
1

An Adaptive Issue Queue for Reduced Power at High Performance

Alper Buyuktosunoglu*, 2, Stanley Schuster1, David Brooks1, Pradip Bose1, Peter Cook1, and David Albonesi2

1IBM. T. J. Watson Research Center, Yorktown Heights, NY

{schustr, dbrooks, pbose, pwcook}@us.ibm.com
2Department of Electrical and Computer Engineering, University of Rochester, NY

{buyuktos, albonesi}@ece.rochester.edu

* Alper Buyuktosunoglu is a graduate student at University of Rochester, NY. This work was done while the author was a

summer intern at IBM T.J. Watson Research Center.

Abstract

Increasing power dissipation has become a major

constraint for future performance gains in the design

of microprocessors. In this paper, we present the

circuit design of an issue queue for a superscalar

processor that leverages transmission gate insertion to

provide dynamic low-cost configurability of size and

speed. A novel circuit structure dynamically gathers

statistics of issue queue activity over intervals of

instruction execution. These statistics are then used

to change the size of an issue queue organization on-

the-fly to improve issue queue energy and

performance. When applied to a fixed, full-size issue

queue structure, the result is up to a 70% reduction in

energy dissipation. The complexity of the additional

circuitry to achieve this result is almost negligible.

Furthermore, self-timed techniques embedded in the

adaptive scheme can provide a 56% decrease in cycle

time of the issue queue when we change the adaptive

issue queue size from 32 entries (largest possible) to 8

entries (smallest possible in our design).

1 Introduction

The out-of-order issue queue structure is a major

contributor to the overall power consumption in a

modern superscalar processor, like the Alpha 21264

and Mips R10000 [1, 2]. It also requires the use of

complex control logic in determining and selecting

the ready instructions. Such complexity, besides

adding to the overall power consumption, also

complicates the verification task. Recent work by

Gonzalez et al. [3, 4] has addressed these problems,

by proposing design schemes that reduce either the

control logic complexity [3] or the power [4] without

significantly impacting the IPC performance. In [3],

the authors propose and evaluate two different

schemes. In the first approach, the complexity of the

issue logic is reduced by having a separate “ready

queue” which only holds instructions with operands

that are determined to be fully available at decode

time. Thus, instructions can be issued “in-order” from

this “ready queue” at reduced complexity, without any

associative lookup. A separate “first-use” table is used

to hold instructions, indexed by unavailable operand

register specifiers. Only those instructions that are the

first-time consumers of these pending operands are

stored in this table. Instructions which are deeper in

the dependence chain simply stall or are handled

separately through a separate issue queue. The

dependence link information connecting multiple

instances of the same instruction in the “first-use”

table is updated after each instruction execution is

completed. At the same time, if a given instruction is

deemed to be “ready” it is moved to the in-order ready

queue. Since none of the new structures require

associative lookups or run-time dependence analysis,

and yet, instructions are able to migrate to the ready

queue as soon as their operands become available,

this scheme significantly reduces the complexity of

the issue logic.

 The second approach relies on static scheduling;

here, the main issue queue only holds instructions

with pre-determined availability times of their source

operands. Since the queue entries are time-ordered

(due to known availabilities), the issue logic can use

simple, in-order semantics. Instructions with

operands which have unknown availability times are

held in a separate “wait queue” and get moved to the

main issue queue only when those times become

definite. In both approaches described in [3], the

2

emphasis is on reduction of the complexity of the

issue control logic. The added (or augmented) support

structures in these schemes may actually cause an

increase of power, in spite of the simplicity and

elegance of the control logic. In [4], the main focus is

on power reduction. The issue queue is designed to be

a circular queue structure, with head and tail pointers,

and the effective size is dynamically adapted to fit the

ILP content of the workload during different periods

of execution.

 The work in [4] leverages previous work [5, 6] in

dynamically sizing the issue queue. In both [3] and

[4], the authors show that the IPC loss is very small

with the suggested modifications to the issue queue

structure and logic. Also, in [4], the authors use a

trace-driven power-performance simulator (based on

the model by Cai [7]) to report substantial power

savings on dynamic queue sizing. However, a detailed

circuit-level design and simulation of the proposed

implementations are not reported in [3] or [4].

