2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO)

CuttleSys: Data-Driven Resource Management for
Interactive Services on Reconfigurable Multicores

Neeraj Kulkarni*
Azure Hardware Architecture
Microsoft
Redmond, WA, USA
neeraj.kulkarni @microsoft.com

Christine A. Shoemaker
Industrial and Engineering Management
National University of Singapore
Singapore
shoemaker @nus.edu.sg

Abstract—Multi-tenancy for latency-critical applications leads
to resource interference and unpredictable performance. Core
reconfiguration opens up more opportunities for application
colocation, as it allows the hardware to adjust to the dynamic
performance and power needs of a specific mix of co-scheduled
services. However, reconfigurability also introduces challenges, as
even for a small number of reconfigurable cores, exploring the
design space becomes more time- and resource-demanding.

We present CuttleSys, a runtime for reconfigurable multicores
that leverages scalable and lightweight data mining to quickly
identify suitable core and cache configurations for a set of
co-scheduled applications. The runtime combines collaborative
filtering to infer the behavior of each job on every core and
cache configuration, with Dynamically Dimensioned Search to
efficiently explore the configuration space. We evaluate CuttleSys
on multicores with tens of reconfigurable cores and show up to
2.46x and 1.55x performance improvements compared to core-
level gating and oracle-like asymmetric multicores respectively,
under stringent power constraints.

Index Terms—Heterogeneous architectures, datacenter, recon-
figurable architectures, resource management

I. INTRODUCTION

Cost efficiency in datacenters is adversely affected by low
resource utilization [1], [2], [3], [4], [5], [6], [7], [8]. [9],
[10]. Multi-tenancy can boost server utilization, however, co-
scheduling jobs is especially challenging for latency-critical
applications, such as websearch, social networks, and ML
inference, since it can lead to interference in shared resources
(cores, cache, memory bandwidth, network bandwidth, power,
etc.), and unpredictable performance. Prior work has proposed
techniques to avoid interference by disallowing colocation of
contending workloads [2], [3], [4], [5], [8], [11], or techniques
to eliminate interference altogether, by leveraging hardware
and software resource isolation mechanisms [6], [7], [8], [12],
[131, [14], [15], [16], [17].

In multi-tenant systems with latency-critical applications,
fine-grained resource allocation allows assigning just enough

*Work was done while the author was a PhD student at Cornell University.

978-1-7281-7383-2/20/$31.00 ©2020 IEEE
DOI 10.1109/MICR0O50266.2020.00060

Gonzalo Gonzalez-Pumariega
Electrical and Computer Engineering
Cornell University
Ithaca, NY, USA
gg387@cornell.edu

Christina Delimitrou
Electrical and Computer Engineering
Cornell University
Ithaca, NY, USA
delimitrou@cornell.edu

650

Amulya Khurana
Electrical and Computer Engineering
Cornell University
Ithaca, NY, USA
ak2425@cornell.edu

David H. Albonesi
Electrical and Computer Engineering
Cornell University
Ithaca, NY, USA
dha7@cornell.edu

resources to co-scheduled applications to meet their quality
of service (QoS) requirements, while improving resource
efficiency by allowing more applications to be co-scheduled.
However, prior work is limited to traditional servers where
cores cannot be reconfigured to enable fine-grained performance
and power adjustments. Core reconfiguration [18], [19], [20]
opens up more opportunities for colocation, as it allows the
hardware to adjust to the dynamic needs of a specific mix of
co-scheduled applications.

DVES, which is widely used in systems today, is another
solution to enable fine-grained performance and power adjust-
ments in cores. However, the movement towards processors
with razor-thin voltage margins and the increase in leakage
power consumption limit the effectiveness of DVFES in future
systems [21], [22], [23], [24], [25], [26]. Reconfigurable
cores [18], [19], [20] operate by dynamically power gating
core components. Since they reduce both active and leakage
power, they can be effective in reducing power consumption
in technologies where voltage scaling ranges are limited.
Datacenters also suffer from poor energy proportionality [6],
[23], with processors exhibitng high idle power, as technology
shrinks. Reconfigurable cores with their ability to reduce idle
power, also offer a solution to make cloud servers more energy
proportional.

We propose to leverage reconfigurable cores to enable
co-scheduling of cloud latency-critical, interactive services,
and batch applications. This means satisfying the strict QoS
requirements of the latency-critical interactive services, and
maximizing the throughput of the batch applications, while
always remaining under the allowed power budget assigned
to the server either by the chip-wide power budget, or by
a global power manager [6] running datacenter-wide. Prior
work on reconfigurable multicores, such as Flicker [18], is
exclusively geared towards batch applications, and leads to
QoS violations and unpredictable performance for latency-
critical services. It additionally does not handle interference in

the shared memory hierarchy. On the other hand, fine-tuning
architectural parameters also increases the space of allocations
a resource manager must traverse to identify suitable resource
configurations for an application. As the number of cores
and configuration parameters increases, efficiently exploring
this space becomes computationally prohibitive. This is even
more challenging given that decisions must happen online, as
applications and power budgets change.

We design CuttleSys, an online resource manager that com-
bines scalable machine learning to determine the performance
and power of each application across all possible core and
cache reconfigurations, with fast design space exploration to
effectively navigate the large configuration space and arrive
at a high-performing solution. First, the system leverages col-
laborative filtering, namely PQ-reconstruction with Stochastic
Gradient Descent (SGD), to infer the performance (tail latency
for latency-critical and throughput for batch applications) and
power consumption of an application across core and cache
configurations without the overhead of exhaustive profiling.
Second, it leverages a new, parallel Dynamically Dimensioned
Search (DDS) algorithm to efficiently find a per-job, globally-
beneficial configuration that satisfies QoS for latency-sensitive
workloads, and maximizes the throughput for batch jobs, under
the power budget. Both techniques keep overheads low, a couple
milliseconds, allowing CuttleSys to reevaluate its decisions
frequently and adjust to changes in application behavior.

We make the following contributions:

« We demonstrate, for the first time, the potential of
reconfigurable cores for servers running latency-critical ap-
plications by characterizing five representative interactive
cloud services (Section III).

We present CuttleSys, an online resource manager that
efficiently navigates the large design space and determines
suitable core and cache configurations (Section IV).

We evaluate CuttleSys on 32-core simulated systems with
mixes of latency-sensitive [27] and batch applications [28].
We show that at near-saturation load and across different
power caps, CuttleSys achieves 2.46x higher throughput
than core-level gating and 1.55x higher than an oracle-
like asymmetric multicore, while always satisfying QoS
for the latency-sensitive applications. We also show that
CuttleSys effectively adapts to changes in input load and
power budgets online (Section VIII).

II. RELATED WORK

A. Power Management

1) Dynamic Voltage-Frequency Scaling (DVFS): DVEFES al-
lows dynamically changing a processor’s voltage and frequency,
and is widely used in modern multicores.

Batch Workloads: Isci et al. [29] propose maxBIPS, an
algorithm that selects DVFS modes for each core that maximize
throughput under a power budget. Sharkey et al. [30] extend
this work by exploring both DVFS and fetch toggling, as well
as design tradeoffs such as local versus global management.
Bergamaschi ef al. [31] further extend maxBIPS, and compare

651

its discrete implementation to continuous power modes. Chen et
al. [32] propose co-ordinated predictive hill climbing to control
distribution of power among cores, and intra-core resources like
IQ, ROB and register files among SMT threads. Papadimitriou
et al. [33] explore safe Vmin for different applications by
exposing pessimistic guardbands and determining the best
voltage, frequency, and core allocation at runtime.

Apart from open-loop solutions, there are also multiple
feedback-based controllers [6], [34], [35], [36], [37]. Wang et
al. [34] use Model Predictive Control to maintain the power of
a CMP below the budget by controlling the DVFS states, while
Bartolini et al. [36] propose a distributed solution allocating
one MPC-based controller to each core. Ma et al. [35] propose
a hierarchical solution for many-core architectures that divides
the problem by allocating frequency budgets to smaller groups
of cores. Intel also supports fine-grained power control through
the RAPL [38] interface that allows software to set a power
limit, which the hardware meets by scaling voltage/frequency.

Latency Sensitive Workloads: Lo et al. [6] propose a
feedback-based controller that reduces power consumption
in server clusters, while meeting the QoS (Quality of Service)
requirements of latency-critical services by adjusting the
server power limits using RAPL. Nishtala et al. [37] use
Reinforcement Learning to find the best core allocations and
frequency settings for latency-critical jobs to save energy while
meeting QoS. Kasture et al. [14] propose Rubik, a fine-grained
DVES scheme for latency-sensitive workloads and RubikColoc,
a scheme to co-schedule batch and latency-critical workloads.
Adrenaline [39] applies DVFS at a per-query granularity, using
application-level information to speed up long queries. Meisner
et al. [23] explore the efficacy of active and idle low-power
modes for latency-critical applications to save power under
QoS, and showed that active power modes (DVFS) provide
good power-performance trade-offs but cannot achieve energy
proportionality by themselves. Motivated by their conclusion,
our work explores fine-grained power management techniques
that reduce idle power along with active power.

The movement towards processors with razor-thin voltage
margins limits the effectiveness of DVFS as technology scaling
slows down. A viable and widely-implemented alternative to
DVEFS is core-level gating (C states), discussed in the next
section. Reconfigurable cores enable gating at an even finer
granularity allowing further gains over traditional core-level
gating. Similar to how core-level gating is used along-side
DVES in modern processors, our technique can augment DVFS
by increasing the energy gains for frequency regions where
DVES is not effective [20], [21], [22].

2) Core-Level Gating: Core-level gating powers off individ-
ual cores by placing them in a separate domain [21], [40], [41],
[42], and has become necessary to reduce power consumption
beyond DVFS. Intel CPUs since Skylake [21], [22] support
Duty Cycling Control (DCC), which cycles between per-core
on (CO) and off (C6) states at the granularity of tens of
microseconds. Below we describe several proposals to use
core-level gating to maximize performance under a power
budget.

Batch Workloads: Intel processors [21], [22] implement core-
level gating only during idle core times using auto-demotion.
Ma et al. [43] and Huazhe et al. [44] integrate core-level
gating with DVFS, and propose a controller-based algorithm
that employs power gating at coarse granularity, and DVFS at
fine granularity. Arora et al. [45] develop a linear prediction
algorithm for C6 for CPU-GPU benchmarks. Pothukuchi et
al. [46] use MIMO theory, while Rahmani et al. [47] use
Supervisory Control Theory to dynamically tune architectural
parameters to meet performance and power goals. These
feedback-based controllers become overly expensive as the
decision space expands, taking a prohibitive time to converge.
Latency Sensitive Workloads: Leverich et al. [24] propose
per-core power-gating to dynamically turn cores on/off based
on utilization and QoS. PowerNap [25] and DreamWeaver [26]
coordinate deep CPU sleep states to minimize idle power.
However, Kanev et al. [48] show that deep CPU sleep states,
owing to their long wakeup latencies, can also impact tail
latency, as latency-sensitive applications have short idle periods.
We use core-level gating in this work as a baseline for cores
that host batch workloads to meet the power budget.

