
Integrating Adaptive On-Chip Storage Structures for Reduced Dynamic Power
�

Steve Dropsho
�

, Alper Buyuktosunoglu
�

, Rajeev Balasubramonian
�

,
David H. Albonesi

�

, Sandhya Dwarkadas
�

, Greg Semeraro
�

,
Grigorios Magklis

�

, and Michael L. Scott
�

�

Department of Computer Science
�

Department of Electrical and Computer Engineering
University of Rochester

Abstract
Energy efficiency in microarchitectures has become a

necessity. Significant dynamic energy savings can be real-
ized for adaptive storage structures such as caches, issue
queues, and register files by disabling unnecessary storage
resources. Prior studies have analyzed individual struc-
tures and their control. A common theme to these studies
is exploration of the configuration space and use of sys-
tem IPC as feedback to guide reconfiguration. However,
when multiple structures adapt in concert, the number of
possible configurations increases dramatically, and assign-
ing causal effects to IPC change becomes problematic. To
overcome this issue, we introduce designs that are reconfig-
ured solely on local behavior. We introduce a novel cache
design that permits direct calculation of efficient configura-
tions. For buffer and queue structures, limited histogram-
ming permits precise resizing control. When applying these
techniques we show energy savings of up to 70% on the in-
dividual structures, and savings averaging 30% overall for
the portion of energy attributed to these structures with an
average of 2.1% performance degradation.

1 Introduction
The philosophy of high performance microprocessor

design has been to push for ever greater performance as
the primary goal. Energy consumption used to be a sec-
ondary consideration, but with today’s smaller and much
faster designs energy has become one of the critical sys-
tem design parameters. There are two basic approaches to
reducing energy. The first approach is static: redesign ba-
sic hardware with energy efficient features that are always
enabled. A complementary approach is to permit dynamic
resource allocation and attempt to match the minimal re-
source requirements of an application. This paper explores

�
This work was supported in part by NSF grants EIA-9972881,

EIA-0080124, CCR–9702466, CCR–9701915, CCR–9811929, CCR-
9988361, and CCR–9705594; by DARPA/ITO under AFRL contract
F29601-00-K-0182; by an IBM Faculty Partnership Award; and by ex-
ternal research grants from Intel and DEC/Compaq.

the integration of multiple adaptive structures within a high
performance general purpose microprocessor.

To achieve high performance across a wide range of
applications, key structures in the microarchitecture are
generally sized for worst-case applications within technol-
ogy constraints (area and cycle time). In particular, the
caches and the instruction scheduling structures consume a
considerable portion of the chip’s dynamic energy (20-35%
and 55%, respectively, for the Alpha 21264 [21]). Since ap-
plications have differing needs, resources are often under-
utilized and can be reduced in size in order to save energy
with minimal impact on performance; though, the particu-
lar resources which can be reduced depend on the appli-
cation. Unfortunately, with multiple adaptive structures,
changes to one may affect the behavior of another, either
positively or negatively. One approach to minimizing the
complexity of controlling multiple adaptive structures is to
provide designs in which only local information is required
for good configuration decisions, i.e., greedy optimization.
Such components can then be used as the basis for simpli-
fied meta-control for global optimization.

In this paper, we demonstrate that multiple indepen-
dent adaptive caches and adaptive scheduling logic can use
local information for effective control. We introduce a new
adaptive cache structure called an accounting cache. Prior
adaptive caches use changes in system metrics to initiate
a search of the configuration space. Invariably, the sys-
tem IPC is used as a fail-safe measure of the appropriate-
ness of the cache configuration. In contrast, the accounting
cache design leverages LRU state in set associative caches
to directly calculate ideal configurations for performance
and/or energy and eliminate search from the control pro-
cess. We demonstrate that three instances of the account-
ing cache, the L1 instruction and data caches and the L2
unified cache, operate simultaneously and independently to
save energy with minimal performance impact.

For the instruction scheduling logic, we incorporate a
buffer design from [6] and extend a control strategy from
[17] to show that all buffers involved with scheduling can
save energy using this dynamic design. The buffer design
is space efficient and electrically isolates partitions of the

buffer so they can be selectively turned off. The control
strategy estimates buffer resource requirements through
limited histogramming of the occupancy statistics. The in-
tuition is that a full buffer stalls the pipeline, so the buffer
should be sized with just enough partitions that the over-
flow rate is within a specified margin. The histogram infor-
mation provides the controller with precise information on
the minimum size that meets this criterion. The controllers
for all structures use a tolerance setting that dictates how
aggressively to tradeoff additional delay for lower energy.
We evaluate the potential for reduced energy consumption
with the adaptive caches and instruction scheduling logic
separately and in concert. At the middle tolerance setting,
we show energy savings of up to 70% on individual struc-
tures with an average savings of 34% when all structures
are combined. This energy savings is achieved with an av-
erage performance degradation of 2.1%.

Most related work has analyzed one or two individual
structures and their control. Albonesi [1] described a cache
organization — selective cache ways — that provided the
ability to reduce energy consumption by restricting the
number of ways accessed on a cache access. Balasubra-
monian et al. [2] expanded this work with a controllable
cache and TLB, where both the number of ways and sets
of the cache could be set in a limited manner through ex-
ploration. Dhodapkar et al. [9] also rely on exploration for
reconfiguring the instruction cache but reduces the search
overhead with a method to identify and restore previously
selected configurations. Powell et al. [18] describe the de-
sign of an energy-efficient instruction cache whose access
mode is dynamically reconfigurable. Buyuktosunoglu et
al. [6] describe the design and control of an adaptive issue
queue which uses IPC as feedback to guide reconfiguration
choices. Ghose et al. [17] expand this work to improve the
control algorithm and apply it to the reorder buffer in ad-
dition to the issue queue. We extend the work further to
include the physical register files as adaptive structures and
incorporate the use of utilization variance rather than aver-
ages to control reconfiguration decisions. We discuss the
special control needs for this extension.

The rest of the paper is organized as follows. Section 2
describes the overall architecture, highlighting all the adap-
tive storage structures that we control. Section 3 describes
the control algorithm and hardware additions to the design
of the adaptive instruction and data caches (the account-
ing cache design). Section 4 describes the design and con-
trol of the adaptive buffer structures — the register file, is-
sue queue, and reorder buffer — using limited histogram-
ming. Section 5 describes our experimental methodology.
We present our evaluation of the potential benefits of the
adaptive structures in isolation as well as in concert in Sec-
tions 6 to 8. Finally, we compare our design to related work
in Section 9 and conclude in Section 10.

2 System overview

Figure 1 shows a schematic of the microarchitecture
used in this study. The architecture is representative of
a typical out-of-order superscalar design. The adaptable

L1
Icache ROB

IIQ

IPREG

FIQ

FPREG

L2
Unified
Cache

LSQFetchQpredict
branch rename

map

Int FUs

FP FUs

L1
Dcache

Figure 1. The Base Microarchitecture: Adaptable
components are shaded

components are the shaded structures. The set of adaptable
caches includes the L1 instruction and data caches and the
L2 unified cache. All three caches are instantiations of an
accounting cache. The set of adaptable storage buffers in-
cludes the re-order buffer (ROB), load/store queue (LSQ),
integer issue queue (IIQ), floating point issue queue (FIQ),
the integer physical register file (IPREG), and the floating
point register file (FPREG). The buffers are implemented
as RAM structures that are resized by disabling partitions,
or groups of entries.

