consumption
of two half-speed checkers is much less than that of a full-speed
checker. The checkers’ energy overhead is also lower than the
increase in the core energy consumption in Ray [15] as the ver-
ification energy in that approach is also consumed on the more
power-hungry full-speed processor and the extra execution time
also increases the leakage and clock energy.

Overhead for rollbacks To estimate the impact of fault recov-
ery, we compare two executions: one fault-free, the other with pe-
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Figure 6. Breakdown of energy consumption. The con-
figuration order of the bars is the same as in prior figures.

riodically injected errors. The execution time difference is caused
by the rollbacks and the slowdown due to whole-cache invalida-
tions. We injected errors at two different frequencies, once every
2 million instructions and once every 10 million. As expected,
there is no significant difference in the per-incident cost of a roll-
back. The cost ranges from 1370 to 4801 cycles with an aver-
age of about 2800 cycles. Out of these cycles, about 1500 cycles
on average is the delay in detecting the error. The remainder is
largely the slowdown due to cache invalidation. At our assumed
clock frequency, this cost of recovery translates to less than 200ns
per incident. Thus, even if transient errors occur as frequently as
once per milli-second, the overhead due to rollback is still mini-
mal (less than 0.2%).
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5.2 Design Options and Considerations
We now discuss some of the options and considerations in the de-
sign of the architectural support. For brevity, in the quantitative
analyses, we only show the average results of the integer applica-
tions and those of the floating-point applications.

Effectiveness of assisted execution The lead processor
can pass on various information to assist the checkers to be more
efficient. Among the choices are branch outcomes (with or with-
out destination), and addresses for L1 prefetch. In Figure 7, we
show the performance impact of these forms of assistance. In
the figure, the effective IPC of the checker is that when exclud-
ing idle periods when there is no verification workload. This is a
useful metric since although in our experiments the speed of the
checkers is not the bottleneck, in a realistic scenario, the system
may multiplex different verification workloads onto the same set
of checkers, in which case the performance of the checkers may
be very important. We normalize the results to a system where no
information mentioned above is passed from the lead processor to
the checker.

We see that with assisted execution, the checkers can be up
to 35% faster on average. Information about branch outcomes
is indeed very useful. Its availability improves the effective IPC
by about 10%. L1 prefetch information is not as useful, improv-
ing about only 1% of the effective IPC, although it requires little
bandwidth to communicate that information. Branch destination
information is very helpful, especially for integer applications,
improving checker performance by another 20% . However, com-
municating that information can require a lot of bandwidth as well
as energy. Finally, the impact of assisted execution on overall pro-
gram IPC is very small, ranging from 1% to 5%. This indicates
that indeed the two checkers are not the bottleneck in this config-
uration and thus have processing power to spare.

Further reduction of complexity Given that the assistance
from the lead processor already removes a lot of performance de-
grading factors, we could envision further shutting off some ag-
gressive speculation mechanisms such as load speculation in the
checkers (Section 3.3). We studied the effect of these options and
other complexity reduction measures. We show their impact on
the checker’s effective IPC and the overall program IPC in Fig-
ure 8-(a) and that on energy in Figure 8-(b). In all cases, we nor-
malize the results to those of our default configuration without
any complexity reduction measure.
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Figure 8. Performance (a) and energy (b) impact of con-
figurations with lower complexity in executing verification
workload.

First, we see that less aggressive checkers using in-order load
and store or in-order execution do not save energy. These mea-
sures have a significant performance impact. Total program slow-
down ranges from 6% to 30% and is thus clearly inefficient
energy-wise. We note that in our system the checkers still execute
program chunks in a conventional way and experience all kinds of
stalls due to dependences. This is very different from the DIVA
design [1] where the main core passes the input and result of ev-
ery instruction to the in-order checker and there is no dependence
between instructions in the checker.

Second, as discussed in Section 3.4, to simplify the hardware,
we can disable the caching of a line when the backward search
detects the presence of multiple words in the cache line. However,
we found that this design can result in pathological performance
degradation: the disabling of caching can significantly increase
the L1 miss rate for the checkers, which in turn increases PCB
access frequency. In our system, the PCB has only a single search
port and therefore quickly becomes a performance bottleneck. In
some applications, the whole-program slowdown can be as high
as 400%. With per-word valid bit support, however, we can at
least cache the word being loaded. For the applications studied,
the energy and performance impact of this option is negligible
(less than 1%).

Third, we compare alternatives for the scheduling strategy of
verification chunks. Our default strategy is a locality-conscious
strategy that attempts to maximize locality by scheduling consec-
utive chunks to one checker and not invoking a second checker
unless the PCB is more than half full. We stop a checker when
there is only one chunk of instructions pending verification. Al-
ternatively, we can simply send out chunks in a round-robin fash-
ion. We can see from the figure, the difference between locality-
conscious and round-robin scheduling is small. The difference in
program-wide performance or energy consumption is only a few
percent. However, the difference in effective IPC averages about
7% and can be as high as 13% in individual applications.

In summary, under our settings, none of the complexity reduc-
ing techniques achieves a net reduction in energy consumption.
Using the default processor configuration with a more sophisti-
cated locality-conscious scheduling strategy and an aggressively
applied assisted execution model is the most energy-efficient ap-
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Figure 9. Energy impact of using different voltage set-
tings for checkers at half frequency.

proach. With per-word valid bit support in the L1 cache, we can
simplify the PCB forwarding logic with minimal performance and
energy impact.