B. Asymmetric Multicores

Asymmetric multicores improve performance and power by
assigning resources to applications based on their dynamic
requirements [49], [50], [51], [52], [53], [54], [55], [56].

Batch Workloads: PIE [57] schedules applications in het-
erogeneous multicores by estimating the performance of an
application on out-of-order cores, while running on an in-order
core and vice-versa. Liu et al. [58] propose a dynamic thread-
mapping approach, maximization-then-swapping, to maximize
performance in power-constrained heterogeneous multicores.
However, this relies on application profiling, which can become
impractical in large-scale multicores.

Teodorescu et al. [59] and Winter et al. [60] propose thread
scheduling and power management for heterogeneous systems.
Teodorescu [59] proposes LinOpt, a linear programming-based
approach, while [60] explores the Hungarian algorithm to
optimize performance under a power budget. Adileh et al. [61],
[62] maximizes performance by multiplexing applications
between two voltage/frequency operating points to match the
power budget. The authors propose a technique to shift “power
holes” arising due to core heterogeneity. Navada et al. [63]
propose the use of non-monotic cores, each optimized for
different instruction-level behavior, and steer applications on
appropriate core types using bottleneck signatures.

Latency Sensitive Workloads: Petrucci er al. [64] show that
simply using asymmetric multicores without redesigning system
software results in QoS violations. They propose a controller
that maps jobs to the least power-hungry processing resources
that can satisfy QoS by incrementally assigning more slower
or faster cores until QoS is met. Ren er al. [65], [66] propose
a query-level slow-to-fast scheduler, where short queries run
on slower cores and longer queries are promoted to faster
cores to reduce their service latency. The latter work [66]
also theoretically proves the energy efficiency advantages

652

of asymmetric multicores over homogeneous systems. All
of these efforts assume that cores of the desired speed are
always available, which is not realistic. Haque et al. [67]
take into account the fact that there is a limited number
of cores of each type. They combine asymmetric multicores
with DVFS and implement the slow-to-fast scheduler of [65],
[66]. However, asymmetric multicores have a fixed number of
core types (generally two), while reconfigurable cores provide
a finer granularity of heterogeneity, enabling fine-grained
performance/power tuning. We compare CuttleSys against an
oracle-like asymmetric multicore in Section VIII.

C. Reconfigurable Architectures

Previous work on reconfigurable cores focuses on batch,
throughput-bound workloads. Lee et al. show the efficiency
advantages and limits of adapting microarchitecture parameters
to workloads. Lukefahr er al. [68] propose Composite cores,
which pair big and little compute engines, and save energy by
running applications on the small core as much as possible,
while still meeting performance requirements. Padmanabha et
al. [69] propose trace-based phase prediction for migration of
applications in Composite cores.

Chrysso [19] proposes an integrated power manager that uses
analytical power and performance models and global utility-
based power allocation. The configuration space of a core in
our work is significantly larger compared to Chrysso [19],
which makes the optimization problem more complex. Re-
source Constrained Scaling (RCS) [70] also aims to maximize
performance in power-constrained multicores. In RCS, the
resources of a processor and the number of operating cores
are scaled simultaneously, which means that the system can
operate in only a few different configurations.

Khubaib ef al. [71] propose a core architecture that dy-
namically morphs from single-threaded out-of-order to multi-
threaded in-order. FlexCore [72] similarly morphs into 4-way
or 2-way out-of-order, or 2-way in-order cores at runtime. Tarsa
et al. [73] propose post-silicon combining of 2 out-of-order
execution clusters, and operate as an 8-wide or a low-power
4-wide engine. Duplexity [74] couples SMT master and lender
cores and allows dynamic borrowing of threads among them.

The Sharing Architecture [75] and Core Fusion [76]
combine multiple simple out-of-order cores to form larger
out-of-order cores. CASH [77] also advances the Sharing
Architecture with a runtime to find the best configuration for
a single application which minimizes cost and meets QoS,
using control theory and Q-learning. CuttleSys accounts for
the interference between multiple co-scheduled applications
that must all meet performance guarantees, and can be applied
to the Sharing Architecture to quickly explore the design space
of resource slices when multiple applications are hosted on a
multi-tenant server, and arrive at suitable per-job resources.

Zhang et al. [20] and Petrica et al. [18] propose cores that can
be reconfigured by scaling datapath components to save energy
beyond DVFS. The dynamic scheme in Flicker [18] optimizes
performance for a homogeneous multicore with reconfigurable
cores under a power budget. Zhang et al. [20] also show

ox103
8

Masstr

Moses

m— 80% load
=== 20% load
I |

A
w
1
.

o

e
5

Tail latency (ms)
= - B

=]
3 o

N
o

Power (W)
N
o

e 80% load
* 20% load

80% load
20% load *

|

e 80% load
20% load

m— 80% load
=== 20% load
Il

,2(4}

80% load
20% load

80% load
20% load

642 442 242 626 426 226 624 424

224 622 422

222

Fig. 1: Characterization of tail latency and power of 5 latency-sensitive applications across core configurations. Colors in the
background represent the different core configurations, labeled as {FE,BE,LS}, as shown in the table. Core configurations,
from highest to lowest configuration (dark to light color), are ordered by serially decreasing configurations in LS, FE, and BE.
For each application, x-axis (core configurations) is sorted according to the tail latency observed at 80% load.

that reconfigurable cores significantly extend the performance-
energy pareto frontier provided by DVFS.

However, these systems are limited to batch jobs, and do not
consider the implications of reconfiguration on tail latency.
Moreover, Zhang et al. [20] only consider a single core
running one application. In Section VIII-E, we discuss why
Flicker cannot be applied directly in this setting, and provide
a quantitative comparison between Flicker and CuttleSys.

III. CHARACTERIZATION OF LATENCY-CRITICAL SERVICES

We now quantify the impact of different core configurations
on the tail latency of interactive cloud services. We use five
applications, Xapian, Masstree, Imgdnn, Silo, Moses,
and configure them based on the analysis in [27]. We simulate
each application on a homogeneous 16-core system using
zsim [78], a fast and cycle-level simulator, combined with
MCcPAT v1.3 [79] for a 22nm technology for power statistics.
A core is divided into three sections, front-end (FE - fetch,
decode, ROB, rename, dispatch), back-end (BE - issue queues,
register files, functional), and load-store (LS - LD/ST queues),
each of which can be configured to six-way, four-way, and
two-way, similar to Flicker [18], except that we adopt a more
aggressive superscalar design. These cores dynamically power
gate associated array structures in each pipeline region when
the configuration is downsized.

Fig. 1 shows the variation of tail latency and power for each
service, across core configurations at low and high load. Across
all services, at high load, tail latency increases dramatically
as the back-end and load-store queue are constrained. On the
other hand, at low load, tail latency remains low, even for the
lower-performing configurations. Therefore, when load is low,
interactive services can leverage reconfiguration to reduce their
power consumption, without a performance penalty.

We also observe that the core section that most affects tail
latency varies between applications. For Xapian, tail latency is
primarily determined by the load-store queue size, with low
latency requiring a six-way queue. In the cases of ImgDNN,

653

Silo, and Masstree, tail latencies are low when FE and LS are
configured to six- or four-way, while in the case of Moses, tail
latency primarily depends on the front-end core section.

At high load, the configuration with the best performance-
power trade-off varies across services. For example, Xapian
consumes the least power in a {2,2,6} configuration while
keeping tail latency low, while for ImgDNN, Masstree, Moses,
and Silo, configurations {4,2,4}, {4,2,4}, {6,2,4} and {2,2,4}
consume the least power respectively. This shows that different
core configurations are indeed needed by diverse applications.
Also, batch applications differ in preferences from latency-
critical applications. This variability across loads and applica-
tions highlights the need for practical runtimes that identify
the best core configurations of each application online.

IV. CUTTLESYS OVERVIEW

We co-schedule latency-sensitive applications with batch
workloads on a server with multiple reconfigurable cores, as
shown in Figure 2. The last level cache (LLC) and power
budget are shared across all cores.

A. Problem Formulation

Our objective is to meet the QoS target for the latency-
sensitive application, and maximize the throughput of the co-
located batch applications, under a power budget that can
change dynamically. Since the applications share the last
level cache, the performance of each application depends
on the interference in the last level cache caused by other
applications. In order to mitigate this interference, CuttleSys
also dynamically partitions the LLC among active applications
at the granulariry of cache ways [80], [81].

The system consists of N cores. Each core can be configured
in m modes. Each application can be assigned one of p cache
way allocations. Thus, each application can be executed in m* p
configurations. For simplicity, the formulation below assumes
one latency-sensitive application colocated with multiple (B)
batch applications. The objective function is as follows:

Resource Controller

ot
0

Perf/Power Reconstruction (Parallel SGD)

o,

configurations

configurations
13 34

: (2 213 34
i 3matrices: [O || : ; of ;
Throughput,<§ 2.5 5.1 #8 2.5 5.1
i Power, |= 4.9 5.7 = 49 ... 58
: Taillatency [39 43 = 38 43
: ® Lo.s 2.9 l T 2.9
V. Design Exploration
= DDS Algorithm
24 [©) B
< ‘<‘— —
2 ’ !
ol @ ~
Power ~ é N — R
cap = Power maxPower ’

.

Back-end
1Q/RF/Exec

units

Front-end

} lanes
Dispatch/ROB Load/Store: LSQ

=8[=8[=8]=5

I [T I M I
=2 =E =g =B
IO [CId] I [M I
el LTI TTITTITTITIITTII]

4
I Sunjyoud

SuliojuoN

& Selected
” configs

Fig. 2: CuttleSys system overview.

B, j x = throughput (BIPS) of batch app i running in core
config j and cache allocation k

Tp,j« = tail latency of latency-sensitive app running in
core config j and cache allocation k

P, j = power of app i running in core config j

C; jx = cache ways allocated to app i running in core
config j and cache allocation k

I jx =1 if app i is assigned to core configuration j
and cache allocation k

= 0 otherwise

We maximize the geometric mean of throughput:

B
BIPSsyxtem = (HZBi,j,k *Ii.j,k)l/B

(L
i=1 jk
under the following constraints:
B
Powersystem = Z ZP,', j*1; jx < maxPower 2)
=0 j.k
B
Cache_allocgysiem = Z ZCi_jJ(*1; jx < cacheWays (3)
=0 jk
ZTO,j‘k xIy.jx < QoS (4)
ok
(5)

Y ljx=1Vi=1,N
J.k

Eq. 2 states that the total power should be under the budget,
while Eq. 3 states that the total allocated cache ways should
be no higher than the LLC associativity. We exclude the
power overhead of data movement from DRAM, since it is
negligible compared to the core power. Eq. 4 addresses the QoS
requirement of the latency-sensitive application. Eq. 5 states
that each application can be mapped to a single configuration.
We use geometric mean as the objective function, since
all batch applications have equal priority [82]. Exhaustively
exploring the full design space of core configurations and
cache allocations ((m* p) * (m = p)B) is impractical as the

654

number of cores/applications increases. This is problematic,
since reconfiguration decisions need to happen online, and the
optimization problem is non-linear and non-convex in nature.