Without such analysis, it is difficult to gauge the

cycle-time impact or the extra power/complexity of

the augmented design.

 In our work, we propose a new adaptive issue

queue organization and we evaluate the power

savings and the logic overhead through actual circuit-

level implementations and their simulation. This

work was done as a part of a research project targeted

to explore power-saving opportunities in future, high-

end processor development within IBM. Our scheme

is simpler than that reported in [3, 4] in that it does

not introduce any new data storage or access structure

(like the first-use table or the wait queue in [3]).

Rather, it proposes to use an existing framework, like

the CAM/RAM structure commonly used in the

design of issue queues [8]. However, the effective size

of the issue queue is dynamically adapted to fit the

workload demands. This aspect of the design is

conceptually similar to the method proposed in [4]

but our control logic is quite different.

2 Power and Performance Characteristics

of a Conventional (Non-Adaptive) Issue

Queue

The purpose of the issue queue is to receive

instructions from the dispatch stage and forward

“ready instructions” to the execution units. An

instruction is ready to issue when the data needed by

its source operands and the functional unit are

available or will be available by the time the

instruction is ready to read the operands, prior to

execution.

 Many superscalar microprocessors, such as the

Alpha 21264 [1] and Mips R10000 [2] use a

distributed issue queue structure, which may include

separate queues for integer and floating point

operations. For instance in the Alpha 21264 [9], the

issue queue is implemented as flip-flop latch-based

FIFO queues with a “compaction” strategy, i.e., every

cycle, the instructions in the queue are shifted to fill

up any “holes” created due to prior-cycle issues. This

makes efficient use of the queue resource, while also

simplifying the wake-up and selection control logic.

However, compaction entails shifting instructions

around in the queue every cycle and depending on the

instruction word width may therefore be a source of

considerable power consumption. Studies have shown

that overall performance is largely independent of

what selection policy is used (oldest first, position

based, etc.)[10]. As such, the compaction strategy

may not be best suited for low power operation; nor is

it critical to achieving good performance. So, in this

research project, an initial decision was made to avoid

compaction. Even if this means that the select

arbitration must be performed over a window size of

the entire queue, this is still a small price to pay

compared to shifting multiple queue entries each

cycle.

 Due to the above considerations, a decision was

made to use a RAM/CAM based solution [8].

Intuitively, a RAM/CAM would be inherently lower

power due to its smaller area and because it naturally

supports a “non-compaction” strategy. The

RAM/CAM structure forms the core of our issue

queue design. The op-code, destination register

specifier, and other instruction fields (such as the

instruction tag) are stored in the RAM. The source

tags are stored in the CAM and are compared to the

result tags from the execution stage every cycle. Once

all source operands are available, the instruction is

ready to issue provided its functional unit is available.

The tag comparisons performed by the CAM and the

checks to verify that all operands are available

constitute the “wakeup” part of the issue unit

operation. While potentially consuming less power

than a flip-flop based solution, the decision of using a

RAM/CAM structure for the issue queue is not

without its drawbacks. CAM and RAM structures are

in fact inherently power hungry as they need to

precharge and discharge internal high capacitance

lines and nodes for every operation. The CAM needs

to perform tag matching operations every cycle. This

involves driving and clearing high capacitance tag-

lines, and also precharging and discharging high

capacitance matchline nodes every cycle. Similarly,

the RAM also needs to charge and discharge its

3

bitlines for every read operation. Our research on

low-power issue queue designs was focused on two

aspects: (a) Innovating new circuit structures, which

reduce power consumption in the basic CAM/RAM

structure; and (b) Dynamic adaptation of the effective

CAM/RAM structure by exploiting workload

variability. This paper describes the work done on the

second aspect. However, dynamic queue sizing can

degrade CPI performance as well. Part of the design

challenge faced in this work was to ensure that the

overall design choices do not impact performance

significantly, while ensuring a substantial power

reduction.

