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Abstract—This paper presents ReMAP, a reconfigurable
architecture geared towards accelerating and parallelizing
applications within a heterogeneous CMP. In ReMAP, threads
share a common reconfigurable fabric that can be configured
for individual thread computation or fine-grained communica-
tion with integrated computation. The architecture supports
both fine-grained point-to-point communication for pipeline
parallelization and fine-grained barrier synchronization.

The combination of communication and configurable com-
putation within ReMAP provides the unique ability to perform
customized computation while data is transferred between
cores, and to execute custom global functions after barrier
synchronization. ReMAP demonstrates significantly higher
performance and energy efficiency compared to hard-wired
communication-only mechanisms, and over what can ideally
be achieved by allocating the fabric area to additional or more
powerful cores.

I. INTRODUCTION

Reconfigurable computing has traditionally involved at-
taching a reconfigurable fabric to a single processor core
to accelerate sequential applications. However, the prospect
of large-scale chip multiprocessors (CMPs) with tens to
hundreds of cores on a die calls for a reexamination of recon-
figurable computing from the perspective of multithreaded
applications. This paper presents ReMAP (Reconfigurable
Multicore Acceleration and Parallelization), a reconfigurable
architecture that accelerates the computation and communi-
cation of multiple threads within a heterogeneous CMP in
an area- and power-efficient manner.

While past reconfigurable architectures have been shown
to significantly outperform general purpose architectures for
certain application classes, this has come at high area and
power costs relative to the overall performance achieved
across a broad set of applications, some of which may realize
no benefit from the fabric. Large-scale CMPs, however,
are likely to be heterogeneous in nature, with different
areas of the die dedicated to accelerating particular types
of applications. Within this context, CMPs offer a more
cost-effective way to incorporate reconfigurable fabrics into
commodity microprocessors for two reasons. First, the die
area dedicated to reconfigurable fabrics may be sized in
proportion to the expected proportion of applications that
will benefit. As the industry moves to more cores on a die,
the proportional cost of incorporating a reconfigurable fabric
decreases, as does the proportion of applications needed
to justify the presence of the fabric. Second, the area and

power costs of the fabric may be amortized over several
threads by sharing the fabric among multiple cores, thereby
forming a cluster of cores+fabric. With intelligent fabric
management, such sharing can increase fabric utilization and
reduce overall fabric area and power costs, while achieving
nearly the same performance as providing each core with its
own, much larger, private fabric [32], [33].

Sharing the reconfigurable fabric among multiple cores
also creates optimization opportunities not possible with per-
core private fabrics. In particular, shared fabric clusters – in
addition to amortizing the fabric area and increasing power
efficiency – can be organized on-the-fly in multiple ways
to accelerate multithreaded applications in addition to the
sequential applications that have traditionally been the focus
of reconfigurable architectures. Figure 1 depicts a portion
of a heterogeneous CMP and provides a simplified view of
the three ways that the ReMAP architecture is dynamically
organized to accelerate multiple threads. Figure 1(a) depicts
four threads, each of which is independently performing
a function (each function fi may be unique or identical)
within the fabric without communication. In Figure 1(b), the
fabric is being used for two instances of fine-grain producer-
consumer communication with integrated customized com-
putation. In each instance, the producer thread feeds inputs
into the fabric; the inputs pass through the fabric to perform
the function; and the function output, which may be queued
using any remaining fabric resources if necessary, is then
passed to the consumer thread. Finally, Figure 1(c) depicts
four threads synchronizing at a barrier within the fabric with
a global function, e.g., a global minimum, computed in the
fabric after the synchronization point.

While all of these cases show the individual threads
or producer-consumer thread pairs temporally sharing the
fabric, to reduce fabric contention, the fabric manager can
dynamically partition the fabric, giving each thread a smaller
private fabric1. Dynamic fabric partitioning can also serve
to simultaneously configure the fabric for multiple purposes,
e.g., for independent use by one set of threads in one
partition, and producer-consumer communication in another.

Unlike previous proposals, ReMAP supports multiple
communication models and also provides the ability to
perform customized computation on communicated data.

1As we explain in Section II, the virtualization of the fabric makes this
dynamic division of the fabric transparent to software.
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Figure 1. Shared reconfigurable fabric being used for (a) individual computation, (b) producer-consumer communication with computation, and (c) barrier
synchronization with computation.

The latter provides performance improvements beyond what
is possible with previous communication-only options and
traditional fixed computation alternatives.

In the next section we describe the ReMAP architecture
and in Section III provide examples of ReMAP communica-
tion. Our methodology is presented in Section IV followed
by the evaluation of ReMAP in Section V. We describe
related work in Section VI and conclude in Section VII.