Our scheme is made practical via two separate, mutually
beneficial optimizations:

1) Lightweight runtime characterization to infer the perfor-
mance (B;j in Eq. 1, Ty ;x in Eq.4), and power (F; ;
in Eq. 2), of all applications across all possible m core
configurations and p cache allocations; and
Fast and accurate design space exploration, given the out-
put from (1) to determine a globally-beneficial solution
to the core configuration and cache allocation problem
in the limited time available for scheduling.

Previous approaches [18] to determine the impact of recon-
figuration require detailed profiling of each active application
against large number of resource configurations, which incurs
non-trivial profiling overheads, and scales poorly with the
number of configuration parameters. This approach is further-
more limited to batch applications, and does not take into
account inter-application interference. Instead, we propose to
infer performance (tail latency for interactive services and
throughput for batch jobs) and power, across all possible
core and cache configurations, by uncovering the similarities
between the behavior of new and previously-seen applications
across configurations. Specifically, we use PQ-reconstruction
with Stochastic Gradient Descent [2], [83], [84], [85], a fast
and accurate data mining technique that, given a few profiling
samples for an application collected at runtime, estimates
the application’s performance and power across all remaining
system configurations, based on how previously-seen, similar
applications behaved on them. While SGD has been previously
applied in the context of cluster scheduling [2], [3], core
reconfiguration places much stricter timing constraints (few
ms) and a larger configuration space on SGD, requiring a new,
more efficient, parallel approximated SGD implementation.

To quickly explore the design space, we adapt Dynamically
Dimensioned Search (DDS) [86], a heuristic algorithm that
searches high-dimensional spaces for globally-beneficial solu-
tions. DDS is computationally efficient, applicable to discrete

2)

problems, and especially effective for problems with high
dimensionality, such as quickly searching the large space of
resource configurations. The combination of SGD and DDS
significantly improves performance over previous approaches.

We also note that CuttleSys is an open-loop solution, which
searches the design space and finds the best resource allocation
in a single decision interval compared to feedback-based
controllers, which take significant time to converge. This is
especially beneficial for latency-critical applications, as they
do not suffer from QoS violations until convergence.

B. Efficient Resource Management

Fig. 2 shows the high-level architecture of CuttleSys, which
consists of the Configuration Controller and the Resource
Controller. At the beginning of each decision quantum (100ms
by default, consistent with prior work [18]), the Configuration
Controller profiles performance and power, which are used
by the Perf/Power Reconstruction module in the Resource
Controller. The Configuration Controller then configures cores
and cache ways based on the solution from the Design
Exploration module for the remainder of the timeslice.

The Resource Controller takes as input the collected profiling
samples, and the specified Power Cap, and determines the
best core/cache configurations. The first step is Perf/Power
Reconstruction, which uses SGD to estimate the power and
performance of an application for all core and cache configu-
rations, based on a small number of samples (Section V). The
Design Exploration uses SGD’s output to determine the best
configuration for each job (Section VI).

We describe the timeline of this process below, using Fig. 3.
Our approach requires 2 profiling samples, one sample of
the highest- and one of the lowest-performing configurations,
corresponding to the widest-issue ({6,6,6}) and narrowest-issue
({2,2,2}) configurations respectively with one LLC way per
core for the currently running applications, along with the
performance and power of some “training” applications in
all configurations, as shown in Figure 2. We run applications
for the duration of a sample timeframe (1ms as described
in Section VIII-Al), for each configuration and measure
performance and power ((D). QoS for most cloud services
is measured at intervals longer than 1ms [3], [6], [7], [23],
[87], [88]. To obtain meaningful measurements, we measure tail
latency over the entire 100ms of the previous timeslices. After
this online profiling, we run the reconstruction algorithm to
estimate the tail latency of latency-sensitive cloud services, the
throughput of batch applications, and the power consumption
of each application across all m* p configurations ().

Finally, we apply DDS to quickly search the space of core
configurations and cache allocations, and find a solution that
meets QoS and maximizes the throughput of batch applications
for the given power budget ((3)). The system then runs in steady
state (@) with the selected core and LLC configurations. At
the end of the timeslice, power and performance are measured
and updated in the SGD matrix to ensure that any predictions
deviating from the real metrics are corrected.

655

2 samples
(3 Optimization Algorithm

f——p|
] |

T —l

® Steady State ————

Reconstruction Algorithm

Total time slice

Fig. 3: Timeline showing the steps of characterization, inference,
and steady-state operation in CuttleSys.

V. PRACTICAL INFERENCE WITH SGD

The first step in the Resource Controller estimates the
power, throughput, and tail latency for applications across
all core configurations and cache allocations. Previous tech-
niques [18] require long profiling runs to accurately estimate
an application’s power and performance across configurations.
Moreover, since previous work only targeted core configura-
tions, estimating performance for cache allocations too would
require an untenable number of profiling samples. Instead,
we use the following insight to reduce profiling and improve
practicality: the performance and power profile of a new,
potentially unknown application may exhibit similarities with
the characteristics of applications the system has previously
seen, even if the exact applications are not the same.

This problem is analogous to a recommender system [83],
[89], [90], [91], [92], [93], [94], where the system recommends
items to users based only on sparse information about their
preferences. In our case, users are analogous to applications and
items to resource configurations (core configurations and cache
allocations). A rating corresponds to the power or performance
of an application running in the particular core and cache
configuration. We construct a sparse matrix R (one each for
throughput, tail latency and power) with applications as rows
and resource configurations (core-cache vectors) as columns.
The rows of matrix R include some “known” applications, along
the previously-unseen applications that arrive to the system.

The matrix is initially populated with the performance
or power of these “known” applications which have been
characterized once offline across all configurations. For all other
new applications, the corresponding rows only have two entries
obtained through profiling on two core-cache configurations
out of the entire design space. The missing entries are inferred
using PQ-reconstruction with Stochastic Gradient Descent
(SGD) [2], [84], [85], [89], [90]. To reconstruct R, we first
decompose it to matrices P and Q, where the product of Q and
PT gives the reconstructed R, as shown in Alg. 1. Matrices Q
and P are then constructed using Singular Value Decomposition
(SVD), and correspond to Q = U and PT =Y -VT respectively,
where U, V are the left and right matrices of singular vectors,
and Y the diagonal matrix of singular values. In Alg. 1, A is
the total number of jobs (including known ones), and mx* p is
the number of resource configurations. The impact of training
set size is discussed in Sec. VIII-A2.

There is an obvious trade-off between the maximum number
of iterations and the reconstruction accuracy: the fewer the
iterations, the lower the overhead, but also the higher the
prediction inaccuracy. We have conducted a sensitivity study

Algorithm 1 Reconstruction Algorithm

Initial random best point
configuration {core-config, cache alloc}

1: Initialization:

2 Q « random(A,m*p); P +— random(m*p,m*p)
3 1 <+ learning rate; A < regularization factor
4 maxlter < max # of iterations

5. for [< 1 to maxiter do

6 for i< 1t0 A do

7 for j< 1tomxp do

8 Eij R,‘j — Qj.P;r

9 Qj < Qj+n(&;Pi—1Q;)
10: P+ P+ n(&ij —)yPi)
11: R« QxPT

to select convergence thresholds for SGD. To further reduce
overheads, we have also limited the number of iterations.

For the currently-running applications, we obtain two sam-
ples of the highest- and lowest-performing core configurations
with the ways equally allocated at runtime. We also get
additional samples for these applications by monitoring power,
throughput, and tail latency for the configurations from previous
steady states. To predict the throughput and power for the
remaining configurations (m * p — 2, initially but fewer as
we get more points from previous steady states) and tail
latency for the remaining configurations (m* p — 1 initially),
we run three instances of the reconstruction algorithm, one
each for throughput, tail latency, and power. We run these three
reconstructions in parallel to minimize overheads.

To further accelerate reconstruction, we have implemented
a parallel reconstruction algorithm that executes SGD with-
out synchronization primitives [95], [96]. This introduces a
small, upper-bounded inaccuracy (approximately 1%), while
improving its execution time by 3.5x.

VI. FAST DESIGN EXPLORATION WITH DDS

Once SGD recovers the missing performance and power of
each job across all core configurations and cache allocations,
the system employs Dynamically Dimensioned Search (DDS)
to quickly explore the space, and select appropriate core
configurations and cache partitions. DDS [86] is specifically
designed to navigate spaces with high dimensionality, especially
in cases where computing the objective function is expensive.
This makes it a good fit for CuttleSys’s tight timing constraints.

The operation of DDS is shown in Fig. 4. The algorithm
explores new points in the design space by perturbing a
small number of dimensions from the current best point
in each iteration, with the number of perturbed dimensions
decreasing as the search progresses, and eventually converging
to a globally-beneficial solution. Fig. 4 shows an example of
DDS for a simple 4-core system running four applications
on four cores. The application configuration vector is a
N-dimensioned decision variable, where the i dimension
denotes the configuration assigned to the i application. The
configuration assigned can be any number from 0 to m*p — 1.
The algorithm starts with a set of random points, and selects

656

—
0 |35]19| 73| inwhich application will run

app configuration vector
current best point

current best pomt n new point
+ T []ule]n]
[4]9[50]0]

perturb vector

If objective(new point) > objective(best point)
best point = new point

after N iterations

I 1

OUTPUT: Good global combination of core-configurations and cache allocations

Fig. 4: The DDS design space exploration algorithm.

the point that has the highest value for the target objective as
the current best point. In the given example, the current best
point has threads 0, 1, 2 and 3 assigned to configurations 0, 35,
19, and 73 respectively. The current best point is then perturbed
to explore new points. If the new point has a higher objective,
it replaces the previous best point, and the process repeats
until the algorithm arrives at a globally-beneficial combination
of core configurations and cache allocations. The perturbation
vector determines the number of dimensions to be perturbed and
the perturbation magnitude for each dimension. DDS searches
across more dimensions in the beginning, and narrows down
to fewer dimensions later. The perturbation quantity is equal
to r- (#confs)- .4 (0,1), where r is a perturbation parameter.

A. Handling Optimization Constraints

The optimization problem of Sec. IV has three constraints:
a) power (Eq. 2), b) cache (Eq. 3), and c) QoS (Eq. 4).

Since latency-critical jobs are load-balanced, all cores
assigned to them use the same configuration. This simplifies
the core configuration search to scanning through the predicted
tail latency of the m* p configurations. We select the lowest
cache allocation, and the core configuration that consumes the
least power while meeting QoS. DDS then explores points for
the batch jobs, while keeping the configuration of cores and
cache ways assigned to latency-critical applications fixed.