 Non-adaptive designs (like the R10000 and Alpha

21264) use fixed-size resources and a fixed

functionality across all program runs. The choices are

made to achieve best overall performance over a

range of applications. However, an individual

application whose requirements are not well matched

to this particular hardware organization may exhibit

poor performance. Even a single application run may

exhibit enough variability that causes uneven use of

the chip resources during different phases. Adaptive

design ideas (e.g., [5]) exploit the workload

variability to dynamically adapt the machine

resources to match the program characteristics. As

shown in [5], such ideas can be used to increase

overall performance by exploiting reduced access

latencies in dynamically resized resources.

 Non-adaptive designs are inherently power-

inefficient as well. A fixed queue will waste power

unnecessarily in the entries that are not in use. Figure

1 shows utilization data for one of the queue

resources within a high performance processor core

when simulating the SPECint95 benchmarks. From

this figure, we see that the upper 9 entries contribute

to 80% of the valid entry count. Dynamic queue

sizing clearly has the potential of achieving

significant power reduction as other research has

demonstrated as well [4, 6]. One option to save power

is to clock-gate each issue queue entry on a cycle by

cycle basis. However, clock gating alone does not

address some of the largest components of the issue

queue power such as the CAM taglines, the

RAM/CAM precharge logic, and RAM/CAM bitlines.

So a scheme which allows shutting down the queue in

“chunks” based on usage reductions to address these

other power components can produce significant

additional power savings over clock gating. This idea

forms the basis of the design described in this paper.

Fig. 1. Histogram of valid entries for an integer queue

averaged over SPECint95

3 Adaptive Issue Queue Design

In this section, we discuss the adaptive issue queue

design in detail. First, we describe the high-level

structure of the queue. Then, we present partitioning

of the CAM/RAM array and the self-timed sense

amplifier design. Finally, we discuss the shutdown

logic that is employed to configure the adaptive issue

queue at run-time.

3.1 High-Level Structure of Adaptive Issue Queue

Our approach to issue queue power savings is to

dynamically shut down and re-enable entire blocks of

the queue. Shutting down blocks rather than

individual entries achieves a more coarse-grained

precharge gating. A high-level mechanism monitors

the activity of the issue queue over a period of

execution called the cycle window and gathers

statistics using hardware counters (discussed in

section 3.3). At the end of the cycle window, the

decision logic enables the appropriate control signals

to disable and enable queue blocks. A very simple

mechanism for the decision logic in pseudocode is

listed below.

if (present_IPC< factor * last_IPC)

 revert_back_to_last_size;

else if (counter< threshold_1)

 decrease_size;

else if (counter < threshold_2)

 retain_ current_size;

else increase_size;

 At the end of the cycle window, there are four

possible actions. The issue queue size is reverted back

to its last size if the present IPC is a factor lower than

the last IPC during the last cycle window. This

Histogram of Valid Entries

0%

20%

40%

60%

80%

100%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Entry #

4

guarding mechanism attempts to limit the

performance loss of adaptation. Otherwise, depending

on the comparison of counter values with certain

threshold values the decision logic may do the

following: i) increase issue queue size by enabling

higher order entries ii) retain the current size, or iii)

decrease the size by disabling the highest order

entries. Note that a simple NOR of all the active

instructions in a chunk ensures that all entries are

issued before the chunk is disabled.