II. REMAP ARCHITECTURE

ReMAP pairs a specially designed Specialized Pro-
grammable Logic (SPL) fabric with multiple cores of a CMP.
An example ReMAP heterogeneous CMP with integrated
SPL is depicted in Figure 2(a). The figure shows a 16 core
ReMAP CMP2 with two SPL clusters on the left. Each
cluster consists of four single issue out-of-order processor
cores sharing an SPL fabric, which is shown at a high level
in Figure 2(b) and explained in more detail in the next
section. The fabric is temporally shared in a round-robin
fashion among the cores in the same cluster and can be spa-
tially partitioned as needed to reduce contention among the
threads. Contention is further reduced by limiting the degree
of fabric sharing, which also limits the maximum wire delay.
In this particular example, the proportion of applications that
benefit from the fabric is such that two shared SPL clusters
are implemented. In a large-scale heterogeneous CMP with
many tens or hundreds of cores, there may be several SPL
clusters as well as many other different cluster types, such
as the traditional many-core cluster shown on the right hand
side of Figure 2(a), on the die. Applications are mapped to
an SPL cluster during phases that use the fabric and are
mapped to other clusters during other phases in order to
obtain the best overall performance.

A. SPL Organization

The computational substrate of ReMAP is the highly-
pipelined, row-based SPL of [33]. The SPL is composed

2Although relative sizes of the cores and fabric are accurate, this is not
intended to represent an actual floorplan.

Table I
RELATIVE AREA AND POWER OF FOUR SINGLE-ISSUE OUT-OF-ORDER

CORES AND FOUR-WAY SHARED REMAP FABRIC.

SPL
Rows

Total
Area

Peak Dyn.
Power

Total Leak.
Power

Four Cores N/A 1.00 1.00 1.00
4-way Shared SPL 24 0.51 0.14 0.67

of 24 rows, in which each row contains 16 cells and each
cell computes 8 bits of data. Figure 2(c) shows the row and
cell designs. The major cell components are a main 4-input
look-up table (4-LUT), a group of 2-LUTs plus a fast carry
chain to compute carry bits (or other logic functions if carry
calculation is not needed), barrel shifters to properly align
data as necessary, flip-flops to store results of computations,
and an interconnect network between each row. Within a
cell, the same operation is performed an all 8 bits. These
8-bit cells are arranged in a row to form a 16×8-bit row.
Each cell in a row can perform a different operation on its
set of inputs and 24 of these rows are grouped together to
form the overall SPL fabric. The SPL is clocked at a fixed
500 MHz. This is one-quarter the 2 GHz core frequency
(the same as the Pentium Core2 Duo [16] and the AMD
X2 Dual-Core [1], both of which are implemented in the
same 65nm technology assumed for ReMAP) and allows
each row to complete the longest permissible computation
in a single cycle. Table I shows the relative area and power
consumption of the SPL and associated single-issue cores,
derived using the methodology of [33].

The row-based nature of the fabric allows hardware re-
quirements to be indicated by the number of rows needed to
implement a function. If the number of rows required by a
function exceeds the physical number on chip, the function
can be virtualized over the fabric [13]. Virtualization uses
the same physical row to execute multiple virtual rows of
the function. This comes at a possible loss in throughput but
guarantees that all functions can be executed, even if fewer
rows are available than originally anticipated.

The SPL is integrated with the processor core as a
reconfigurable functional unit and interfaces to the memory
system via a queue-based decoupled architecture as shown
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Figure 2. ReMAP heterogeneous CMP. (a) Depiction of overall ReMAP chip, with two SPL clusters and one conventional cluster, and blow-up of one
SPL cluster, (b) four-way shared SPL including tables required for communication, and (c) design of SPL row and cell.

in Figure 2(b). SPL Load instructions place values into the
input queue at a particular data alignment. The SPL similarly
writes results to a local output queue that is then written out
to the Store Queue using an SPL Store instruction.

The SPL is temporally shared in a time-multiplexed,
round-robin fashion among the cores sharing the fabric. The
SPL also supports spatial partitioning where the fabric is
divided into up to four virtual clusters. Spatial partitioning
reduces contention from sharing threads, but also reduces
the amount of resources available to each core, possibly
leading to degraded throughput due to increased virtual-
ization. Figure 2(b) shows the additional multiplexers and
tristate drivers necessary to support both forms of sharing.
Figure 2 also shows the barrier and thread-to-core tables,
input queue valid bits, and row destination IDs added to
support interthread and barrier communication, which are
discussed in the upcoming sections.