To handle the power and cache constraints of Eq. 2 and 3, we
use an objective function that penalizes the points that consume
more power and/or more cache than allowed as follows:

ob jective(x) = BIPSyygem(X)

— penalty_power x (maxPower — Powerygem(X))

— penalty_cache x (maxWays — Cache_allocgysem(X))

We choose a soft penalty approach to handle the power
constraint in the objective function, so that points with slightly
higher power are not heavily penalized.

If no configurations are found which meet the QoS of the
latency-critical service, CuttleSys reclaims cores from the batch
workloads, one per timeslice, and yields them to the latency-
critical service, until QoS is met. The cores are similarly
incrementally relinquished by the latency-critical applications
when QoS is met with latency slack.

B. Parallel DDS

To further speed up the design space exploration, we have
designed a new parallel DDS, shown in Alg. 2.

Algorithm 2 Parallel DDS Algorithm

1: Initialization:

2 maxlter < max # of iterations

3 r < perturbation parameter

4: [, = get_config_LC()

5. Initial rand points x={/.,..,l¢, Xk, ...,xn }
6: Xbest
7: for
8

< argmax{obj(X)|x € random points}
i <1 to maxlter do
Xlucalbesr — Xbesr

9:

for j< 1 to pointsPerlteration do
10: p < 1—1log(i)/log(maxlter)
11: add dimensions to {P} with probability p
12: for d € {P} do
13: X" [d] = xlocalbest[d] . (#confs) - A (0,1)
14: if X" [d] & [0,#confs) then
15: reflect the perturbation
16: if 0bj(x"") > obj(x/*¢@best) then
17: Xlocalbest — xhew
18: barrier_wait()
19: if threadlD == 0 then
20: xPet < argmax{obj(x)|x € {xlocalbesi 1}
21: barrier_wait()

In the first phase, we initialize the algorithm’s parameters.
Line 2 sets the maximum number of iterations (maxlter) of
the algorithm. As maxiter increases, the quality of the solution
obtained improves, but at the same time the time required to
run the algorithm also increases. We explore this trade-off in
Section VIII, and select the appropriate number of iterations.

In parallel DDS, to avoid different threads exploring the same
points (obtained from perturbation of the same best point), and
to explore a larger space of configurations, we use four different
values for the perturbation parameter; r = (rl, r2, r3, r4). In an
N-core system, the first N/4 threads of the parallel algorithm
set r = rl, the next N/4 threads set r = r2, etc.

Line 4 gets the resource configuration that satisfies the
QoS for latency-critical (LC) applications. Lines 5-6 show the
randomly-chosen points the algorithm starts with, selecting the
best among them as the initial best point. In parallel DDS, for
a current best point, each thread generates pointsPerlteration
number of new points, and finds the best point among them,
as shown in Lines 9-17. The number of dimensions to be
perturbed is determined by the probability function, as seen on
Lines 10-11, while Line 13 shows the quantity by which the
dimensions are perturbed. If the value of a dimension in the
newly-generated point is out of bounds, the algorithm mirrors
the value about the maximum or minimum bound, to bring the
point back within the valid range (Lines 14-15).

DDS chooses the new point as the next best point if
obj(x"") > obj(x"*") (Lines 16-17). After each core has
computed points Perlteration points, a single core aggregates

657

all the per-core best points, picks the best one, and uses
the selected configuration in the next iteration (Lines 18-21).
DDS concludes after maxliter iterations, and returns the best
combination of core configurations and LLC allocations.

If the power cap is not met even when all cores running
batch jobs are in the lowest configuration, we turn off cores,
in descending order of power, until the power budget is met.

VII. EXPERIMENTAL METHODOLOGY

We simulate 32-core multicores with reconfigurable cores.
The core’s architectural parameters are shown in Table I, and are
scaled according to the selected configuration, similar to [18].
Since we assume six-, four-, and two-way in each of the
front-end, back-end, and load/store queue sections, we have
a total of 33 =27 (m=27) configurations. Our cores are also
similar to the large cores in AnyCore [97], which evaluates
the performance-energy overheads of reconfiguration.

BP: gshare + bimodal, 64 entry RAS, 4KB BTB
144 entry ROB
6-wide fetch/decode/rename/retire
out-of-order, 6-wide issue/execute
192 integer registers, 144 FP registers
48 entry IQueue, Load Queue, Store Queue
6 Integer ALUs, 2 FP ALU
1 Int/FP Mult Unit, 1 Int/FP Div Unit
L1 I-Cache: 32KB, 2-way, 2 cycles
L1 D-Cache: 64KB, 2-way, 2 cycles
L2 Cache: 64MB, shared, 32-way, 20 cycles
200 cycle DRAM access latency
22 nm technology, 0.8V Vdd, 4GHz frequency

Front end

Execution
core

Memory
heirarchy

Technology

TABLE I: Configuration of the 32-core simulated system.

Based on the RTL analysis of frequency, energy, area
overheads in [97], we assume 1.67% frequency and 18% energy
penalty per cycle for our reconfigurable cores compared to fixed
ones. Reconfigurable cores also consume 19% higher area. In
our experiments, we consider fixed-power scenarios, where the
power budget is kept constant across the designs (core gating
of symmetric and asymmetric multicore, and reconfigurable
cores). Under the power-capped scenarios, even if more cores
can be packed in fixed-core designs (core gating-based and
asymmetric multicores), they cannot be turned on due to power
constraints. The performance benefits of CuttleSys are achieved
at the cost of 19% more area.

A. Simulation Infrastructure and Workloads

We use zsim [78] for performance statistics combined with
MCcPAT v1.3 [79] in 22nm technology for power statistics.
We simulate 32-core systems, with 50% cores assigned
to a latency-critical (LC) application and 50% cores are
assigned to batch jobs at time #t=0. The core allocation
can change at runtime. Batch jobs are multi-programmed
mixes from SPECCPU2006 (perlbench, bzip2, gcc,
mcf, cactusADM, namd, soplex, hmmer, libquantum,
lbm, bwaves, zeusmp, leslie3d, milc, h264ref, sjeng,
GemsFDTD, omnetpp, xalanchmk, sphinx3, astar, gromacs,
gamess, gobmk, povray, specrand, calculix, wrf), while

the LC services are selected from TailBench [27] (Xapian,
Masstree, ImgDNN, Moses, Silo). We co-schedule each
of the TailBench services with 10 multiprogrammed (16-app)
mixes from SPECCPU2006, for a total of 50 mixes. We
use one LC service for simplicity, however, CuttleSys is
generalizable to any number of LC and batch services, as long
as the system is not oversubscribed.

The reconstruction algorithm requires the power and perfor-
mance of a small number of representative applications to be
collected offline, on all core configurations and cache alloca-
tions. We randomly selected 16 (discussed in Section VIII-A2)
of the above SPECCPU2006 applications for offline training at
the beginning, excluding significant platform redesigns. Each
of the multiprogrammed workloads is constructed by randomly
selecting one of the remaining SPECCPU2006 benchmarks to
run on each core, to ensure no overlap between the training and
testing datasets. Each SPECCPU2006 benchmark runs with
the reference input dataset.

To find the maximum load each Tailbench service can sustain,
we simulate it on a 16-core system and incrementally increase
the queries per second (QPS), until we observe saturation.
We use the QPS at the knee-point before saturation as the
maximum load to avoid the instability of saturation [8]. These
max QPS are: a) Xapian: 22kQPS, b) Masstree: 17kQPS, c)
ImgDNN: 8kQPS, d) Moses: 8kQPS, and e) Silo: 24kQPS.

The system’s maximum power is the average per-core power
across all jobs on reconfigurable cores scaled to 32 cores. We
evaluate the system across power caps.

B. Baseline Core-Level Gating

We compare our design with core-level gating as it is widely
employed in current systems for power gating. To meet QoS the
cores running latency-sensitive applications are always turned
on. To determine which cores to turn off, core gating requires
estimations of the power and performance of all applications.
To do this, we profile the applications for one sample_time.
We explore the following approaches for selecting the cores to
turn off: a) descending order of power; b) ascending order of
power; c) ascending order of BIPSperWatt; and d) ascending
order of BIPS. From our experiments, we found that turning
off cores based on descending order of power achieves the best
performance for core-level gating. When turning off the last
core required to meet the power budget, we search among the
active cores and gate the one that meets the power budget with
the smallest slack. We also consider core-gating with LLC way-
partitioning using [80], since the technique is already available
in real cloud servers [7]; the choice of cache partitioning is
orthogonal to the techniques in CuttleSys.

Quantitatively comparing against core-level gating using the
geometric mean of throughput is problematic, since when a
core is gated, fewer applications run to completion. Thus, we
compare the total number of instructions (useful work) executed
over the same amount of time.

C. Asymmetric Multicores

Asymmetric multicores, which comprise cores with different
performance and energy characteristics, have been proposed

658

as an alternative to homogeneous multicores in order to
improve energy efficiency [49], [50], [S1], [52], [53], [54], [55].
Heterogeneity allows each application to receive resources that
are suitable to its requirements and thus, improve the overall
throughput, while still operating under a power budget. In
asymmetric multicores, each type of core (typically a high-end
and a low-power core type [98]), and the number of cores of
each type are statically designed. In contrast, reconfigurable
multicores enable finer configuration granularity by providing
a higher number of core types. Furthermore the number of
cores in each configuration can be decided at runtime.

We compare CuttleSys with a heterogeneous system with
two types of cores: big cores, equivalent to the {6,6,6}
configuration, and small cores, equivalent to the {2,2,2}
configuration. While typically the number of cores are statically
fixed, we compare against an oracle-like system, which selects
the best number of big and small cores that meets the QoS
of latency-critical applications, and maximizes the throughput
of batch applications under a given power budget. For the
oracle system, we also ignore any scheduling overheads that
the threads incur to migrate between cores of different types.

VIII. EVALUATION
A. CuttleSys Scheduling Overheads

CuttleSys incurs three types of overheads: (i) for the initial
application profiling that gives the controller a sparse signal
of the application’s characteristics, (ii) for the reconstruction
algorithm that infers performance and power on all non-profiled
configurations, and (iii) for the DDS space exploration (Fig. 3).
Table II shows these overheads.

Performance/Power SGD DDS
sampling reconstruction | search
Single run | Total time |

4.8 ms ‘ 1.3 ms

1 ms | 2 ms \

TABLE II: Characterization and optimization overheads.

1) Profiling: We empirically set a monitoring period of
Ims as a advantageous trade-off between reducing profiling
overheads and increasing decision accuracy, similar to [18].
We profile all cores in parallel for 2ms (D of Fig. 3), lms
each in the widest-issue {6,6,6} and narrowest-issue {2,2,2}
configurations with one way of LLC allocated to each core, and
measure performance and power consumption. To avoid power
overshoot by running all cores in the highest configuration,
half of the cores run in the widest-issue configuration, and the
other half in the narrowest-issue configuration in the first 1ms
and vice-versa in the second 1ms. Note that even core-level
gating incurs an overhead of 1ms for one profiling period.