Adjusting voltages When we reduce the operating frequency
of the checkers, we can use various voltage adjustments to in-
crease energy efficiency: scaling down the supply voltage, which
primarily reduces dynamic energy; using body biasing to increase
the threshold voltage, which reduces only the leakage energy; and
a combination of both for optimal energy savings. In the follow-
ing experiment, we fix the operation of the checkers to half fre-
quency and apply three different voltage configurations. First, we
use body biasing to change Vth to 0.525V. Second, we follow
Martin et al. and jointly adapt Vth and Vdd [10]. In our setup, this
leads to a Vth of 0.31V and a Vdd of 0.788V. Here, we limit Vbs

to -1V so as to avoid increasing junction leakage and the chance
of junction breakdown. In our third experiment, we do not change
the Vdd of the checkers but increase the Vth to 0.31V. Since the
frequency is not changed, only the energy consumption of the
checkers is affected. Figure 9 illustrates the overall energy im-
pact relative to our default configuration, which only scales Vdd

to 0.625V.

We see that indeed, joint Vth and Vdd adjustment is more effec-
tive, further reducing the energy consumption, although the mag-
nitude of the benefit is not significant, since the energy overhead
is already low (28%). We can also see that if the degree of body
biasing is limited, a joint adjustment may not yield any benefit.
In our experiment, it is better to just change the supply voltage.
Finally, if we only use body biasing (to avoid the necessity of
voltage converters between the lead processor and checkers), the
additional energy overhead, at 2-4%, is tolerable.

6 Related Work
Thread-level redundancy is not a new concept. Many commer-
cial fault-tolerant computers such as the IBM z900 [22] have used
fully duplicated hardware operating in lockstep. Recently more
decoupled forms of TLR have been proposed [8,11,16,17,27]. In
this prior work, the energy cost of TLR is not addressed. Given
the rising need for energy-efficient computation, our approach is
to exploit the inherent parallel nature of verification by perform-
ing this task across multiple checkers with more energy-efficient
configurations. This requires a much higher degree of decoupling
between the leading and trailing threads than prior work. While
these prior TLR designs are limited by the number of uncommit-

ted stores, our speculative L1 cache and PCB provide an efficient
memory buffering mechanism that can hold a large amount of un-
verified stores and enable fast search and data forwarding. This
allows the slack between the lead and checkers to be far greater
than in these prior proposals, which creates a large enough ver-
ification workload to operate two parallel checkers at half speed
without undue performance loss.

Other efforts provide error detection and recovery through ded-
icated architectural support embedded in the processor pipeline.
Austin’s DIVA approach uses a second in-order checker unit
which re-executes instructions coming from the out-of-order ex-
ecution engine [1]. DIVA exploits the verification parallelism at
a much finer granularity: at the instruction level. Ray et al. use
the superscalar execution mechanisms to execute two copies of
the same instruction to detect and correct errors primarily in the
data path [15]. Parashar et al. employ an instruction reuse buffer
in order to reduce the performance cost of Ray’s approach [12].
Smolens et al. evaluate resource sharing in such instruction-level
redundancy approaches [24]. Our approach, by contrast provides
core-level redundancy in a way that is most similar to chip-level
redundant threading (CRT) [11] and similar approaches [8], in
which a multi-core processor can be harnessed for fault tolerant
operation with additional hardware support, largely outside of the
core pipeline. Our work is also largely orthogonal to efforts of
creating globally-consistent checkpoint state for roll-back in mul-
tiprocessors running parallel programs [13, 25].

Purser et al. evaluated alternative memory hierarchy designs of
Slipstream [14]. In one design, they also allow the A-stream’s
speculative data to be committed to L1 cache and discarded when
replaced. Without a PCB-like structure in their design, this re-
sults in incorrect data in the L1 cache when a displaced dirty line
is re-accessed and would cause the A-stream to manifest a mis-
speculation. Their insight is that the trailing R-stream is not far
behind and therefore the amount of incorrect data is small and can
be tolerated since the cost of a recovery in Slipstream is still rea-
sonable. With a much more deeply-decoupled execution and at
a cost of close to 3000 cycles per roll-back, our system can not
efficiently tolerate such speculation. Our buffering mechanism is
different in that our L1 state is speculative only with respect to
soft errors. Without soft errors, it is completely non-speculative.

Finally, master/slave speculative parallelization also uses the
model of a main thread (master) followed by “checkers” (slaves)
each executing a subset of the program [29]. The purpose is to
speed up speculative parallelization and the master executes a
compiler-generated speculative version of the program.

7 Conclusions
In the near future, system reliability will quickly become a ma-
jor design concern and has to be addressed at both the circuit and
architecture levels as a first-class design constraint. Redundant
execution is a straightforward and effective mechanism for both
fault detection and recovery. However, dedicated redundancy is
not only inflexible but also energy-inefficient. As power con-
sumption is already the limiting factor in high-end processors,
energy-efficient fault-tolerance can no longer be regarded as an
oxymoron, but as a challenge that has to be met.

We propose a design that matches the multiprocessing capa-
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bilities of modern microprocessors with the inherent parallelism
in correctness verification. Our approach requires modest archi-
tectural support, uses identical processing elements, and lever-
ages these capabilities to provide a flexible platform for redun-
dant execution. Fault tolerance can be provided on demand
based on the criticality of applications and delivered in an energy-
efficient manner, by exploiting the natural parallelism of verifica-
tion. More importantly, the new mechanisms that we introduce to
deeply decouple the lead and checker operations permits several
checkers running at a slower, lower energy operating point to be
employed without undue performance loss. Through a detailed
evaluation, we demonstrate how the use of two half-frequency
cores for redundant execution achieves efficiency that rivals that
of approaches with more limited protection.
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