3 The accounting cache design

The accounting cache is a reconfigurable cache de-
sign with the unique feature that the performance of ev-
ery possible configuration can be directly calculated from
data recorded each interval. This is regardless of the ac-
tual configuration of the cache for the interval. Recording
the required data is inexpensive and done via a handful of
counters. The system designer specifies one configuration
as the base configuration and the amount of performance
degradation that can be tolerated in exchange for lower en-
ergy consumption. From these constraints, the accounting
cache tracks what the performance of the base cache con-
figuration would have been and reconfigures to the lowest
energy configuration that performs within the specified per-
formance degradation limit. This section presents the ac-
cess protocol to the cache, the additional LRU information
required to do the performance tracking, and the perfor-
mance and energy cost equations.

3.1 Access protocol

The accounting cache design is based on the resizable
Selective Ways Cache proposed by Albonesi [1]. Resiz-
ing is accomplished by disabling ways in a set-associative
cache, which reduces energy because fewer ways are acti-
vated on a read. Figure 2 shows the data portion of a 4-way
set associative cache with ways 2 and 3 disabled (shaded).
The tag array can be similarly partitioned (not shown).

The access protocol is shown in Figure 2 and is as fol-
lows. The initial access to the cache is the primary access
or the � access. A hit with this access (hitA) returns the
data. On a miss with the � access, another access called

primary
read (miss)

C 2

C 1 Write data from L2 into primary LRU
Move primary LRU to secondary
Discard/writeback secondary LRU

Read from primary (miss)

Read from secondary (miss)

A

B

:
:

:

:

:

C 3

Increment miss count:D

Way 0 Way 1 Way 2 Way 3

mru[0] mru[1] mru[3]mru[2]

read (miss)
secondary

L2 Cache
Data from

MRU

MRU

MRU

MRU

Misses

counters
MRU stats

3

2

1

0

Increment
A B

C 2

C 1

C 3

D

Figure 2. Accounting cache miss on read

the secondary access, or � access, is made to the remain-
ing ways. A secondary access stalls subsequent accesses
to the primary partition. A hit in the secondary (hitB) re-
turns the data but also swaps the block with one from the
primary. An access that misses in both the primary and
secondary graduates up to the next level in the cache hier-
archy. The returned data on a miss is placed in the primary
and the displaced block is swapped into the secondary. The
displaced block in the secondary is written back if it is dirty.
The cache maintains full LRU information for true LRU re-
placement. We discuss the LRU details in Section 3.2.

The tag array for the cache can be partitioned identi-
cally as the cache or the tags can be partitioned indepen-
dently. For practical considerations, the tags are limited to
two configurations: 1) the partitioning is identical to that
of the cache (A-B tags), or 2) all tag ways are accessed
in the primary group (full tags). The full tags option re-
quires additional tag energy on the primary access (all tag
arrays are activated) but cache misses are detected without
reading the secondary data cache (which has a high energy
cost). Thus, application phases with lots of cache misses
will benefit from the full tags configuration while phases
with few cache misses will prefer the A-B tag option. Ad-
ditionally, the access to the data may be done serially or in
parallel to the tags. As one would expect, serially access-
ing the tag and data will be of most value in the secondary
cache but, surprisingly, our results show that the this op-
tion sometimes can be of value in the primary cache. Ta-
ble 1 lists the configuration parameters. As an example, the
base configuration of the level 1 data cache in a processor
is � -way, full tags, and parallel tag and data. The three
parameters are orthogonal to each other, so a 4-way cache
would have ���������	��
��
�� configurations (with a � -way
data primary both full and A-B tag options are identical).

Table 1. Cache Configuration Parameters
Parameter Values
Ways (primary) [1,N]
Tags � full, A-B �
Tag/Data Access order � parallel, serial �

3.2 LRU operation and implementation

3.2.1 LRU space requirements

In general, designers refrain from using true LRU replace-
ment due to the additional bits to maintain the LRU state.
Simplified algorithms that perform nearly as well as true
LRU track only the most recently used way to not replace
or use a round robin policy. Both of these policies require
only ������������� bits where � is the associativity. True LRU,
on the other hand, requires ����������� bits per tag to maintain
a full ordering of the sets for a total of ������� � � ��� bits. A
4-way set-associative LRU cache requires 8 bits vs only 2
bits for the other policies, and an 8-way requires 24 ver-
sus 3 bits. To put the additional resource requirements into
context, in this study we use a 4-way 64KB level-1 data
cache with 64 byte lines. In a machine with a 48-bit physi-
cal address, the tag for such a cache is 34 bits and the data
512 bits. LRU state adds 2 additional bits per tag or 5.9% to
the tag RAM, but only 0.4% additional space when includ-
ing the data RAM. We accurately account for the energy
overhead due to this additional state.

3.2.2 LRU operation

Next-state transitions for true LRU are easily implemented
using � counters of �����!��� ��� bits each. Assume an 8-way
set-associative cache as an example. Starting with the fol-
lowing as the LRU state of the tags for the current cache
access, assume a hit in way 4.

Way ID
1 2 3 4 5 6 7 8

LRU State before access
0 1 2 3 4 5 6 7

LRU State after hit on way 4
1 2 3 0 4 5 6 7

Upon a hit, all LRU states with a smaller count, i.e.,
more recently accessed, increment in parallel (ways 1-3).
The tag that hit has its LRU state set to zero (way 4). If the
LRU state is a higher count then it remains the same. The
updated LRU state is written back to the LRU RAM. This
update activity occurs for any replacement policy except
random, which does not require any state.

3.2.3 Exploiting LRU information

In the following, it simplifies the discussion if we express
the LRU order with its dual, the most-recently-used (MRU)
ordering. We denote the most recently used way at a par-
ticular cache index as "$#&%(' , the next most recently used as
"$#�%*) , and so on. Thus, the least recently used way in an

� -way set associative cache is also "$#�%����*) (the subscript
numbering starts at zero).

An LRU replacement policy provides considerable in-
formation if we notice that all hits to the most recently used
set, " #&% ' , would be hits in a direct-mapped cache. Simi-
larly, hits to either "$#&% ' or "$#&%) would hit in a 2-way set
associative cache. In general, a hit to the � ��� most recently
accessed block " #&%	� would be a hit in a cache having at
least ��

 ways. Counting how many hits occur for each
"$#�% state provides sufficient information to reconstruct the
hit ratio for any partitioning of the cache. The cost is one
counter per " #&% state and one for misses; e.g., a 4-way
cache requires a total of only 5 counters to record the activ-
ity of the whole cache. For any cache of practical size, the
additional energy due to this small set of counters is about
3 orders of magnitude smaller than a cache read access. We
account for this (nominal) additional energy in our simula-
tions.

3.3 Performance and energy cost equations

For any configuration, we can directly calculate the to-
tal delays in accessing the cache and the energy in the fol-
lowing manner. Assume a given partitioning having � ways
in the primary and � �� ways in the secondary. Let us de-
fine the number of hits to the primary partition as ����������� ��� ,
to the secondary as ����������� ��� , and misses as ������! "� (we
need no configuration parameter here because a miss will
miss in all configurations). Assume the operation of the
cache is such that every access first tries the � partition,
then the � partition on a primary miss, and finally the next
level of the memory hierarchy on a true miss. From the
MRU counts we can directly calculate how many � and �
hits would occur for any configuration given the same ac-
cess pattern. We can use this information in simple cost
functions to directly calculate the delay or energy for the
set of accesses. The cost functions are given in Table 2.