2) Reconstruction Algorithm: Reconstruction requires char-
acterizing offline a few “known” applications. We select the
fewest jobs (16) needed to keep accuracy over 90% for all
running jobs. If the training set included 24 jobs instead,
inaccuracy drops to 8%, while execution time for reconstruction
increases by 18%. On the other hand, decreasing the training
set to 8 applications increases inaccuracy to 20%.

40
30
20

407
301 |
20

1501 3 Core-gating
=3 Core-gating+wp
I Asymm-cores

EEE CuttleSys
EEm No gating

% inaccuracy

-10
-20
-30

-10
=20
-30

0.9

0.8 0.7 0.6
% Power Cap

(©)

0.5

1: Throughput 2: Tail latency 3: power

Fig. 5: Box plots of the error between the measured and
predicted performance and power by SGD across configurations
(a) in isolation and (b) with colocation. (c¢) Instructions with
CuttleSys vs. core-level gating over ls across power caps.

We run three instances of the reconstruction algorithm
(one each for throughput of batch jobs, tail latency of LC
applications, and power for all jobs). Reconstructing the
throughput for batch jobs takes longer, as it needs to find
the missing values for all combinations of core and LLC
configurations for 16 applications, while reconstructing the
tail latency needs to estimate the missing values for all
configurations of 1 job at a time. Inferring performance
and power for all possible LLC allocations (32 in our case)
increases the overhead and impacts accuracy, even though
many allocations would not be feasible in practice, as all 32
cores need to share the 32 ways. Therefore, we limit the LLC
allocations for each job to 1/2, 1, 2, and 4 ways. If two jobs
are allocated 1/2 ways each, both are assigned the same LLC
way. Any interference between them is handled by updating the
reconstruction matrix with the measured values during runtime.
The three reconstructions all run in parallel on the same server.

3) DDS Algorithm: As described in Section VI, the #conf's
is set to 107, since we consider four LLC allocations
for each core configuration. We have performed sensitivity

studies to find the param-

initial random points | 50 eters of parallel DDS that
r = [r1,r2,r3,r4] [0.2,0.3,04,05] achieve the best trade-off
penalty_wt__ 2 between runtime and ac-
pointPerlteration 10 .

‘maxiter 70 curacy. We arrived at the

parameter values shown

Fig. 6: DDS parameters. in Figure 6.

B. CuttleSys Inference Accuracy

CuttleSys uses three instances of the parallel SGD algorithm
to reconstruct the throughput, tail latency, and power of co-
scheduled applications across resource configurations.

To isolate the prediction accuracy of SGD, we run all
test applications in isolation for the full time slice in all
core configurations, which avoids both interference from co-
scheduled jobs and inaccuracies from limited profiling time. For
the throughput, power, and tail latency estimation, we profile
on two configurations per job, and infer the remaining 106
entries. Fig. 5(a) shows the estimation errors for throughput, tail
latency, and power across the 12 “testing” SPEC applications
and 5 Tailbench applications at 80% load. Fig. 1 shows that
some configurations incur very high tail latency, and are not

659

o =
© o

o
o

(in billions)

N
IS

instructions executed

0.2

o
o

(a) Core gating (b) Asymm Cores (c) CuttleSys

Fig. 7: Instructions executed in each time slice (0.1s) on all
cores with core-level gating, asymmetric cores, and CuttleSys.

selected during runtime. For these configurations, exact latency
prediction is less critical, as long as the prediction shows that
QoS is violated. We observe that the 257 and 75" percentiles
are within 10%, while the 5" and 95" percentiles are less than
20% for throughput, tail latency, and power. The error for tail
latency is higher, as we predict services one at a time and only
use 2 sample runs to predict the remaining 106 configurations.

We now examine the inaccuracy at runtime, which also
includes application interference and inaccuracies due to limited
profiling. Fig. 5(b) shows box plots of errors in throughput,
tail latency, and power. The median is close to zero and the
25 and 75 percentiles are within 10% in all cases. However,
the 5 and 95 percentiles for tail latency increase, as do the
outliers for throughput. This is due to (a) applications changing
execution phases, making the profiling runs not representative
of steady state behavior, and (b) contention between jobs. Since
CuttleSys updates the reconstruction matrix with the measured
metrics, it accounts for changes at runtime.

C. Core Gating and Asymmetric Multicores

Fig. 7 shows the number of instructions executed on all cores
in each timeslice over 1s with core-level gating and CuttleSys
under a 70% power cap. In the case of core-level gating,
cores that consume the most power are turned off to meet
the power budget and do not execute any instructions. In the
case of asymmetric multicores, though all cores remain active,
some jobs execute on small cores. We assume an unrealistic,
oracle-like asymmetric multicore, where the number of big
and small cores is determined to be the optimal, for a given
workload, in each timeslice. To meet QoS, the latency-sensitive
applications usually execute on big cores. For 70% power cap,
an additional 7 out of 16 batch applications execute on the big
cores, while the remaining 9 applications execute on the small
cores. CuttleSys also keeps all cores active, but portions of the
cores might be turned off to meet the power budget.

Fig. 5(c) quantitatively compares the total number of
instructions executed by batch applications in (1) core-level
gating without way-partitioning; (2) core-level gating with
way-partitioning; (3) the oracle-like asymmetric multicore; and
(4) CuttleSys, relative to no gating (all cores run in highest
configuration) with no cache partitioning, for each power cap.
QoS is satisfied for all Tailbench applications across all runs
for core-level gating, oracle-like asymmetric multicore, and
CuttleSys. Results include all overheads of Sec. VIII-A.

For relaxed power caps (90%), all cores can be turned on
for the fixed-core multicores (core-level gating and asymmetric
multicores), while parts of the cores need to be turned off with
Cuttlesys, given the energy overhead of reconfiguration. Thus,
CuttleSys performs worse in this case.

As the power caps decrease, however, CuttleSys outperforms
core-level gating both without and with way-partitioning by
1.64x and 1.52x on average, and up to 2.65x and 2.46x
respectively (Fig. 5(c)). CuttleSys also outperforms the oracle-
like asymmetric multicore by 1.19x on average, and up to
1.55 % for the most stringent power cap. As power caps decrease,
core-level gating turns off additional cores, while the oracle-
like multicore executes more jobs on smaller cores. The
fine granularity of reconfigurable cores provides additional
power/performance operating points, which permit better
fine-tuning during power-constrained scenarios. These gains
amortize the energy and scheduling overheads of CuttleSys.

CuttleSys provides modest throughput gains over the oracle-
like asymmetric multicore for relaxed power caps, as more
batch jobs can execute on big cores in the asymmetric multicore.
In real systems [98], the number of small and big cores is
fixed. CuttleSys outperforms a typical multicore with 50% big
and 50% small cores by 1.70x, 1.65x and 1.50x at 90%,
80% and 70% power caps respectively. The performance of
this 50-50 multicore is the same as that of the oracle-like
asymmetric system at 60% and 50% power cap, since all the
batch applications run on small cores.

D. Dynamic behavior of CuttleSys

We now show CuttleSys’s behavior under varying load and
power caps, and an example of core relocation.

1) Varying Load: We vary the input load of the latency-
critical application by simulating a diurnal pattern, while
maintaining the power budget at 70% of max. Fig. 8a shows the
input load of the latency-critical application, its tail latency with
respect to QoS, the throughput of batch applications, the total
power consumed by the system, and the core configurations
for batch applications for a colocation of Xapian with a mix
of 16 SPEC jobs. When load is low, cores running Xapian are
configured to {4,2,4}, as shown by the background color.

As load increases, the tail latency also increases and violates
QoS. Subsequently, CuttleSys configures the cores allocated
to Xapian to the {6,6,6} configuration in the next time slice,
after which QoS is met, and to {6,2,6} in the following time
slice. Four cache ways are allocated to Xapian throughout the
experiment. Under high load, Xapian consumes a significant
fraction of the power budget, leaving less power for the SPEC
applications. The cores running SPEC jobs therefore have to
run in lower-performing configurations, and as a result achieve
lower throughput. There is a brief interval in ¢ €[0.3,0.4]s
where the system violates its power budget. This is because
the input load of Xapian increases in the middle of CuttleSys’s
decision interval, and the system needs to wait until the next
interval before reconfiguring the cores. While this may briefly
consume more power than required, it avoids ping-ponging
between configurations due to short load spikes. When the

660

i
o
o

100

v
o

50

H

- —— LCapp

[

LC app

% load

—— LCapp

[=]

gz 1.0—H 1.0 - Q
ss L UL 1.0E=o — 1
[Py — Qos 7 — Qos [@ ¢
=32 — LCapp = LC app — LCapp S
=05 0.5 0.5 14
3 5751 — baten 50T paten | — batch

= 5.5

38550

= 4.5 5.0

£

125 100

=
o
o

Power

(W)

—— budget
current

budget
current

100 %0

©o
o

—— budget |
1 current
[r ;

Batch cores

442 426 424
666 664 662 646

244
642 626 624 622 466 464 462 446 444

Fig. 8: CuttleSys under (a) varying input load, (b) varying
power budget, and (c) example of core relocation. The table
shows the colors corresponding to core configurations.

load decreases, CuttleSys again reconfigures Xapian’s cores to
{4,2,4}, and set the remaining cores to higher configurations,
thus increasing the throughput of SPEC jobs.

2) Varying Power Budget: We now vary the power cap over
time when running Xapian and a mix of SPEC applications,
while maintaining a constant 80% load for the latency-critical
application. The power budget is set to 90% and reduced to
60% at t =0.3s. In this case (Fig. 8b), the cores running Xapian
are configured to {6,2,6} and four cache ways for the entire
duration of the experiment. When the power cap is reduced,
Xapian still needs the same amount of power to meet its QoS,
leaving a lower power budget for the SPEC workloads, which
are configured to lower-performing configurations, decreasing
their throughput. When the power cap is set back to 90% at t =
0.7s, the SPEC cores revert back to the higher configurations.

3) Core Relocation: Fig. 8c demonstrates an example co-
scheduling Xapian with a mix of SPEC applications, where
CuttleSys relocates cores to the latency-critical application
to meet its QoS. As the load increases after t =0.3s, Xapian
suffers a QoS violation, after which its allocated cores are
reconfigured from {4,2,4} to the widest-issue configuration
{6,6,6}. However, that is not sufficient to meet QoS in this case.
Thus, CuttleSys reclaims a core from the batch applications, and
assigns it to Xapian, at which point QoS is met. After the load
drops back down to 20%, tail latency also drops. Since now the
latency slack is high enough (20% unless otherwise specified),
the extra core is yielded back to the batch applications. As a
result of the core relocation, the SPEC jobs time-multiplex on
the reduced number of cores allocated to them, achieving lower
throughput, which is recovered when the core is returned.