3.2 Partitioning of the RAM/CAM Array and Self-

Timed Sense Amplifiers

The proposed adaptive CAM/RAM structure is

illustrated in Figure 2. The effective sizes of the

individual arrays can be changed at run-time by

adjusting the enable inputs that control the

transmission gates. For our circuit-level

implementation and simulation study, a 32-entry

issue queue is assumed which is partitioned into four

8-entry chunks. For the taglines, a separate scheme is

employed in order to avoid a cycle time impact. A

global tag-line is traversed through the CAM array

and its local tag-lines are enabled/disabled depending

on the control inputs. The sense amplifiers and

precharge logic are located at the bottom of both

arrays. Based on simulations, we determined that

transmission gates exhibit a better energy vs

performance tradeoff compared to other schemes that

may be employed for partitioning (e.g., tri-state

buffers). Another feature of the design is that these

CAM and RAM structures are implemented as self-

timed blocks. The timing of the structure is performed

via an extra dummy bitline within the datapath of

CAM/RAM structures, which has the same layout as

the real bitlines. A logic zero is stored in every

dummy cell. A reading operation of the selected cell

creates a logical one to zero transition on the dummy

bitline that controls the set input of the sense

amplifier. (Note that the dummy bitline is precharged

each cycle as with the other bitlines.) This work

assumes a latching sense amplifier that is able to

operate with inputs near Vdd. When the set input is

high, a small voltage difference from the memory cell

passes through the NMOS pass gates of the sense

amplifier. When the set signal goes low, the cross-

coupled devices amplify this difference to a full rail

signal as the pass gates turn off to avoid the cross-

coupled structure from bitlines load. When the issue

queue size is 8, a faster access time is achieved

because of the 24 disabled entries. The self-timed

sense amplifier structure takes advantage of this

feature by employing the dummy bitline to allow

faster operation, i.e., the dummy bitline enables the

sense amplifiers at the exact time the data becomes

available. Simulations show that one may achieve up

to a 56% decrease in the cycle time using this

method. Therefore, downsizing to a smaller number

of entries results in a faster issue queue cycle time

and saves energy, similar to prior work related to

adaptive cache designs [11, 12, 13]. However, in this

paper we do not explore options for exploiting the

variable cycle time nature of the design, but focus

only on its power-saving features.

3.3 Shutdown Logic

A primary goal in designing the shutdown logic is not

to add too much overhead to the conventional design

in terms of transistor count and energy dissipation.

Table 1 shows the complexity of the shutdown logic

in terms of transistor count. From this table it is clear

that the extra logic adds only a small amount of

complexity to the overall issue queue. AS/X [14]

simulations show that this extra circuitry dissipates

3% of the energy dissipated by the whole CAM/RAM

structure on average.

 Figure 3 illustrates the high-level operation of the

shutdown logic. It consists of bias logic at the first

stage followed by the statistics process&storage

stage. The activity information is first filtered by the

bias logic and then it is fed to the process&storage

stage where the information is fed to counters. At the

end of the cycle window, this data passes through the

decision logic to generate the corresponding control

inputs.

 The 32-entry issue queue is partitioned into 8-entry

chunks that are separately monitored for activity. The

bias logic block monitors the activity of the issue

queue in 4-entry chunks. This scheme is employed to

decrease the fan-in of the bias logic. The bias logic

simply gathers the activity information over four

entries and averages them over each cycle. The

activity state of each instruction may be inferred from

the “ready flag” of that particular queue entry. One

particular state of interest is when exactly half of the

entries in the monitored chunk are active. One

alternative is to statically choose either active or not

active in this particular case. Another approach is to

dynamically change this choice by making use of an

extra logic signal variable. (See Adaptive Bias Logic

in Figure 3.)

 The statistics process&storage stage, which is

shown in Figure 4, is comprised of two different

parts. The detection logic provides the value that will

be added to the final counter. It gathers the number of

active chunks from the bias logic outputs and then

5

Fig. 2. Adaptive CAM/RAM structure

Table 1. Complexity of shutdown logic in terms of transistor count

ISSUE QUEUE

OF ENTRIES

TRANSISTOR COUNTS

ISSUE QUEUE

TRANSISTOR COUNTS

SHUTDOWN LOGIC

COMPLEXITY OF

SHUTDOWN LOGIC

16 28643 802 2.8%

32 58556 1054 1.8%

64 115733 1736 1.5%

128 230001 2530 1.1%

generates a certain value (e.g., if there are two active

8-entry chunks, the detection logic will generate

binary two to add to the final counter). The second

part, which is the most power hungry, is the flip-flop

and adder pair (forming the counter). Each cycle,

this counter is incremented by the number of active

clusters (8 entry chunks). In this figure one can also

see the function of the detection logic. The zeros in

the inputs correspond to the non-active clusters and

the ones to active clusters. The result section shows,

which value in binary should be added. For 32

entries, two of these detection circuits and a small

three-bit adder are required to produce the counter

input. One of the detection logic units covers the

upper 16 entries and the other one covers the bottom

16 entries.