Let us denote the primary, secondary, and miss RAM
data access delays as #�$� , #�$� , and #�$% , and the correspond-
ing tag access latencies as &'$� and &($� (there is no corre-
sponding tag access delay for a miss), using the superscript
as a mnemonic for delay. We also include a bus delay
variable)!*�� $ to account for non-RAM access overhead in
transfers (bus transfer delay). The energies are likewise la-
beled #�+� , #�+� , #,+% , &(+� , and &-+� . The parameters &-$.�/1020 and
&(+.�/1020 are the delay and energy of the tags in the full config-
uration. Note that each individual cache will have its own
values for these factors. In Table 2, Equations 5a-f detail
the costs for delay and energy for a cache configured using
parallel tag/data and A-B tags. Using A-B tags means that
a second access to the secondary partition must take place
on a miss in the primary. In contrast, using full tags on the
primary access eliminates the access to the secondary on
a cache miss. In Equation 5a, the delay on a hit in � is
the bus transfer costs)!*�� $ plus the access time to the data
RAM with the (faster) tag access time hidden behind the
data access. The energy is that of the data and tag RAMs
configured with � ways. On a hit in the secondary, the de-
lay includes the access to � and then � . Since blocks must

be swapped on a hit to the secondary, the energy includes
these writes to the data and tag RAMs. Each write is to
only one way and has energy #�+3547698 �:#�+) for the data RAM
and &(+3547698��;&(+) for the tag RAM. The remaining equations
in Table 2 should be self explanatory. Not shown are the
equations for the configuration combinations parallel/full
and serial/A-B as they are easily derived from the above
examples.

Table 2. Accounting cache cost functions
General cost functions

1. <>=@?�A@BDC,EGF H9I>JLK1MD?�NPOQF H9I,RTS	OUF H9I
2. <>=@?�A@BDC,VWF H9I>JLK1MX?YN(Z[F H9I\R]S^Z[F H9I
3. <>=@?�A@B C,_ JL`]MXN9N9a-NbRTS^c
4. <>=@?�A@BDCUF H9I>Jd<>="?�A"BXC�EQF H9I1ef<g="?�A"BXC�VGF H9I1ef<g="?�A"BXC�_

Delay cost of parallel tag/data with A-B tags

5a. Delay h hit iWOQF HjI>Jfk(l1NPmQeon mO
5b. Energy p O F H9IgJqn@rO etsurO
5c. Delay v hit i�Z[F H9I>JwkPl�N m etn mO eon m Z
5d. Energy pbZ[F H9I>JyxYn rO ets rO�z e�x�n r Z eos rZbzeWx�n r{9|�}(~ eos r{9|�}-~ z
5e. Delay miss i c F H9I>JfkPl�N m eon mO eon m Z eon m c
5f. Energy p c F H9IgJ�pbZGF HjI (see 5d)

Delay cost of serial tag/data with full tags

6a. Delay h or v hit i O��(Z F H9I�Jwk(l�N m eos m���P� � etn m �
6b. Energy p O��-Z F HjI�Jqn r � ets r�Y�P� �
6c. Delay miss i�c�F H9I>J�s m�Y�P� � e�n m c
6d. Energy p c F H9IgJ�s r���P� � e�x�n r{9|�}(~ e�s r{9|�}-~ z

3.4 Accounting and configuration selection

Our goal is to improve energy efficiency with minimal
degradation in CPI relative to a specified base system. The
strategy is to minimize energy with the constraint that the
portion of the memory access time attributable to the cache
is within a specified percentage of the delay that the same
accesses would have in the base system. The base con-
figuration defines the latency to which the dynamic cache
must compare. The performance degradation percentage is
called the tolerance setting. For this study, we use toler-
ance values of 1.5%, 6.2%, and 25%, which correspond to
the fractions 1/64, 1/16, and 1/4, respectively.

Configurations are selected by gathering MRU (or
equivalently, LRU) statistics for an interval and then calcu-
lating the delay and energy costs. A hardware timer triggers
an interrupt to run a small, fast software cache analysis rou-
tine. A PAL-code routine like the Alpha 21264 [8] supports
does not have to save register state so the overhead is min-
imal. The analysis routine reads the MRU register values
containing how often blocks were accessed with the corre-
sponding MRU state, and calculates the delay and energy
values for all possible cache configurations. For example, if
our MRU counts are "$#&% ' ��� , "$#&%) ��� , " #&% � �
1�\� ,
and "$#&%7� ��� , both a 3- and 4-way cache would have the
same performance since all the "$#�% � accesses would hit,
but the controller selects a 3-way configuration because the
energy cost of the accesses is lower. The MRU state coun-
ters are cleared by the handler before returning. In our sim-
ulations we use an interval of 100,000 instructions between

reconfigurations. We estimate a highly tuned handler will
be on the order of 100 instructions and have a high degree
of parallelism (high IPC). The reconfiguration is accom-
plished by writing a value to a system register. The energy
and delay of the handler is the cost of reconfiguration. We
do not include the interrupt handler in our simulations.

We call the delay that the base cache configuration
would have incurred for the interval #������ + . We add #������ +
to an accumulating delay counter

� ���	� + . This counter
maintains the total delay cost for all prior accesses for a
base cache configuration. A second counter

� ��
 ��� �� ag-
gregates the calculated delays # �	
 ��� �� per interval for the
actual cache configurations used. Cache configurations are
selected to maintain the relationship relative to a tolerance
setting � of

� ��
 ��� ���� � ���	� + � �

�� � , while minimizing
energy usage. The difference � �
,
���� � � ���	� + � � �	
 ��� �� �
is a cache’s delay account value � $. The account builds
savings (credits) that the controller can spend on additional
delay in exchange for lower energy. In addition, a simi-
lar energy account ��+ is kept as a fail-safe in the event of
pathological behavior (discussed below).

To select the next configuration, we assume the pattern
of accesses in the next interval will be identical to that of
the prior one. From this assumption, we estimate the per-
missible delay for the next interval that is within the toler-
ance setting, #,� +�� � � #����	� + ���
U
����7
�� $ (this includes
delay credits, or possibly debits, accumulated in prior inter-
vals via � $). If the quantity � $
 # ���	� + ��� � �
then # � +�� � � # ���	� + and the controller is forced to
select the fastest possible configuration to make up the
debit. Otherwise, the configuration with the lowest en-
ergy is selected whose estimated delay cost is within
����� + � �
f
�����
�� $.

A key feature of the cache accounts is that they per-
mit the controller to amortize costs or credits across many
intervals. Thus, cache selection can be aggressive and per-
formance glitches due to phase shifts in access patterns will
be corrected. As we discuss in our results, in the case of
over-performance the extra accumulated margin permits a
more aggressive energy saving configuration to be selected
periodically, even though the per interval delay for the en-
ergy saving configuration is above the per interval toler-
ance. The delay account ��$ also helps at phase shifts. The
controller does not need to explicitly detect phases. A sig-
nificant change in the access pattern will manifest itself in
a different ordering of configurations based on their total
delay costs for the new access pattern. The delay account
ensures that the additional delay incurred during a phase
shift is eventually paid for in future configurations. The
account permits the controller to atone for guessing wrong
at that interval. In the event of pathological, rapid phase
shifts when the prior interval is a poor estimate of the next,
the delay and/or energy accounts for the cache will become
negative. A negative account forces the controller to de-
fault to the baseline configuration because that configura-
tion guarantees zero difference in performance. Over suc-
cessive intervals, credits accrued due to the tolerance factor
will eventually repay the debit and make the accounts sol-
vent once again. This important feature limits the perfor-

mance and energy impact of pathological behavior to that
of the baseline performance, but also permits reconfigura-
tions again when (and if) that erratic behavior ends.

The accounting cache design requires a set associative
organization in which all of the ways are accessible. This
condition is sufficient to simulate how larger cache config-
urations would have performed on any pattern of accesses.
With the LRU (MRU) statistics, reconfiguration decisions
are independent of the system-wide IPC effects. This is
in sharp contrast to exploration-based cache reconfigura-
tion schemes [1, 2, 9] and is the primary advantage of the
accounting cache design when combined with other dy-
namic structures, which can affect the IPC. The account-
ing cache design as presented here requires a cache to be
set-associative. However, we believe other dynamic en-
ergy saving schemes (e.g., [2, 18]) can incorporate the ba-
sic accounting concept to enhance their efficiency or, at a
minimum, to detect and prevent pathological CPI degrada-
tions arising from mismatches between the cache configu-
rations and the application (e.g., possibly due to rapid phase
changes in the application).