E. Comparison with Flicker

We compare CuttleSys with Flicker [18], which is the most
relevant prior work and state-of-the-art for reconfigurable multi-
cores. Flicker was designed for multicore architectures running
multi-programmed mixes of exclusively batch jobs. It proposed
3MM3 sampling [99] with RBF surrogate fitting [100], [101],
[102], [103], [104] to characterize the impact of core config-
urations, and Genetic Algorithm (GA) for space exploration.
Flicker relies on detailed per-configuration profiling, and
is limited to core configurations, still allowing interference
through the memory hierarchy. 3MM3 requires sampling nine
core configurations, which are then used by RBF surrogate
fitting to get the complete performance and power profiles
across all core configurations. To get a meaningful sample for
tail latency, the system needs to run for at least 10ms.

We evaluated Flicker in two ways: a) we set the profiling
period to 10ms and profile the applications for a total of 90ms,
search the best configuration that meets the QoS and power
budget and maximizes the throughput using GA (takes 2ms),
and run the system in that configuration for the remaining 8ms;
b) Flicker only manages batch applications, and we set the
cores assigned to latency-critical jobs to the highest — {6,6,6}
— configuration, which reduces the power budget available for
batch jobs. In this case, since we only predict throughput and
power, we can directly apply the 3MM3 and RBF techniques
over 1ms samples. Overall, we profile for 9ms, and run GA for
2ms. In both cases, we have to run the latency-critical service
in lower configurations for extended periods of time. Since
QoS is defined with respect to the 99 percentile latency, even
Ims of slow requests is enough to violate QoS. As a result, we
see extensive QoS violations by over an order of magnitude
for the first methodology, and by 1.5x for the second.

We now compare the individ-
ual techniques in Flicker and »,
CuttleSys. Flicker requires 9 pro-S i

O 200
filing samples, while SGD onlys | il
uses 2. To ensure a fair com-= _yo iij
parison, we show the prediction -0l
error of the RBF-based approach

in performance and power in Fig 9: Performance, power

Fig. 9 when using 3 samples errors with SGD & RBE.
from the full 100ms timeslice (the algorithm was unable to

converge when using two samples). The error is dramatically
higher for Flicker with 3 samples, with outliers reaching up
to 600%. Thus, with the same amount of information, the
SGD-based reconstruction clearly outperforms RBF.

Next, we compare the exploration algorithms, DDS and
GA [18]. Fig. 10a shows a subset of points in the entire space,
as well as the points explored by DDS and GA. Black dots
represent the points explored by GA, and pink dots the points
explored by DDS. DDS explores more points on the pareto-
optimal front and thus, obtains a higher-quality configuration
compared to GA, shown by blue and yellow stars respectively,
under a given power budget, shown by the dotted green line.

To quantitatively compare DDS with GA, we applied GA

600
400

iy
5

Throughput Power Throughput Power
RBF RBF SGD SGD

661

L [1.4
o Points in space ;
« Points explored by GA 13 BN SGD-GA
0. Points explored by DDS o EEm SGD-DDS
>
5 £12
2045 2
g £11
2 s
£ o4 210
- S
& o}
<09
0.35] :
N 0.8
.
4 45 5 5.5 6 09 08 0.7 06 05
Power

% Power Cap

Fig. 10: (a) Comparison of DDS vs GA’s ability to explore
the design space. (b) Throughput with DDS and GA under
different power caps using SGD for inference.

during the optimization phase instead of DDS, and used SGD
for reconstruction. Fig. 10b shows the comparison of the gmean
of throughput of CuttleSys with SGD and GA across power
caps. Using DDS for optimization offers a performance im-
provement of up to 19% compared to GA for a 32-core system.
This can be attributed to the GA algorithm being relatively
slow in exploring a highly-dimensional search space compared
to DDS. Also, the optimization algorithm must explore a
higher number of configurations 27 x4 =108 (including LLC
allocations), compared to only 27 core configurations in [18].
We also note that the performance improvement is higher at
lower power caps, as a large subset of configurations does
not violate the power budget, and DDS can quickly explore
the large space. As power constraints become more stringent,
fewer configurations are valid, enabling GA to find the best
configurations in a given amount of time. The improvement
is the smallest for a 50% power cap as at that point, all cores
often have to operate in their lowest configurations, and may
even need to be switched off to meet the power budget.

IX. CONCLUSIONS

We present CuttleSys, an online and practical resource
management system for reconfigurable multicores, which
quickly infers the performance and power consumption of
each co-scheduled application across all core configurations
and cache allocations, and arrives at a suitable configuration
that meets QoS for latency-critical services, and maximizes
throughput for batch workloads, under a power budget.

We evaluated CuttleSys across a set of diverse latency-critical
and batch workloads, and showed that the system meets both the
QoS and power budget at all times, while achieving significantly
higher throughput for the batch applications than previous work,
including core-level gating and Flicker. We also quantified the
inference errors of the reconstruction algorithm in CuttleSys,
and showed that they are low in all cases.

ACKNOWLEDGEMENTS

We sincerely thank Shuang Chen, Yu Gan, Yanqi Zhang,
Nikita Lazarev, Mingyu Liang, Zhuangzhuang Zhou, and the
anonymous reviewers for their feedback on earlier versions of
this manuscript. This work was partially supported by NSF
CAREER Award CCF-1846046, NSF NeTS CSR-1704742,
and gifts from Google, Facebook, VMWare, and Microsoft.

[1]

[2]

[3]

[4]

[5]

[6

[7]

[8]

[9

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

REFERENCES

L. Barroso and U. Hoelzle, The Datacenter as a Computer: An
Introduction to the Design of Warehouse-Scale Machines. Synthesis
lectures on computer architecture, 2013.

C. Delimitrou and C. Kozyrakis, “Paragon: QoS-Aware Scheduling
for Heterogeneous Datacenters,” in Proceedings of the Eighteenth
International Conference on Architectural Support for Programming
Languages and Operating Systems, 2013.

——, “Quasar: Resource-Efficient and QoS-Aware Cluster Management,”
in Proceedings of the Nineteenth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems,
2014.

H. Yang, A. Breslow, J. Mars, and L. Tang, “Bubble-Flux: Precise
Online QoS Management for Increased Utilization in Warehouse
Scale Computers,” in Proceedings of the 40th Annual International
Symposium on Computer Architecture. New York, NY, USA:
Association for Computing Machinery, 2013, p. 607-618.

J. Mars and L. Tang, “Whare-Map: Heterogeneity in "Homogeneous”
Warehouse-Scale Computers,” in Proceedings of the 40th Annual
International Symposium on Computer Architecture. New York, NY,
USA: Association for Computing Machinery, 2013, p. 619-630.

D. Lo, L. Cheng, R. Govindaraju, L. A. Barroso, and C. Kozyrakis,
“Towards Energy Proportionality for Large-Scale Latency-Critical
Workloads,” in Proceedings of the 41st Annual International Symposium
on Computer Architecuture, 2014.

D. Lo, L. Cheng, R. Govindaraju, P. Ranganathan, and C. Kozyrakis,
“Heracles: Improving Resource Efficiency at Scale,” in Proceedings of
the 42nd Annual International Symposium on Computer Architecture,
2015.

S. Chen, C. Delimitrou, and J. F. Martinez, “PARTIES: QoS-Aware
Resource Partitioning for Multiple Interactive Services,” in Proceedings
of the Twenty-Fourth International Conference on Architectural Support
for Programming Languages and Operating Systems. New York, NY,
USA: Association for Computing Machinery, 2019, p. 107-120.

C. Delimitrou, D. Sanchez, and C. Kozyrakis, “Tarcil: Reconciling
Scheduling Speed and Quality in Large Shared Clusters,” in Proceedings
of the Sixth ACM Symposium on Cloud Computing, 2015.

C. Reiss, A. Tumanov, G. Ganger, R. Katz, and M. Kozych, “Hetero-
geneity and Dynamicity of Clouds at Scale: Google Trace Analysis,”
in Proceedings of the 2017 Symposium on Cloud Computing, 2012.
C. Delimitrou and C. Kozyrakis, “HCloud: Resource-Efficient Provi-
sioning in Shared Cloud Systems,” in Proceedings of the Twenty First
International Conference on Architectural Support for Programming
Languages and Operating Systems, 2016.

D. Sanchez and C. Kozyrakis, “Vantage: Scalable and Efficient
Fine-Grain Cache Partitioning,” in Proceedings of the 38th annual
International Symposium in Computer Architecture, 2011.

H. Kasture and D. Sanchez, “Ubik: Efficient Cache Sharing with
Strict QoS for Latency-critical Workloads,” in Proceedings of the 19th
International Conference on Architectural Support for Programming
Languages and Operating Systems, 2014.

H. Kasture, D. B. Bartolini, N. Beckmann, and D. Sanchez, “Rubik:
Fast Analytical Power Management for Latency-Critical Systems,” in
Proceedings of the 48th International Symposium on Microarchitecture,
2015.

F. Romero and C. Delimitrou, “Mage: Online and Interference-Aware
Scheduling for Multi-Scale Heterogeneous Systems,” in Proceedings
of the 27th International Conference on Parallel Architectures and
Compilation Techniques (PACT18), November 2018.

C.-H. Hsu, Q. Deng, J. Mars, and L. Tang, “SmoothOperator: Reducing
Power Fragmentation and Improving Power Utilization in Large-
scale Datacenters,” in Proceedings of the Twenty-Third International
Conference on Architectural Support for Programming Languages and
Operating Systems. New York, NY, USA: ACM, 2018, pp. 535-548.
N. Kulkarni, F. Qi, and C. Delimitrou, “Pliant: Leveraging Approx-
imation to Improve Datacenter Resource Efficiency,” 2019 IEEE
International Symposium on High Performance Computer Architecture
(HPCA), pp. 159-171, 2018.

P. Petrica, A. M. Izraelevitz, D. H. Albonesi, and C. A. Shoemaker,
“Flicker: A Dynamically Adaptive Architecture for Power Limited
Multicore Systems,” in Proceedings of the 40th Annual International
Symposium on Computer Architecture. New York, NY, USA: ACM,
2013, pp. 13-23.

662

[19]

[20

21
[22

[23]

[24

[25]

[26]

[27]

[28
[29

[30]

[31]

[34]

[35]

[36]

[37]

[38

[39]

S. S. Jha, W. Heirman, A. Falcén, T. E. Carlson, K. Van Craeynest,
J. Tubella, A. Gonzalez, and L. Eeckhout, “Chrysso: An Integrated
Power Manager for Constrained Many-core Processors,” in Proceedings
of the 12th ACM International Conference on Computing Frontiers.
New York, NY, USA: ACM, 2015, pp. 19:1-19:8.

W. Zhang, H. Zhang, and J. Lach, “Dynamic Core Scaling: Trading
off Performance and Energy beyond DVFS,” in 2015 33rd IEEE
International Conference on Computer Design (ICCD), Oct 2015, pp.
319-326.

“6th Generation Intel Processor Families for S-Platforms,” August 2018.
“8th and 9th Generation Intel Core Processor Families and Intel Xeon
E Processor Family,” October 2018.