4 Simulation Based Results

In this section, we first present circuit-level data and

simulation results. Later, we discuss

microarchitecture-level simulation results that

demonstrate the workload variability in terms of

issue queue usage.

4.1 Circuit-level data

Figure 5 shows the energy savings (from AS/X

simulations) achieved with an adaptive RAM array.

(Note that in this figure only positive energy savings

numbers are presented.) There are several possible

energy/performance tradeoff points depending on the

transistor width of the transmission gates. A larger

dummy bitline

CAM RAM

CAM

transmission gate transmission gate

transmission gate transmission gate

transmission gate transmission gate

Precharge&SenseAmp

CAM

CAM

RAM

RAM

RAM

en1

en2

Precharge&SenseAmp

en3

en3

en1

bitline

tagline

en2

6

 Fig. 3. High-level structure of shutdown logic and logic table for bias logic

 Fig. 4. Statistics process and storage stage for shutdown logic

transistor width results in less cycle time impact,

although more energy is dissipated. The cycle time

impact of the additional circuitry did not affect the

overall target frequency of the processor across all

cases. (This was true also for the CAM structure.) By

going down to 0.39um transistor width, one can

obtain energy savings of up to 44%. These numbers

are inferred from the energy dissipation

corresponding to one read operation of a 32-entry

conventional RAM array and that of various

alternatives of the adaptive RAM array. (The size of

the queue is varied over the value points: 8, 16, 24

and 32.) An interesting feature of the adaptive

design is that it achieves energy savings even with

32 entries enabled. This is because the transmission

gates in the adaptive design reduce the signal swing

therefore resulting in less energy dissipation.

S t a t i s t ic s P r o c e s s & S t o r a g e

B ia s

L o g i c

D e te c t i o n
L o g i c

A d d e r

F l i p
F l o p

to d e c i s io n
lo g i c

(f o r # o f a c ti ve

c lu s t e r s)

N A

N A

N A

N A

N A

N A

A

N A

N A

A

A

A A A A

N A

A

A

A

N A : N o t A c ti v e A :A c t i v e

N A

C L U S T 1 C L U S T2 C L U S T3 C L U S T 4 R E S 1 R E S 2 R E S 3 (LS B)

0 0 0

0 0 1

0 1 0

0 1 1

0 01

N A

A

N A

N A

S t a t i s t i c s

P r o c e s s &

S t o r a g e

B ia s

L o g ic

D e c i s i o n

L o g i c
S h u t d o w n
S i g n a l

I S S U E Q U E U E

B I A S L O G I C

e n t 0 e n t 1 e n t 2 e n t 3 R e s u l t

N A

N A

N A

N A

N A

N A

A

N A

N A

A

A

A A A A

N A

A

A

A

N A

N A

A

A

A
B ia s e d t o w a r d s

n o t t u r n i n g o f f

e n t 0 e n t 1 e n t 2 e n t 3 R e s u l t

N A

N A

N A

N A

N A

N A

A

N A

N A

A

A

A A A A

N A

A

A

A

N A

N A

A

A

A D A P T I V E B I A S L O G I C

?