Finally, the delay calculations are only estimates of the
effects on the processor’s CPI. There are multiple reasons
why: memory accesses account for only a percentage of an
application’s execution time; the memory hierarchy may
have slack relative to the other parts of the processor so an
increase in delay may not significantly increase CPI; and
parallelism between the caches, particularly between the
level-1 instruction and data caches, decouples the effects of
delays as well. Selecting cost parameters that assume max-
imum parallelism ensures that the calculated CPI degrada-
tion is an upper bound on the true CPI degradation due to
cache reconfigurations. A future direction of study is on
how to tighten this bound on the CPI effects by accounting
for the above situations more accurately.

4 The adaptive buffer design

Buffers throughout the processor store instructions in
order to decouple timing dependencies between the stages,
as well as to increase the effective window of available in-
structions in order to exploit instruction-level parallelism.
Our microarchitecture (Figure 1) has individual queues for
the separate types of functional units. Specifically, we
modified Simplescalar to split its centralized RUU into a
set of buffers: a reorder buffer (ROB), one integer issue
queue (IIQ), one floating point issue queue (FIQ), and one
load/store queue (LSQ). In addition, there are the separate
physical integer register file (IPREG) and the floating point
physical register file (FPREG). In this study, we assume
all buffers are implemented as RAMs, with associative ad-
dressing capabilities in the IIQ, FIQ, and LSQ.

To save energy, each buffer’s RAM is partitioned by
bit-line segmentation. Bit-line segmentation electrically
isolates regions of the RAM to reduce dynamic energy on
accesses [6]. Figure 3 shows how bit-line segmentation re-
duces the access energy by reducing the capacitance on the
bit-lines. Only the enabled partitions expend dynamic en-
ergy [6]. An alternative RAM design based on banking is

D
is

ab
le

d
D

is
ab

le
d

RAM Partition

RAM Partition

RAM Partition

RAM Partition

Figure 3. Resizable buffer with 2 partitions diabled

used in [17]. The underlying structure of the RAM does not
impact the control. In both designs, the electrically optimal
partitioning was found to be the same: 16 entry partitions
for the ROB and 8 entry partitions for all other buffers.

4.1 IIQ, FIQ, LSQ, and ROB resizing

When downsizing a buffer we always turn off the parti-
tions in the order of highest address to lowest, and resize up
in the reverse order. Restricting the resizing in this manner
simplifies the circuitry [6]. However, before downsizing
the IIQ or FIQ, we must wait until existing instructions in
the partitions to be turned off have issued. Furthermore,
we must restrict instructions from being dispatched into
these partitions. Additional care must be taken in resiz-
ing the ROB and LSQ because of their circular FIFO-like
structure. The physical implementation uses a head and
tail pointer with wrap-around at the buffer limit. Before
resizing, we must ensure the head and tail pointers do not
straddle the partition to be disabled otherwise buffered in-
structions could be caught in the disabled partition [17].

4.2 Register rename operation

Register renaming [16] performs logical (architec-
tural) to physical register mappings, thereby eliminating
write-after-read and write-after-write dependences when
there are sufficient physical registers. In a processor such as
IBM’s Power4, which can support up to 200 instructions in
flight through the pipeline simultaneously [20], register re-
naming is critical for exploiting the processor’s superscalar
capabilities. The approach to register renaming proposed
by [16] utilizes the pool of registers more efficiently than
alternative designs that maintain a separate pool of archi-
tected registers in addition to a register set for renaming.
In this design, upon instruction commit the architected reg-
ister’s contents are updated. A design with a single com-
mon pool of registers offers better opportunity to turn off
more physical registers. However, since the physical regis-
ters remain mapped until the logical register is over-written,
before buffer resizing can occur, all active registers in the

partition to be disabled must be freed by moving their con-
tents to different physical registers that will remain active
(the logical registers are the same).

The rename logic complicates resizing in comparison
to the issue queues. In the integer register file, for example,
when a load is fetched, the rename logic selects a register
from the free list and records the logical to physical map-
ping in the map table. A mapped physical register becomes
free when the following are satisfied:

1. The instruction writing the value has been committed.

2. All in-flight instructions using the value have read it.

3. The physical register has been unmapped by a subse-
quent write to the same logical register.

Until all three conditions are satisfied, a physical regis-
ter cannot be freed. It may be possible that a logical regis-
ter is used early in the program and never assigned again by
the compiler. The physical register mapped to that logical
register can never be freed. The implication to dynamically
resizing the register file is that we cannot guarantee a parti-
tion of the register file RAM will ever have all its physical
registers unmapped. Because of this issue, simply disabling
partitions as is done in the issue queues will not work. This
condition would seem to greatly diminish the likelihood of
ever being able to downsize the register files.

To turn off a partition in the register file requires the
following: remove the registers to be disabled from the free
list; move the contents of active registers to be disabled to
other registers that will remain enabled, and remove the
newly freed registers to be disabled from the free list.

This additional complexity for resizing the register
files necessitates a software handler. To move a logical
register to a new physical register, the software handler is-
sues a move instruction from the logical register back to it-
self: mov r7, r7. The normal operation of the rename logic
will move the contents into a new physical register from
the free list and unmap the physical register in the partition
to be disabled. The map table contains the information for
logical to physical register mappings so the software han-
dler could have direct access to this information. Turning
a partition back on is then just a matter of adding the par-
tition’s registers back onto the free list. Because the RAM
is disabled from the top (highest numbered register) down
(lowest), an ID can be set and any register with an address
greater than the ID is considered removed from the free list
and cannot be selected by the renaming logic.

4.3 Reconfiguration control

The controller is an extension of the design in [17]. In
that work, the buffer is sampled at periodic intervals and
the number of entries are accumulated in a counter. At the
end of the interval, a simple shift of the count provides the
average buffer occupancy. The buffer is sized to the num-
ber of partitions that will hold the average occupancy. An
overflow counter ensures against a buffer being sized too

small. Every cycle the buffer is full increments the over-
flow counter. When the count reaches a threshold it triggers
an immediate upsizing of one partition.

Our implementation uses a different emphasis for the
design. The intuition is that we want to size the buffer such
that overflows occur with a frequency below a set threshold
during the interval. In a finely partitioned buffer, choosing
the average occupancy size means that half of the time we
would then actually require a size greater than the average.
We take the position that the upper tail of the occupancy
distribution is the proper metric. The proper sizing is that
which selects a sufficient number of partitions such that the
portion of the distribution that would extend beyond the re-
sized buffer (i.e., the overflows) is less than the threshold.
We histogram the occupancy at the granularity of the parti-
tions, � entries per partition. In particular, for a buffer with
four partitions each with � elements, there are three coun-
ters. The first counter � ' increments when the occupancy
� is greater than or equal to � , the next counter �*) incre-
ments when ��� ��� , the third counter increments when
������� . The counters are associated logically with the
buffer and track the true number of entries occupied and
not the actual locations occupied in each partition (i.e., the
histogram is a virtual compaction of the queue). Since we
are only concerned if the overflow threshold would have
been exceeded, the counters saturate at the overflow limit.
The saturation reduces the number of cycles the counter
is active. We downsize the buffer to the partition whose
counter has not saturated. The highest numbered histogram
counter of the active partitions simultaneously acts as the
overflow counter. We also immediately upsize when the
overflow threshold is reached. We use the same three tol-
erance settings as in the cache simulations: 1.5% (1/64),
6.2% (1/16), and 25% (1/4). The overflow threshold is the
tolerance fraction of the interval period, e.g., 6.2% of 8K
cycles.