D. Meisner, C. M. Sadler, L. A. Barroso, W.-D. Weber, and T. F.
Wenisch, “Power Management of Online Data-Intensive Services,” in
Proceedings of the 38th annual international symposium on Computer
architecture, 2011, pp. 319-330.

J. Leverich, M. Monchiero, V. Talwar, P. Ranganathan, and C. Kozyrakis,
“Power Management of Datacenter Workloads Using Per-Core Power
Gating,” IEEE Computer Architecture Letters, vol. 8, no. 2, pp. 48-51,
Jul. 2009.

D. Meisner, B. T. Gold, and T. F. Wenisch, “PowerNap: Eliminating
Server Idle Power,” in Proceedings of the 14th international ASPLOS,
2009.

D. Meisner and T. F. Wenisch, “DreamWeaver: Architectural Support
for Deep Sleep,” in Proceedings of the Seventeenth International
Conference on Architectural Support for Programming Languages and
Operating Systems. New York, NY, USA: ACM, 2012, pp. 313-324.
H. Kasture and D. Sanchez, “Tailbench: A Benchmark Suite and
Evaluation Methodology for Latency-Critical Applications,” in /EEE
International Symposium on Workload Characterization, 2016.
“SPEC CPU 2006,” https://www.spec.org/cpu2006/.

C. Isci, A. Buyuktosunoglu, C.-Y. Cher, P. Bose, and M. Martonosi,
“An Analysis of Efficient Multi-Core Global Power Management
Policies: Maximizing Performance for a Given Power Budget,” in
Proceedings of the 39th Annual IEEE/ACM International Symposium
on Microarchitecture. Washington, DC, USA: IEEE Computer Society,
2006, pp. 347-358.

J. Sharkey, A. Buyuktosunoglu, and P. Bose, “Evaluating Design
Tradeoffs in On-chip Power Management for CMPs,” in Proceedings
of the 2007 International Symposium on Low Power Electronics and
Design. New York, NY, USA: ACM, 2007, pp. 44-49.

R. Bergamaschi, G. Han, A. Buyuktosunoglu, H. Patel, I. Nair,
G. Dittmann, G. Janssen, N. Dhanwada, Z. Hu, P. Bose, and
J. Darringer, “Exploring Power Management in Multi-core Systems,”
in Proceedings of the 2008 Asia and South Pacific Design Automation
Conference. Los Alamitos, CA, USA: IEEE Computer Society Press,
2008, pp. 708-713.

J. Chen and L. John, “Predictive coordination of multiple on-chip
resources for chip multiprocessors,” Proceedings of the International
Conference on Supercomputing, pp. 192-201, 01 2011.

G. Papadimitriou, A. Chatzidimitriou, and D. Gizopoulos, “Adaptive
Voltage/Frequency Scaling and Core Allocation for Balanced Energy
and Performance on Multicore CPUs,” in 2019 IEEE International
Symposium on High Performance Computer Architecture (HPCA), 2019,
pp. 133-146.

Y. Wang, K. Ma, and X. Wang, “Temperature-Constrained Power
Control for Chip Multiprocessors with Online Model Estimation,” in
Proceedings of the 36th Annual International Symposium on Computer
Architecture. New York, NY, USA: ACM, 2009, pp. 314-324.

K. Ma, X. Li, M. Chen, and X. Wang, “Scalable Power Control for
Many-Core Architectures running Multi-Threaded Applications,” in
2011 38th Annual International Symposium on Computer Architecture
(ISCA), June 2011, pp. 449-460.

A. Bartolini, M. Cacciari, A. Tilli, and L. Benini, “Thermal and Energy
Management of High-Performance Multicores: Distributed and Self-
Calibrating Model-Predictive Controller,” IEEE Transactions on Parallel
and Distributed Systems, vol. 24, no. 1, pp. 170-183, Jan 2013.

R. Nishtala, V. Petrucci, P. Carpenter, and M. Sjélander, “Twig: Multi-
Agent Task Management for Colocated Latency-Critical Cloud Services,”
12 2019.

“Intel® 64 and IA -32 Architectures Software Developer’s Manual,
System Programming Guide, Part 2,” 2016.

C. Hsu, Y. Zhang, M. A. Laurenzano, D. Meisner, T. Wenisch, J. Mars,
L. Tang, and R. G. Dreslinski, “Adrenaline: Pinpointing and Reining

[40]
[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

in Tail Queries with Quick Voltage Boosting,” in 2015 IEEE 21st
International Symposium on High Performance Computer Architecture
(HPCA), Feb 2015, pp. 271-282.

“2nd Generation Intel Core Processor Family Desktop,” January 2011.
“Power Management of the Third Generation Intel Core Micro
Architecture formerly codenamed Ivy Bridge,” Hot Chips: A Symposium
on High Performance Chips, 2012.

R. Kumar and G. Hinton, “A family of 45nm IA processors,” in Solid-
State Circuits Conference - Digest of Technical Papers, 2009. ISSCC
2009. IEEE International, Feb 2009, pp. 58-59.

K. Ma and X. Wang, “PGCapping: Exploiting Power Gating for
Power Capping and Core Lifetime Balancing in CMPs,” in 2012 21st
International Conference on Parallel Architectures and Compilation
Techniques (PACT), Sept 2012, pp. 13-22.

H. Zhang and H. Hoffmann, “Maximizing Performance Under a Power
Cap: A Comparison of Hardware, Software, and Hybrid Techniques,”
in Proceedings of the Twenty-First International Conference on
Architectural Support for Programming Languages and Operating
Systems. New York, NY, USA: ACM, 2016, pp. 545-559.

M. Arora, S. Manne, I. Paul, N. Jayasena, and D. M. Tullsen,
“Understanding Idle Behavior and Power Gating Mechanisms in the
Context of Modern Benchmarks on CPU-GPU Integrated Systems,”
in 2015 IEEE 21st International Symposium on High Performance
Computer Architecture (HPCA), Feb 2015, pp. 366-377.

R. P. Pothukuchi, A. Ansari, P. Voulgaris, and J. Torrellas, “Using
Multiple Input, Multiple Output Formal Control to Maximize Resource
Efficiency in Architectures,” in 2016 ACM/IEEE 43rd Annual Interna-
tional Symposium on Computer Architecture (ISCA), June 2016, pp.
658-670.

A. M. Rahmani, B. Donyanavard, T. Miick, K. Moazzemi, A. Jantsch,
O. Mutlu, and N. Dutt, “SPECTR: Formal Supervisory Control
and Coordination for Many-core Systems Resource Management,”
in Proceedings of the Twenty-Third International Conference on
Architectural Support for Programming Languages and Operating
Systems. New York, NY, USA: ACM, 2018, pp. 169-183.

S. Kanev, K. Hazelwood, G. Wei, and D. Brooks, “Tradeoffs between
Power Management and Tail Latency in Warehouse-Scale Applications,”
in 2014 IEEE International Symposium on Workload Characterization
(IISWC), Oct 2014, pp. 31-40.

R. Kumar, D. M. Tullsen, P. Ranganathan, N. P. Jouppi, and K. I. Farkas,
“Single-ISA Heterogeneous Multi-Core Architectures for Multithreaded
Workload Performance,” in Proceedings. 31st Annual International
Symposium on Computer Architecture, 2004., June 2004, pp. 64-75.
M. Becchi and P. Crowley, “Dynamic Thread Assignment on
Heterogeneous Multiprocessor Architectures,” in Proceedings of the
3rd Conference on Computing Frontiers. New York, NY, USA: ACM,
2006, pp. 29-40.

D. Shelepov, J. C. Saez Alcaide, S. Jeffery, A. Fedorova, N. Perez,
Z. F. Huang, S. Blagodurov, and V. Kumar, “HASS: A Scheduler for
Heterogeneous Multicore Systems,” SIGOPS Oper. Syst. Rev., vol. 43,
no. 2, pp. 66-75, Apr. 2009.

J. Chen and L. K. John, “Efficient Program Scheduling for Hetero-
geneous Multi-Core Processors,” in 2009 46th ACM/IEEE Design
Automation Conference, July 2009, pp. 927-930.

D. Koufaty, D. Reddy, and S. Hahn, “Bias Scheduling in Heterogeneous
Multi-core Architectures,” in Proceedings of the 5th European
Conference on Computer Systems. New York, NY, USA: ACM, 2010,
pp. 125-138.

K. Van Craeynest, S. Akram, W. Heirman, A. Jaleel, and L. Eeckhout,
“Fairness-aware Scheduling on single-ISA Heterogeneous Multi-cores,”
in Proceedings of the 22Nd International Conference on Parallel
Architectures and Compilation Techniques. Piscataway, NJ, USA:
IEEE Press, 2013, pp. 177-188.

J. C. Saez, A. Pousa, F. Castro, D. Chaver, and M. Prieto-Matias,
“ACFS: A Completely Fair Scheduler for Asymmetric Single-isa
Multicore Systems,” in Proceedings of the 30th Annual ACM
Symposium on Applied Computing. New York, NY, USA: ACM,
2015, pp. 2027-2032.

J. Chen, A. A. Nair, and L. K. John, “Predictive Heterogeneity-Aware
Application Scheduling for Chip Multiprocessors,” IEEE Transactions
on Computers, vol. 63, no. 2, pp. 435-447, 2014.

K. V. Craeynest, A. Jaleel, L. Eeckhout, P. Narvaez, and J. Emer,
“Scheduling Heterogeneous Multi-Cores through Performance Impact

663

[58]

[59]

[60]

[61

[62]

[63

[64]

[65]

[66]

[67]

[68

[69]

[70]

(71

[72]

[73]

[74]

Estimation (PIE),” in 2012 39th Annual International Symposium on
Computer Architecture (ISCA), June 2012, pp. 213-224.

G. Liu, J. Park, and D. Marculescu, “Dynamic Thread Mapping
for High-Performance, Power-Efficient Heterogeneous Many-Core
Systems.” in ICCD. IEEE Computer Society, 2013, pp. 54-61.

R. Teodorescu and J. Torrellas, “Variation-Aware Application
Scheduling and Power Management for Chip Multiprocessors,” in
Proceedings of the 35th Annual International Symposium on Computer
Architecture. Washington, DC, USA: IEEE Computer Society, 2008,
pp. 363-374.

J. A. Winter, D. H. Albonesi, and C. A. Shoemaker, “Scalable
Thread Scheduling and Global Power Management for Heterogeneous
Many-core Architectures,” in Proceedings of the 19th International
Conference on Parallel Architectures and Compilation Techniques.
New York, NY, USA: ACM, 2010, pp. 29-40.

A. Adileh, S. Eyerman, A. Jaleel, and L. Eeckhout, “Mind The
Power Holes: Sifting Operating Points in Power-Limited Heterogeneous
Multicores,” IEEE Computer Architecture Letters, vol. 16, no. 1, pp.
56-59, Jan 2017.