N A : N o t A c t i v e A : A c t i v e

r e s u l t = A
e l s e
r e s u l t = N A

N A N A

i f (e x t = = 1)

7

 Fig. 5. Adaptive RAM array energy savings

 The adaptive CAM array energy and delay values

are presented in Figure 6 and Figure 7, respectively,

for various numbers of enabled entries and

transmission gate transistor widths. These values

account for the additional circuitry that generates the

final request signal for each entry (input to the

arbiter logic). With this structure, a 75% savings in

energy dissipation is achieved by downsizing from

32 entries to 8 entries. It should be noted that a 32

entry conventional CAM structure consumes roughly

the same amount of energy as the adaptive CAM

array with 32 entries. Furthermore, the cycle time of

the issue queue is reduced by 56%. Because the

CAM array dissipates ten times more energy than

the RAM array (using 2.34um transmission gate

transistor width) a 75% energy savings in the CAM

array corresponds to a 70% overall issue queue

energy savings (shutdown logic overhead is

included).

4.2 Microarchitecture-Level Simulation and

Results

The work reported thus far in this paper

demonstrates the potential power savings via

dynamic adaptation of the issue queue size. In other

words, we have designed a specific, circuit-level

solution that allows the possibility of such

adaptation; and, we have quantified, through

simulation, the energy savings potential when the

queue is sized downwards. In our simulations, we

have always factored in the overhead of the extra

 Fig. 6. Adaptive CAM array energy values

 Fig. 7. Adaptive CAM array delay values

transistors, which result from the run-time resizing

hardware.

 In this section, we begin to address the following

issues: (a) what are some of the alternate algorithms

one may use in implementing the “decision logic”

referred to earlier (see section 3.1)? That is, how

(and at what cycle windows) does one decide

whether to size up or down? (b) What are the

scenarios under which one scheme may win over

another? (c) How does a simple naive resizing

algorithm perform from a performance and energy

perspective, in the context of a given workload?

 The issue unit (in conjunction with the upstream

fetch/decode stages) can be thought of as a

Adaptive CAM Array

0

2

4

6

8

10

12

14

32ent 24ent 16ent 8ent

Enabled Entries

E
n
e
rg

y
(j
o
u
le

_
u
n
it
)

3.9um

2.34um

0.78um

Adaptive CAM Array

0

20

40

60

80

100

120

32ent 24ent 16ent 8ent

Enabled Entries

C
A

M
 A

rr
a

y
 R

e
a

d
 D

e
la

y
(p

s
e

c
)

3.9um

2.34um

0.78um

Adaptive RAM Array

0

10

20

30

40

50

0.
39

um

0.
78

um

1.
56

um

2.
34

um

3.
12

um

3.
9u

m

tranmission gate transistor width

E
n

e
rg

y
 S

a
v
in

g
s
(%

)

8 entries

enabled

16 entries

enabled

24entries

enabled

32entries

enabled

8

“producer.” It feeds the subsequent execution unit(s)

which act as consumer(s). Assuming, for the

moment, a fixed (uninterrupted) fetch/decode

process (bandwidth), the issue queue will tend to fill

up when the issue logic is unable to sustain a

matching issue bandwidth. This could happen

because: (a) the program dependency characteristics

are such that the average number of “ready”

instructions detected each cycle is less than the fetch

bandwidth seen by the receiving end of the issue

queue; or, (b) the execution pipe backend (“the

consumer”) experiences frequent stall conditions

(unrelated to register data dependencies), causing

issue slot “holes.” This latter condition (b) could

happen due to exception conditions (e.g., data

normalization factors in floating point execution

pipes, or address conflicts of various flavors in

load/store processing, etc.). On the other hand, the

“issue-active” part of the queue will tend to be small

(around a value equal to the fetch bandwidth or less)

if the consuming issue-execute process is faster than

or equal to the producing process. Obviously, this

would happen during stretches of execution when the

execution pipe stalls are minimal and the issue

bandwidth is maximal, as plenty of “ready”

instructions are available for issue each cycle.

However, one may need a large issue queue window

just to ensure that enough “ready” instructions are

available to maximize the issue bandwidth. On the

other hand, if the stretch of execution involves a long

sequence of relatively independent operations, one

may not need a large issue queue. So, it should be

clear, that even for this trivial case, where we

assume an uninterrupted flow of valid instructions

into the issue queue, the decision to resize the queue

(and in the right direction: up or down) can be

complicated. This is true even if the consideration is

limited only to CPI performance i.e., if the objective

is to always have “just enough” issue queue size to

meet the execution needs and dependency

characteristics of the variable workload. If the

emphasis is more on power reduction, then one can

perhaps get by with a naive heuristic for size

adaptation, provided the simulations validate that the

average IPC loss across workloads of interest is

within acceptable limits.