5 Evaluation methodology

Our evaluation methodology uses Simplescalar [5]
for the Alpha AXP instruction set and the Wattch power
model [4]. We simulate an out-of-order superscalar pro-
cessor similar to the Alpha 21264 in that there are separate
issue queues for the different types of functional units. Ta-
ble 3 lists the microarchitectural parameters and Table 4
lists the benchmark suite.

We model the memory hierarchy in detail to account
for all actions and side-effects of the configurable cache
operation, including the swapping of cache blocks between
primary and secondary partitions. The TLBs are not config-
urable in this study. Our timing analysis reveals that serial
accesses have a latency that is approximately 1.6 that of a
parallel access. We use this multiplier to set the access time
for a cache configured to serially access tag and data, thus,
the access latency of the L1 caches increases to 4 cycles
from 2 in serial tag/data mode and the L2 access latency
increases to 19 from 12 cycles.

Table 3. Architectural parameters
Fetch queue 8 entries
Branch predictor comb. of bimodal and 2-level gshare;

bimodal/Gshare Level 1/2 entries-
2048, 1024 (hist. 10), 4096 (global);
Combining pred. entries - 1024;
RAS entries - 32; BTB - 4096 R 2-way

Branch mispred. latency 10 cycles
Fetch, decode, width 4 instructions
Reorder buffer 128 entries
Integer issue 32 entries
Floating point issue 32 entries
Physical INT regs 96
Physical FP regs 96
Load entries 32 entries
Store entries 32 entries
Instruction TLB 256 (64 R 4-way) 8K pages, 30 cycle miss
Data TLB 512 (128 R 4-way) 8K pages, 30 cycle miss
Memory latency 80 cycles
L1 I-cache 64 KB, 4-way, 64B line, 2 cycle
L1 D-cache 64 KB, 4-way, 64B line, 2 cycle
L2 unified 2 MB 8-way, 128B line, 12 cycle

6 Accounting cache results

Due to space constraints, we condense the results for
the benchmark suite into Table 5 using arithmetic averages.
We summarize the energy and delay data in Figure 4. In Ta-
ble 5 the first line lists the thresholds used. The thresholds
are 1.5%, 6.2%, and 25%, which approximately correspond
to 1/64, 1/16, and 1/4 (so the controller can use shift as a
fast divide). The results compare the adaptable cache to a
baseline configuration using the maximum number of ways
with parallel tag/data access. We also compare against a
base L2 with serial tag/data access.

6.1 Instruction cache

The instruction cache data is the first group of data in
Table 5. The energy saving is 54.3% at 1.5% and 58.6%
at tolerances of 6.2% and 25%. The reason for the large
savings is clear from the breakdown of the average time
spent in each of the cache configuration parameters. The
most revealing metric is that the average number of ways
is no larger than 1.2 (out of 4) across the tolerance levels.
Thus, the minimum configuration of a direct-mapped 16
KB instruction cache is generally sufficient for the bench-
marks and the controller correctly configures the cache to
use minimum energy. An exception is vortex which uses
2.6 ways on average at 1.5% tolerance saving only 25%
energy. At the lowest tolerance setting, the full tags config-
uration is selected during phases of cache misses to elim-
inate the delay for unnecessary accesses to the secondary
and keep within tolerance.

We selected a relatively large 64 KB cache that is sim-
ilar in size to the Alpha 21264 [15]. An drastically smaller
cache would have been needed for the benchmarks to stress
it. We feel that the data cache results showcase the con-
troller’s abilities appropriately. We report the instruction
cache energy contribution so its effects can be judged rel-
ative to the total energy. The row labeled Account Used
is the portion of the extra cycle account actually used by
the controller. Even at the highest tolerance of 25% degra-

Table 4. Benchmarks
Benchmark Suite Datasets Instruction Window 64KB 4-way DL1 miss rate

em3d Olden 20K nodes, 20 iters 1000M-1100M 23%
health Olden 4 levels, 1000 iters 80M-140M 18%
mst Olden 2K nodes 500M-600M 2%

compress SPEC95 INT ref 1900M-2100M 11%
gcc SPEC95 INT ref 1650M-1750M 6%

parser SPEC2K INT ref 2000M-2200M 3%
perlbmk SPEC2K INT ref 2000M-2200M 1%

twolf SPEC2K INT ref 1000M-1200M 5%
vortex SPEC2K INT ref 2000M-2200M 1%

vpr SPEC2K INT ref 2000M-2200M 2%
applu SPEC95 FP ref 200M-400M 3%

art SPEC2K FP ref 300M-500M 22%
swim SPEC2K FP ref 1000M-1200M 8%
wave5 SPEC95 FP ref 200M-400M 1%

dation, the controller only needed to withdraw less than
1/25th of the accounts value.

6.2 Data cache

The level-1 data cache has more interesting behavior.
As the tolerance level is increased, the energy savings also
increase from 29.6% up to 45.2% due to adjustments in
all three configuration parameters. The A-B tag option is
selected over 30% of the time at the 6.2% and 25% tol-
erance settings. Somewhat surprisingly, the serial tag/data
option is sometimes selected (2.9%) at the aggressive tol-
erance setting. The most energy savings, however, come
from reducing the ways from 4 ways to nearly a direct-
mapped cache, 1.3 ways on average at the 6.2% tolerance
level. Notice that there are very few hits in the secondary
(B) partition. The controller will always select configura-
tions to keep these accesses to a minimum.

6.3 L2 unified cache (parallel tag/data)

The first set of data for the L2 cache is relative to a high
performance base configuration using parallel tag and data
access. We can see that the controller aggressively uses the
A-B and serial configuration options to save energy and is
less aggressive at decreasing the number of ways (to 6.1
out of 8). The reason is that serializing the tag and data
accesses is, in general, the single most effective means of
decreasing energy consumption. The large memory access
latency of 80 cycles provides a significant amount of credit
to the L2 cache account that it can then trade for serializing
the tags and data. The L2 controller uses over half of its
tolerance limit (16% out of 25%), but this results in only a
3.9% average slowdown. As mentioned previously, a cycle
slowdown in the memory hierarchy usually does not trans-
late to a similar slowdown in the pipeline.

6.4 L2 unified cache (serial tag/data)

In Table 5, configuring for serial tag/data results in a
small net loss of energy relative to the serial tag/data base
configuration. The reason is due to the large difference be-
tween the tag energy and that of a data block access. In
this architecture, reading all the tags requires only about
1/4th the energy of reading one data block. Recall that on

a miss blocks are swapped between the primary and sec-
ondary partitions. With such a disparity between energies,
any additional data cache activity swamps any energy sav-
ings from partitioning the tags. The controller correctly
detects this state of affairs and defaults to the base config-
uration. However, in this configuration the extra LRU bits
of the accounting cache require additional energy not in the
baseline cache and this results in a small net loss of 1.1%
across the benchmarks.

A conclusion one might draw is that parallel tag/data
access is not an attractive option. This conclusion is not
necessarily correct. Table 6 lists the CPI values for each
of the benchmarks for both parallel tag/data access and se-
rial tag/data access for our base system without adaptable
caches. The ratio of the serial vs parallel base performance
is shown in the last row. Most applications show little
performance impact. However, compress and health show
11% and 30%, respectively. Thus, some applications can
run significantly faster if the L2 cache can be optionally
configured for parallel tag/data as well as serial tag/data. If
the additional performance is important then the dynamic
cache can realize energy savings of 49.1% in the L2 for
compress at the small 1.5% delay tolerance setting (and
only 0.3% actual slowdown). For fair comparison, the se-
rial tag/data option offers an 85% energy savings (about
twice) but incurs the 11% slowdown.