, “Maximizing Heterogeneous Processor Performance Under
Power Constraints,” ACM Trans. Archit. Code Optim., vol. 13, no. 3,
pp. 29:1-29:23, Sep. 2016.

S. Navada, N. Choudhary, S. Wadhavkar, and E. Rotenberg, “A Unified
View of Non-Monotonic Core Selection and Application Steering in
Heterogeneous Chip Multiprocessors,” 01 2013, pp. 133-144.

V. Petrucci, M. A. Laurenzano, J. Doherty, Y. Zhang, D. Mossé,
J. Mars, and L. Tang, “Octopus-Man: QoS-driven Task Management
for Heterogeneous Multicores in Warehouse-Scale Computers,” in 2015
IEEE 21st International Symposium on High Performance Computer
Architecture (HPCA), 2015, pp. 246-258.

S. Ren, Y. He, S. Elnikety, and K. S. McKinley, “Exploiting Processor
Heterogeneity in Interactive Services,” in ICAC, January 2013.

S. Ren, Y. He, and K. S. McKinley, “A Theoretical Foundation for
Scheduling and Designing Heterogeneous Processors for Interactive
Applications,” in International Symposium on Distributed Computing
(DISC). European Association for Theoretical Computer Science,
October 2014.

M. E. Haque, Y. He, S. Elnikety, T. D. Nguyen, R. Bianchini,
and K. McKinley, “Exploiting Heterogeneity for Tail Latency and
Energy Efficiency,” in Proceedings of the International Symposium on
Microarchitecture (MICRO), October 2017.

A. Lukefahr, S. Padmanabha, R. Das, F. M. Sleiman, R. Dreslinski, T. F.
Wenisch, and S. Mahlke, “Composite Cores: Pushing Heterogeneity
Into a Core,” in Proceedings of the 2012 45th Annual IEEE/ACM
International Symposium on Microarchitecture. Washington, DC,
USA: IEEE Computer Society, 2012, pp. 317-328.

S. Padmanabha, A. Lukefahr, R. Das, and S. Mahlke, “Trace
Based Phase Prediction for Tightly-coupled Heterogeneous Cores,” in
Proceedings of the 46th Annual IEEE/ACM International Symposium
on Microarchitecture. New York, NY, USA: ACM, 2013, pp. 445-456.
H. R. Ghasemi and N. S. Kim, “RCS: Runtime Resource and Core
Scaling for Power-Constrained Multi-core Processors,” in Proceedings
of the 23rd International Conference on Parallel Architectures and
Compilation. New York, NY, USA: ACM, 2014, pp. 251-262.
Khubaib, M. A. Suleman, M. Hashemi, C. Wilkerson, and Y. N.
Patt, “MorphCore: An Energy-Efficient Microarchitecture for High
Performance ILP and High Throughput TLP,” in Proceedings of
the 2012 45th Annual IEEE/ACM International Symposium on
Microarchitecture. Washington, DC, USA: IEEE Computer Society,
2012, pp. 305-316.

F. Afram and K. Ghose, “FlexCore: A Reconfigurable Processor Sup-
porting Flexible, Dynamic Morphing,” in 2015 IEEE 22nd International
Conference on High Performance Computing (HiPC), Dec 2015, pp.
30-39.

S. J. Tarsa, R. B. R. Chowdhury, J. Sebot, G. Chinya, J. Gaur,
K. Sankaranarayanan, C.-K. Lin, R. Chappell, R. Singhal, and H. Wang,
“Post-Silicon CPU Adaptation Made Practical Using Machine Learning,”
in Proceedings of the 46th International Symposium on Computer
Architecture. New York, NY, USA: Association for Computing
Machinery, 2019, p. 14-26.

A. Mirhosseini, A. Sriraman, and T. F. Wenisch, “Enhancing Server
Efficiency in the Face of Killer Microseconds,” in 2019 IEEE Interna-
tional Symposium on High Performance Computer Architecture (HPCA),
2019, pp. 185-198.

[75]

[76

[77

[78]

[79

[80]

[81]

[88]

[96]

Y. Zhou and D. Wentzlaff, “The Sharing Architecture: Sub-Core
Configurability for IaaS Clouds,” in Proceedings of the 19th
International Conference on Architectural Support for Programming
Languages and Operating Systems. New York, NY, USA: Association
for Computing Machinery, 2014, p. 559-574.

E. Ipek, M. Kirman, N. Kirman, and J. F. Martinez, “Core Fusion:
Accommodating Software Diversity in Chip Multiprocessors,” in
Proceedings of the 34th Annual International Symposium on Computer
Architecture. New York, NY, USA: ACM, 2007, pp. 186-197.

Y. Zhou, H. Hoffmann, and D. Wentzlaff, “CASH: Supporting IaaS
Customers with a Sub-Core Configurable Architecture,” in Proceedings
of the 43rd International Symposium on Computer Architecture. 1EEE
Press, 2016, p. 682-694.

D. Sanchez and C. Kozyrakis, “ZSim: Fast and Accurate Microarchi-
tectural Simulation of Thousand-Core Systems,” in Proceedings of the
40th Annual International Symposium on Computer Architecture, 2013.
S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and N. P.
Jouppi, “McPAT: An Integrated Power, Area, and Timing Modeling
Framework for Multicore and ManycoreA Architectures,” in 2009 42nd
Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), Dec 2009, pp. 469-480.

M. K. Qureshi and Y. N. Patt, “Utility-Based Cache Partitioning: A
Low-Overhead, High-Performance, Runtime Mechanism to Partition
Shared Caches,” in Proceedings of the 39th Annual IEEE/ACM
International Symposium on Microarchitecture, 2006.

H. Cook, M. Moreto, S. Bird, K. Dao, D. A. Patterson, and K. Asanovic,
“A Hardware Evaluation of Cache Partitioning to Improve Utilization and
Energy-efficiency While Preserving Responsiveness,” in Proceedings of
the 40th Annual International Symposium on Computer Architecture.
New York, NY, USA: ACM, 2013, pp. 308-319.

E. H. Sibley, P. J. Fleming, and J. J. Wallace, “How not to lie with
statistics: The correct way to summarize benchmark results,” 1986.

I. H. Witten, E. Frank, and G. Holmes, Data Mining: Practical Machine
Learning Tools and Techniques. 3rd Edition.

L. Bottou, Large-Scale Machine Learning with Stochastic Gradient
Descent. Heidelberg: Physica-Verlag HD, 2010, pp. 177-186.

K. C. Kiwiel, “Convergence and efficiency of subgradient methods for
quasiconvex minimization,” Mathematical Programming, vol. 90, no. 1,
pp. 1-25, Mar 2001.

B. A. Tolson and C. A. Shoemaker, “Dynamically Dimensioned Search
Algorithm for Computationally Efficient Watershed Model Calibration,
Water Resources Research, vol. 43, no. 1, pp. n/a—n/a, 2007, w01413.
H. Nguyen, Z. Shen, X. Gu, S. Subbiah, and J. Wilkes, “AGILE:
Elastic Distributed Resource Scaling for Infrastructure-as-a-Service,”
in Proceedings of the 10th International Conference on Autonomic
Computing (ICAC 13). San Jose, CA: USENIX, 2013, pp. 69-82.
Q. Chen, H. Yang, M. Guo, R. S. Kannan, J. Mars, and L. Tang,
“Prophet: Precise QoS Prediction on Non-Preemptive Accelerators to
Improve Utilization in Warehouse-Scale Computers,” in Proceedings of
the Twenty-Second International Conference on Architectural Support
for Programming Languages and Operating Systems, 2017.

C. D. Sa, C. Zhang, K. Olukotun, and C. Ré, “Taming the Wild: A
Unified Analysis of HOG WILD! -style Algorithms,” in Proceedings

3

664

[89]

[90

[91

[92]

[93]

[94

[95

[97]

[98

[99]

[100]

[101

[102]

[103]

[104]

A. Rajaraman and J. Ullman, “Textbook on Mining of Mas-
sive Datasets. Rightscale.” 2011, https://aws.amazon.com/solution-
providers/isv/rightscale.

R. Bell, Y. Koren, and C. Volinsky, “The BellKor 2008 Solution to the
Netflix Prize,” Tech. Rep., 2007.

L. Bottou, “Large-Scale Machine Learning with Stochastic Gradient
Descent,” in Proceedings of the International Conference on Computa-
tional Statistics (COMPSTAT). Paris, France, 2010.

K. C. Kiwiel, “Convergence and Efficiency of Subgradient Methods for
Quasiconvex Minimization,” in Mathematical Programming (Series A)
(Berlin, Heidelberg: Springer) 90 (1): pp. 1-25, 2001.

A. Gunawardana and C. Meek, “A Unified Approach to Building Hybrid
Recommender Systems,” in Proc. of the Third ACM Conference on
Recommender Systems (RecSys). New York, NY, 2009.

R. Burke, “Hybrid Recommender Systems: Survey and Experiments,
User Modeling and User-Adapted Interaction, vol. 12, no. 4, pp. 331-
370, Nov. 2002.

F. Niu, B. Recht, C. Re, and S. J. Wright, “HOGWILD!: A Lock-free
Approach to Parallelizing Stochastic Gradient Descent,” in Proceedings
of the 24th International Conference on Neural Information Processing
Systems. USA: Curran Associates Inc., 2011, pp. 693-701.

of the 28th International Conference on Neural Information Processing
Systems - Volume 2. Cambridge, MA, USA: MIT Press, 2015, pp.
2674-2682.

R. B. R. Chowdhury, A. K. Kannepalli, S. Ku, and E. Rotenberg,
“AnyCore: A synthesizable RTL model for exploring and fabricating
adaptive superscalar cores,” in 2016 IEEE International Symposium
on Performance Analysis of Systems and Software, ISPASS 2016,
Uppsala, Sweden, April 17-19, 2016. 1EEE Computer Society, 2016,
pp. 214-224.

“big.LITTLE Technology: The Future of Mobile,” https://www.arm.com,
2013.

C. F. J. Wu and M. S. Hamada, Experiments: Planning, Analysis, and
Optimization. John Wiley and Sons, Inc., 2009.

H.-M. Gutmann, “A Radial Basis Function Method for Global
Optimization,” Journal of Global Optimization, vol. 19, no. 3, pp.
201-227, 2001.

J. Mueller, C. Shoemaker, and R. Piche, “SO-MI: A Surrogate Model
Algorithm for Computationally Expensive Nonlinear Mixed-integer
Black-box Global Optimization Problems,” Computers and Operations
Research, May 2013.

R. G. Regis and C. A. Shoemaker, “Combining Radial Basis Function
Surrogates and Dynamic Coordinate Search in High-dimensional
Expensive Black-box Optimization,” Engineering Optimization, May
2013.

——, “A Stochastic Radial Basis Function Method for the Global Op-
timization of Expensive Functions,” INFORMS Journal on Computing,
Fall 2007.

——, “Local Function Approximation in Evolutionary Algorithms
for the Optimization of Costly Functions,” IEEE Transactions on
Evolutionary Computation, October 2004.

>