 To illustrate the basic tradeoff issues, first, we

provide data that shows the variation of CPI with

integer issue queue size across several SPEC2000

integer benchmarks (see Figure 8). We used

SimpleScalar-3.0 [15] to simulate an aggressive 8-

way superscalar out-of-order processor. In the

simulator, separate issue queues are modeled as

integer and floating point queue. The simulation

parameters are summarized in Table 2.

 Table 2. Simplescalar simulator parameters

Branch Predictor Comb. of bimodal

and 2-level Gag

Fetch and Decode width 16 instructions

Issue Width 8

Integer ALU/Multiplier 4/4

Floating Point ALU/Multiplier 2/2

Memory Ports 4

L1 Icache, Dcache 64KB 2-way

L2 unified cache 2MB 4-way

 The data in Figure 8 shows that for most of the

benchmarks simulated, there is considerable

variation in CPI as integer issue queue size varies

between 8 and 32. In order to gain insight into the

potential of our adaptive issue queue, we

implemented the algorithm discussed in Section 3.1

in SimpleScalar. We chose a cycle window size of

8K cycles, as this provided the best energy

performance tradeoff compared with the other cycle

windows that we analyzed. We ran each benchmark

for the first 400 million instructions.

 Our dynamic algorithm picks the appropriate size

for the next cycle window by counting the ready

instructions in the last cycle window, and comparing

this value with certain threshold values. The

algorithm also compares the IPC of the last interval

with the present interval IPC. For this purpose, we

also analyzed the configurations with different

“factor” values. Threshold values are adjusted such

that, if the issue queue utilization for a certain size is

at the border value of its maximum size (e.g., for an

issue queue size of 8 entries, the border is 7 entries)

then the issue queue size is ramped up to the next

larger size. Figure 9 shows what percentage of the

time each queue size was used with the dynamic

algorithm with “factor” set to be 0.9. Table 3 shows

the energy savings and CPI degradation for each

benchmark as well as the overall average. To

estimate the energy savings, we assumed an energy

variation profile which is essentially linear in the

number of entries, based on the circuit-level

simulation data reported earlier in Figure 6. We also

take into account the shutdown logic overhead. CPI

degradation and energy savings are both relative to a

fixed 32-entry integer issue queue.

 The results from Figure 9 demonstrate the broad

range of workload variability. For mcf, the full 32

entry queue is used throughout its entire execution

9

 Table 3. Energy savings and CPI degradation for factor=0.9

bzip gcc mcf parser vortex vpr average

CPI degradation

%

0.0 10.2 0.2 2.9 11.4 0.6 4.3

Energy savings % 27.2 66.4 -3.0 31.0 68.3 20.0 35

Fig. 8. CPI sensitivity to issue queue size

Fig. 9. Percentage of utilization for each queue size

with the dynamic adaptation

whereas for vortex and gcc, only 8 entries are largely

used. For bzip, the algorithm almost equally chooses

issue queue sizes of 32, 24, and 16 entries. For

parser, the 24 entry issue queue configuration

dominates whereas for vpr, 32 or 16 entries are

largely used. On average, this very naive algorithm

provides a 35% decrease in the issue queue energy

with a CPI degradation of just over 4%.

5 Conclusion

We examine the power saving potential in the design

of an adaptive, out-of-order issue queue structure.

We propose an implementation that divides the issue

queue into separate chunks, connected via

transmission gates. These gates are controlled by

signals which determine whether a particular chunk

is to be disabled to reduce the effective queue size.