Figure 4 graphs the relative energy savings for the dif-
ferent cache levels and also the aggregate relative perfor-
mance degradation. The first three groups of bars are for
the individual cache levels. The fourth set is the relative
energy savings for the complete cache hierarchy assuming
an L2 with parallel tag/data access. In the third grouping,
the lighter portionis the relative energy savings excluding
the instruction cache (thus, the savings are relative to the
data and L2 base energy). The dark portion is the additional
savings if the instruction cache is included. The rightmost
set of bars is the system performance degradation for each
of the tolerance settings that was reported in Table 5. Se-
lecting the modest tolerance setting of 6.2% results in over
40% energy savings relative to the caches, but incurs less
than a maximum of 2.8% performance degradation across
all the benchmarks with the average at 1.1%.

The average performance degradations are well below
the tolerance setting. While the conservative design of the
controller is such that this relationship always holds, feed-

Table 6. Base Configuration CPI: Parallel vs Serial L2 Tag/Data
em3d health mst compress gcc parser perlbmk

Parallel 1.2270 1.7912 0.3170 0.6074 0.6173 0.6328 0.6247
Serial 1.2720 2.3252 0.3174 0.6742 0.6182 0.6731 0.6372
S/P Ratio 1.0367 1.2981 1.0013 1.1100 1.0015 1.0637 1.0200

twolf vortex vpr applu art swim wave5
Parallel 0.6513 0.4319 0.7001 0.5263 0.8426 0.6311 0.3488
Serial 0.7108 0.4646 0.7143 0.5266 0.8756 0.6342 0.3495
S/P Ratio 1.0914 1.0757 1.0203 1.0006 1.0392 1.0049 1.0020

Table 5. Energy, delay, and percent of time a
configuration option is selected, averaged across
benchmarks

Averages Across Benchmarks
Threshold 1.5 % 6.2 % 25.0 %
Delay Increase 0.3 % 1.1 % 3.9 %

Instruction L1 Cache
Energy Savings 54.3 % 58.6 % 58.6 %
Tags full 5.4 % 0.1 % 0.1 %

A-B 94.6 % 99.9 % 99.9 %
Data parallel 100.0 % 100.0 % 100.0 %

serial 0.0 % 0.0 % 0.0 %
Ways Ave 1.2 1.0 1.0
Hits B 0.2 % 0.4 % 0.4 %
Account Used 0.5 % 0.9 % 0.9 %

Data L1 Cache
Energy Savings 29.6 % 42.1 % 45.2 %
Tags full 89.7 % 68.3 % 61.8 %

A-B 10.3 % 31.7 % 38.2 %
Data parallel 99.9 % 99.7 % 97.1 %

serial 0.1 % 0.3 % 2.9 %
Ways Ave 2.0 1.3 1.2
Hits B 0.7 % 2.0 % 2.2 %
Account Used 1.3 % 4.4 % 6.6 %

Unified L2 Cache (Parallel Tag/Data Base)
Energy Savings 25.5 % 41.1 % 63.0 %
Tags full 74.9 % 67.9 % 60.6 %

A-B 25.1 % 32.1 % 39.4 %
Data parallel 94.7 % 66.9 % 32.9 %

serial 5.3 % 33.1 % 67.1 %
Ways Ave 5.5 6.0 6.1
Hits B 1.9 % 1.8 % 1.0 %
Account Used 1.5 % 6.0 % 16.0 %

Unified L2 Cache (Serial Tag/Data Base)
Energy Savings -1.1 % -1.1 % -1.1 %
Tags full 67.5 % 67.8 % 67.8 %

A-B 32.5 % 32.2 % 32.2 %
Data parallel 0.0 % 0.0 % 0.0 %

serial 100.0 % 100.0 % 100.0 %
Ways Ave 6.7 6.7 6.7
Hits B 0.3 % 0.3 % 0.3 %
Account Used 0.5 % 0.5 % 0.5 %

back to tighten this bound would in improve the energy
savings. We are exploring how to measure the actual delay
costs as they relate to the instruction commit rate. Informa-
tion from critical loads [10, 19] may help.

Due to the mismatch between reward and penalty in a
serial tag/data access cache, the adaptive accounting cache
design is most appropriate when a cache offers the paral-
lel tag/data access option. As an extended policy, a meta-
controller could activate the full LRU state and the adapt-
able capabilities of an L2 cache if high performance is re-
quired, but revert back to the simpler replacement policy (to

20%

30%

40%

50%

60%

70%

80%

90%

10%

1.5 6.2 25 1.5 6.2 25 1.5 6.2 25 1.5 6.2 25 1.5 6.2 25

(parallel L2)
Hierarchy
Full Cache

100%

Latency Tolerance

2%

4%

6%

8%

10%

12%

14%

16%

18%

20%
PERFORMANCE

R
elative Perform

ance D
egradation

R
el

at
iv

e
E

ne
rg

y
Sa

vi
ng

s

ENERGY

D1 Cache

L2 Cache

I1 Cache
(parallel)

Figure 4. Relative cache energy usage averaged
across all benchmarks

save the 2% energy) when serial tag/data is determined to
be sufficient. An interesting feature of the accounting cache
is that its controller can easily determine the performance
and energy trade offs and notify the meta-controller if, for
instance, certain programmed pre-conditions are met.

7 Dynamic buffer results

Figure 5 shows the relative sizings for each of the
buffers averaged across the integer benchmarks in the top
graph and across the floating point benchmarks in the bot-
tom graph. Each group of bars represents one of the buffers
and the three bars in the group are for each of the tolerance
settings, 1.5%, 6.2%, and 25% from left to right. The dif-
ference in sizings is minimal between tolerances 1.5% and
6.2%. The differences are small in system performance as
well (far right) showing degradations of 0.3% and 0.8%.
When the tolerance setting is pushed to 25% the struc-
tures are shrunk more aggressively and the average delay
increases to 11.9%.

In the floating point benchmarks, again there is nom-
inal difference between the two lowest tolerances of 1.5%
and 6.2%, and the highest threshold trades significant per-
formance (11.1%) to shrink the structures. Overall, these
results track those in [17] which looked at a combined inte-
ger and floating point issue queue, the LSQ, and the ROB.
In that study, the authors used a similar range of tolerances
and the results showed similar variance in the performance
degradation across the applications.

Both mst and wave5 have large performance degrada-
tions at the 25% tolerance level, 41% and 39%, respec-
tively. In exploring this behavior, we discovered that in

20%

30%

40%

50%

60%

70%

80%

90%

10%

20%

30%

40%

50%

60%

70%

80%

90%

10%

1.5 6.2 25 1.5 6.2 25 1.5 6.2 25 1.5 6.2 251.5 6.2 251.5 6.2 25 1.5 6.2 25

1.5 6.2 25 1.5 6.2 25 1.5 6.2 25 1.5 6.2 251.5 6.2 251.5 6.2 25 1.5 6.2 25

100%

IIQ FIQ LSQ ROB IPREGS FPREGS

2%

4%

6%

8%

10%

12%

14%

16%

18%

20%
PERFORMANCE

R
elative Perform

ance D
egradation

R
el

at
iv

e
Si

ze

100%

IIQ FIQ LSQ ROB IPREGS FPREGS

Integer Benchmarks

2%

4%

6%

8%

10%

12%

14%

16%

18%

20%
PERFORMANCE

R
elative Perform

ance D
egradation

R
el

at
iv

e
Si

ze

Floating Point Benchmarks

(wave5 39%)

(mst 41%)

Figure 5. Buffer Relative Sizing and Performance

both benchmarks about half of the degradation was due
to adapting the register files and the other half was due
to adapting the queues. The performance degradation ef-
fects of adapting both sets of structures simultaneously are
additive for these applications. This coupling of the ef-
fects appears to be fairly infrequent but it can occur and we
specifically included mst and wave5 to highlight this be-
havior. The adaptive cache takes into consideration some
of the inter-cache effects via selecting proper values in the
cost functions. Unfortunately, there is no equivalent inter-
buffer feedback. For the buffers, the tolerance setting effec-
tively bounds the per buffer effects on performance, but the
possibility exists for the delay effects to be additive. Thus,
the tolerance must be set conservatively. For future work,
a method of assigning accurate performance costs to each
of the buffers is needed so a system wide tolerance setting
can be used.

8 Integrated system results

Figure 6 shows the results of combining all the adapt-
able structures in the system. The energy savings are shown
on the left. In all groups, the energy savings are relative
to the base energy of the components in the group. The
first two groups of bars are the aggregated results for the
cache hierarchy and buffers, respectively. The overall sav-
ings for the caches and buffers are 26%, 34%, and 48% for
the tolerances 1.5%, 6.2%, and 25%, respectively. The per-
formance degradation has high variability at the aggressive
tolerance setting of 25%. The raw data of the average num-
ber of cache ways and percent of buffer size activated is
shown in Table 7 for all applications. Results for the 1.5%
tolerance setting are omitted to save space. The large per-
formance degradations at the 25% tolerance level are due
to the additive delays between the reconfigurable buffers.

To integrate the caches with the buffers we had to elim-
inate the need for tracking system IPC to guide cache con-
figuration decisions as is done universally in prior work. By

20%

30%

40%

50%

60%

70%

80%

90%

10%

1.5 6.2 25 1.5 6.2 25 1.5 6.2 25 1.5 6.2 25

Buffers
and

Caches

Buffers
and

Caches

100%

R
el

at
iv

e
E

ne
rg

y
Sa

vi
ng

s Caches Buffers

ENERGY

Latency Tolerance

2%

4%

6%

8%

10%

12%

14%

16%

18%

20%
PERFORMANCE

R
elative Perform

ance D
egradation

(mst, 41%)

Figure 6. Summary of results

adding the accounting cache, each dynamic structure relies
solely on local information for its resizing control. The
disadvantage of this approach is that performance degrada-
tions due to reconfiguration actions can be additive (e.g.,
wave5), but the configuration controllers cannot account
for this possibility. An important result of this exercise to
integrate so many dynamic structures is that it highlights
the fact that some method of global coordination is neces-
sary. A global controller will require mechanisms in mi-
croarchitecture to quantify these coupled effects between
the reconfigurable structures. The ultimate goal should be
to control the variability of the performance degradation
when reconfiguring to save energy. Ideally, given a max-
imum performance degradation target the system should
find energy savings without violating this constraint. Cur-
rent reconfiguration techniques (ours included) cannot of-
fer such a guarantee. We feel this is an important direction
for future research.

9 Related work
This paper integrates a large number of dynamic struc-

tures that adapt independently to save energy with modest
performance impact. The related work can be split into
two groups: dynamic energy efficient caches and dynamic
instruction scheduling logic. Distinct from dynamic con-
trol are static methods to improve energy efficiency. The
static methods, such as subbanking, bit-line segmentation,
and Gray coding, are orthogonal to the dynamic methods
described here and both can be used together.

In addition to the related work [1, 2] described in Sec-
tion 3, Dhodapkar and Smith [9] extend the work in [2].
As in [2], the configuration space is searched and a con-
figuration is selected based on observing the system IPC.
The extension is a method to generate a unique signature
that they associate with the configuration parameters and
store in a table. If the same working set signature occurs
then the stored configuration can be read and directly ap-
plied without another search. Due to space limitations, we
do not compare the accounting cache to the above designs.
However, results not reported here have shown the energy
savings of the accounting cache to be comparable to those
of [2] for similar cache architectures. We consider the pri-

Table 7. Summary results’ raw resizing data
App Perf Ave cache ways Buffer size (%)

(%) IL1 DL1 L2 IIQ IPREG FIQ FPREG ROB LSQ
Tolerance setting of 6.2%

em3d 2.2 1.0 1.0 7.0 89 82 50 50 75 100
health 3.0 1.0 1.6 7.3 99 51 25 14 39 76
mst 2.7 1.0 1.0 8.0 97 99 25 12 75 87

compress 1.6 1.0 1.2 4.5 86 95 35 16 76 79
gcc 0.2 1.0 1.0 2.4 98 35 25 12 50 100

parser 3.6 1.0 1.1 6.0 92 85 25 12 64 80
perlbmk 2.0 1.0 1.3 2.9 86 63 25 12 44 68

twolf 2.6 1.0 1.7 6.4 97 90 26 15 64 79
vortex 2.7 1.0 1.2 5.1 95 85 25 12 67 93

vpr 2.1 1.0 2.1 6.5 92 96 42 30 82 97
applu 1.6 1.0 1.5 8.0 71 55 96 98 82 99

art 1.8 1.0 1.0 7.3 78 88 50 40 76 90
swim 2.0 1.0 1.0 8.0 46 41 82 99 79 86
wave5 0.8 1.0 1.4 4.7 96 99 96 76 99 99
AVE 2.1 1.0 1.3 6.0 89 70 56 48 72 88

Tolerance setting of 25%
em3d 4.8 1.0 1.0 8.0 81 76 50 50 75 100
health 15.9 1.0 2.0 7.5 99 48 25 12 37 73
mst 40.9 1.0 1.0 8.0 44 37 25 12 27 25

compress 14.6 1.0 1.3 3.7 43 48 25 12 37 39
gcc 0.3 1.0 1.0 2.1 72 30 25 12 49 99

parser 16.0 1.0 1.0 6.5 60 59 25 12 45 54
perlbmk 13.5 1.0 1.0 2.4 37 28 25 12 22 30

twolf 13.6 1.0 1.6 6.8 71 51 25 12 36 44
vortex 25.7 1.0 1.0 5.9 45 35 25 12 29 47

vpr 10.9 1.0 1.3 8.0 70 60 27 22 48 59
applu 11.3 1.0 1.0 8.0 45 28 81 84 56 74

art 7.4 1.0 1.0 7.4 44 85 44 39 72 89
swim 2.7 1.0 1.0 8.0 42 41 83 98 79 82
wave5 39 4 1.0 1.0 2.4 26 30 31 25 27 38
AVE 15.5 1.0 1.2 6.1 60 47 44 38 50 69

mary contribution of the accounting cache design to be its
independence from the system IPC which enables the inte-
gration of the dynamic caches with the dynamic buffers.

As mentioned previously, the dynamic RAM design is
from Buyuktosunoglu et al. [6]. The controller design [7]
shares similar features to the controller of Ponomarev et
al. [17], but [17] adds an important upsizing reflex that
quickly increases the buffer when metrics indicate it is too
small. We extend this work by using histogramming to
record the occupancy. We feel the histogram is more ro-
bust relative to the average occupancy metric because the
histogram reveals the tails of the occupancy distribution.
This nuance is most significant when the partitioning is at
a fine granularity. Folegnani and Gonzalez [12] study re-
sizing the issue queue and similarly use the system IPC to
detect if resizing is needed.

Powell et al. [18] use selective direct-mapping to re-
duce energy on accesses to set associative caches. The
method in [18] accesses the tags in full on the primary ac-
cess, but only reads data from one way. The equivalent
configuration in our study is full tags and 1-way for the pri-
mary partition. The difference in their work is that the low
order of the address bits determine which partition acts as
the primary partition. Conceptually, this is an extension to
our definition of a primary and secondary partitioning. The
selective direct-mapping cache has tables to record which
lines exhibit thrashing behavior and should use the set as-
sociativity to mitigate the problem. The authors report that

swim exhibits pathological behavior that results in signifi-
cant slowdown on an 8-way cache. Accounting techniques
could be added to detect this behavior and reconfigure the
cache to avoid this pathological case of thrashing.