The queue size control signals are derived from

counters that keep track of the “active state” of each

queue entry on a cycle-by-cycle basis. After a

(programmable) cycle window, the decision to resize

the queue can be made based on the activity profile

monitored. The major contribution of this work is a

detailed, circuit-level implementation backed by

(AS/X) simulation-based analysis to quantify the net

power savings that can be achieved by various levels

of queue size reduction. We also simulated a

dynamic adaptation algorithm to illustrate the

scenarios where the resizing logic would size the

queue up or down, depending on the particular

priorities of performance and energy.

 Future work includes exploring alternate

hardware algorithms for queue-size adaptation,

pursuing improvements at the circuit level that

provide better configuration flexibility, and

investigating methods for exploiting the self-timed

issue queue capability.

6 Acknowledgements

We wish to thank John Wellman, Prabhakar Kudva,

Victor Zyuban and Hans Jacobson for many

interesting discussions and helpful hints.

0

10

20

30

40

50

60

70

80

90

100

bzip gcc mcf parser vortex vpr

benchmarks

%
 o

f
u

ti
liz

a
ti
o

n 32

24

16

8

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

8 16 32

Integer Issue Queue Size

C
P

I

bzip

gcc

mcf

parser

vortex

vpr

10

REFERENCES

1. R. Kessler, “The Alpha 21264 microprocessor,”

IEEE Micro, 19(2): 24-36, March/April 1999.

2. K.Yeager, “The Mips R10000 superscalar

microprocessor,” IEEE Micro, 16(2): 28-41, April

1996.

3. R. Canal and A. Gonzalez, “A low-complexity

issue logic,” Proc. ACM Int’l. Conference on

Supercomputing (ICS), pp. 327-335, Santa Fe, N.M.,

June 2000.

4. D. Folegnani and A. Gonzalez, “Reducing the

power consumption of the issue logic,” Proc. ISCA

Workshop on Complexity-Effective Design, June

2000.

5. D. H. Albonesi, “Dynamic IPC/Clock Rate

Optimization,” Proc. ISCA-25, pp. 282-292,

June/July 1998.

6. D. H. Albonesi, “The Inherent Energy

Efficiency of Complexity-Adaptive Processors,”

Proc. ISCA Workshop on Power-Driven

Microarchitecture, June 1998.

7. G. Cai, “Architectural level power/performance

optimization and dynamic power estimation,” in

Proceedings of the Cool Chips Tutorial, in

conjunction with Micro-32, 1999.

8. S. Palacharla, N. P. Jouppi and J. E. Smith,

“Complexity-effective superscalar processors,” Proc.

ISCA-97, pp. 206-218, June 1997.

9. K. Wilcox and S. Manne, “Alpha Processors: A

history of power issues and a look to the future,” in

Proceedings of the Cool Chips Tutorial, in

conjunction with Micro-32, 1999.

10. M. Butler and Y.N Patt, “An investigation of the

performance of various dynamic scheduling

techniques,” Proc.ISCA-92, pp. 1-9.

11. R. Balasubramonian, D.H. Albonesi, A.

Buyuktosunoglu, and S. Dwarkadas, “Dynamic

Memory Hierarchy Performance Optimization,”

Proc. ISCA Workshop on Solving the Memory Wall

Problem, June 2000.

12. R. Balasubramonian, D.H. Albonesi, A.

Buyuktosunoglu, and S. Dwarkadas, “ Memory

Hierarchy Reconfiguration for Energy and

Performance in General-Purpose Processor

Architectures,” 33
rd International Symposium on

Microarchitecture, December 2000.

13. M. D. Powell, S.H. Yang, B. Falsafi, K. Roy, T.

N. Vijaykumar, “Gated-Vdd: A Circuit Technique to

Reduce Leakage in Deep-Submicron Cache

Memories,” ACM/IEEE International Symposium

on Low Power Electronics and Design (ISLPED),

2000.

14. AS/X User’s Guide, IBM Corporation, New

York, 1996.

15. D. Burger and T. Austin, “The Simplescalar

toolset, version 2.0,” Technical Report TR-97-1342,

University of Wisconsin-Madison, June 1997.