Energy due to subthreshold leakage current is expected
to become a signficant factor in the near future [3]. Most
techniques gate the power to turn off portions of the pro-
cessor [13, 14, 22]. With this technique data in storage
elements is lost. This effect is not an issue when resiz-
ing the buffers as done in this study and the unused por-
tion of the buffers can be power gated. For reducing static
energy in caches, the drowsy cache design proposed by
Flautner et al. [11] significantly reduces the leakage current
while maintaining the stored state. The accounting cache
could be built with this circuit technology.

10 Conclusions

Dynamically resizing on-chip storage structures can
result in energy savings in the processor. This study in-
tegrates the most extensive set of dynamic structures in one
system, to date. Our goal was to explore the issues that
arise in the simultaneous control and operation of these
structures. Our approach uses local information at each
component in order to allow independent reconfiguration
decisions. This approach explicitly decouples each struc-
ture and lets the controllers make greedy control decisions.

We introduced the accounting cache design as the dy-
namic cache component. The accounting cache uses full
LRU state to reliably account for energy consumption and
delay attributable to each cache. The design uses an ac-
count to build performance equity to apply toward aggres-
sive energy configurations and as a mechanism to shut off
reconfiguration when the access behavior is unpredictable.
A tolerance metric is used to control the amount of per-
formance degradation (and thereby the size of the account)
permissible. The contribution of this design is its ability
to directly calculate the effect of different configurations
relative to some base configuration and to protect against
pathological behaviors.

We also refined and extended prior work in dynamic
instruction scheduling buffers to include the physical reg-
ister files and to take the variance in the utilization of the
structures into account (rather than relying on averages).
Using a tolerance setting to control the aggressiveness of
downsizing the buffers for energy efficiency, the six buffers
adapted independently to the changing needs of the appli-
cations and with minimal slowdown in most applications.
We show how to disable physical registers via injected
MOV instructions that automatically update the logical to
physical register mappings.

When using these designs for all levels of the instruc-
tion and data caches, the issue queues, reorder buffer, and
register files, we show energy savings of up to 70% on the
individual structures, and savings averaging 30% overall
for the portion of energy attributed to the adaptive struc-
tures. These savings were achieved with an average per-
formance degradation of 2.1% (and a maximum perfor-
mance degradation of 3.6%) when using a 6.25% toler-

ance metric for our benchmark suite. While our results
show that performance degradation is controllable (via the
tolerance settings) and can be minimized, they also re-
veal the sensitivity of the integrated system to the toler-
ance setting and application behavior. Future work will
explore how the current mechanisms perform under multi-
tasking/multithreaded workloads and we are experimenting
with methods to ensure performance degradation target can
be met deterministically in exchange for energy savings.

References

[1] David H. Albonesi. Selective cache ways: On-demand
cache resource allocation. In 32nd International Symposium
on Microarchitecture, November 1999.

[2] Rajeev Balasubramonian, David H. Albonesi, Alper Buyuk-
tosunoglu, and Sandhya Dwarkadas. Memory hierarchy
reconfiguration for energy and performance in general-
purpose processor architectures. In 33rd International Sym-
posium on Microarchitecture, 2000.

[3] S. Borkar. Design challenges of technology scaling. In IEEE
Micro, July 1999.

[4] David Brooks, Vivek Tiwari, and Margaret Martonosi.
Wattch: a framework for architectural-level power analysis
and optimizations. In 27th Annual International Symposium
on Computer Architecture, June 2000.

[5] Doug Burger and Todd Austin. The simplescalar toolset,
version 2.0. Technical Report TR-97-1342, University of
Wisconsin-Madison, June 1997.

[6] Alper Buyuktosunoglu, David H. Albonesi, Stanley Schus-
ter, David Brooks, Pradip Bose, and Peter Cook. A circuit
level implementation of an adaptive issue queue for power-
aware microprocessors. In 11th Great Lakes Symposium on
VLSI, March 2001.

[7] Alper Buyuktosunoglu, Stanley Schuster, David Brooks,
Pradip Bose, Peter Cook, and David H. Albonesi. An adap-
tive issue queue for reduced power at high performance. In
Workshop on Power-Aware Computer Systems, in conjunc-
tion with the 9th International Conference on Architectural
Support for Programming Languages and Operating Sys-
tems, November 2000.

[8] Compaq. Alpha 21264 Microprocessor Hardware Reference
Manual. Technical report, Compaq Computer Corporation,
July 1999.

[9] Ashutosh S. Dhodapkar and James E. Smith. Managing
multi-configurable hardware via dynamic working set anal-
ysis. In 29th Annual International Symposium on Computer
Architecture, 2002.

[10] B. Fisk and I. Bahar. The non-critical buffer: Using load la-
tency tolerance to improve data cache efficiency. In IEEE In-
ternational Conference on Computer Design, October 1999.

[11] Kristian Flautner, Nam Sung Kim, Steve Martin, David
Blaauw, and Trevor Mudge. Drowsy caches: Simple tech-
niques for reducing leakage power. In 29th Annual Interna-
tional Symposium on Computer Architecture, May 2002.

[12] Daniele Folegnani and Antonio Gonzalez. Energy effective
issue logic. In 28th International Symposium on Computer
Architecture, 2001.

[13] Heather Hanson, M. S. Hrishikesh, Vikas Agarwal,
Stephen W. Keckler, and Doug Burger. Static energy reduc-
tion techniques for microprocessor caches. In 2001 Interna-
tional Conference on Computer Design, September 2001.

[14] Stefanos Kaxiras, Xhigang Hu, and Margaret Martonosi.
Cache decay: Exploiting generational behavior to reduce
cache leakage power. In International Symposium on Com-
puter Architecture, 2001.

[15] R. E. Kessler, E. J. McLellan, and D. A. Webb. The Alpha
21264 Microprocessor Architecture. In 1998 International
Conference on Computer Design, October 1998.

[16] Mayan Moudgill and Keshav Pingali and Stamatis Vassil-
iadis. Register renaming and dynamic speculation: an alter-
native approach. In 36th Annual International Symposium
on Microarchitecture, March 1993.

[17] Dmitry Ponomarev, Gurham Kucuk, and Kanad Ghose.
Reducing power requirements of instruction scheduling
through dynamic allocation of multiple datapath resources.
In 34th International Symposium on Microarchitecture, De-
cember 2001.

[18] Michael Powell, Amit Agrawal, T. N. Vijaykumar, Babak
Falsafi, and Kaushik Roy. Reducing set-associative cache
energy via selective direct-mapping and way prediction. In
34th Annual International Symposium on Microarchitec-
ture, December 2001.

[19] S. T. Srinivasan and A. R. Lebeck. Load latency toler-
ance in dynamically scheduled processors. In Journal of
Instruction-Level Parallelism, October 1999.

[20] Joel M. Tendler, Steve Dodson, Steve Fields, Hung Le, and
Balaram Sinharoy. POWER4 System Microarchitecture.
Technical report, IBM Server Group, October 2001.

[21] K. Wilcox and S. Manne. Alpha processors: A history of
power issues and a look to the future. In Cool-Chips Tuto-
rial, November 1999.

[22] Se-Hyun Yang, Michael D. Powell, Babak Falsafi, Kaushik
Roy, and T. N. Vijaykumar. An integrated cir-
cuit/architecture approach to reducing leakage in deep-
submicron high performance I-caches. In Seventh Interna-
tional Symposium on High-Performance Computer Archi-
tecture, January 2001.