B. Support for Fine-Grained Communication+Computation

Most multithreaded applications use some form of com-
munication to coordinate their activity. At a high level,
communication requires the exchange of information among
threads, be it a notification of a thread arriving at a barrier
or a producing thread passing results to a consuming thread.
ReMAP facilitates fine-grain communication among threads
sharing the fabric, creating new opportunities for paralleliza-
tion that are too costly using conventional software-based
methods. Moreover, the ability to perform computation
within the fabric during communication provides additional
benefits over hard-wired communication-only mechanisms.

1) Fine-Grained Interthread Communication+Compu-
tation: Fine-grained interthread communication enables
threads to communicate with each other much more fre-
quently than would be possible using the traditional mem-
ory system. Such fine-grained communication is typically
targeted at pipelined/streaming applications [7], [24]. To
perform this type of communication, a queue is established
between the two communicating threads. The producing
thread places data into the queue and the consuming thread
reads data from the queue. Unless the queue is full/empty,
the two threads can continue to produce/consume data
without concern for how the other thread is progressing.

Since the fabric is shared between multiple cores, sending
data to a different core simply requires sending the fabric
output to the output queue of the consuming core. The
input and output queues provide queuing slots and the
pipelined fabric serves as both a computational substrate and
as additional on-demand queue slots.

Figure 3 details the steps involved in interthread com-
munication with custom computation. First, the producing
thread loads data into its input queue (Figure 3(a)). Once all
of the necessary data is loaded, the producer issues an SPL
instruction (Figure 3(b)). The data progresses through the
SPL to perform the computation programmed into the fabric.
Once any computation is complete, the results are bypassed
to the output queue of the consuming core (Figure 3(c)).
Finally, the consuming core stores the data from the output
queue to memory (i.e., store queue) (Figure 3(d)).

A small table (the Thread-to-Core Table in Figure 2(b))
maintains a mapping of threads to cores to virtualize the
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Figure 3. Walk through of intercore communication with integrated
computation.

selection of the destination core. When an SPL instruction is
issued, it obtains the core currently assigned to its destination
thread from the table and stores its results to the appropriate
output queue upon completion. In our proposed 4-way
shared fabric, each table has four entries. Each entry contains
the thread and application ID currently running on that core
as well as a count of the number of in-flight instructions
destined for that core. Assuming a limit of 256 thread and
application IDs and a maximum of 24 in-flight instructions
(as the fabric has 24 rows), each per-SPL table requires a
11.5B CAM (16 bits for IDs, 5 bits for number of in-flight
instructions, and 2 bits for hard coded core ID).

A side benefit of this table based approach is that instruc-
tions will not issue to the fabric if the destination thread
is not available (not present in the table). This prevents the
producing thread from filling up the fabric if the consumer
is not present.

Even with the table, however, SPL instructions could
accumulate in the fabric if the consumer thread is switched
out while data is in flight to it, which would require the
consumer to be switched back into the same core to receive
the values. To prevent this situation, the thread-to-core
mapping table maintains a count of the number of in-flight
SPL instructions destined for each core. On a request to
switch out, a thread checks the number of in-flight SPL
instructions bound for its core. If this is greater than zero,
the fabric is blocked from accepting any new instructions
destined for that thread and the thread continues to execute
until the in-flight counter reaches zero. At this point the
thread can be switched out and the fabric unblocked.

2) Barrier Synchronization+Computation: Barriers are
one of the most common synchronization operations. How-
ever, with a typical memory-based implementation, the over-
head of executing a barrier can be significant, especially as
the number of threads increases. This overhead prevents the
use of barriers at fine granularities. Various proposals [2],
[4], [25], [27] have suggested dedicated mechanisms to
reduce this overhead, thereby allowing parallelization of
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Figure 4. Walk through of barrier synchronization with integrated
computation.

applications that would not otherwise be possible. In cases
where a barrier is followed by a serial function that is per-
formed by one of the threads and the output communicated
to all participating threads, ReMAP may directly synthesize
the function into the fabric with the output communicated
to the participants’ output queues.

To implement barriers in ReMAP, SPL barrier instructions
(indicated by a flag in the SPL function configuration), must
not be allowed to issue to the fabric until all participating
cores have arrived at the barrier. To achieve this, each core
participating in the barrier loads some value(s) into its SPL
input queue (Figure 4(a)¶). Once the loads from all of
the cores have reached the head of their respective input
queues and all threads have indicated arrival at the barrier by
executing an SPL initiate instruction, an instruction is issued
to the fabric by the SPL controller, and the loaded values
from each core are passed into the fabric (Figure 4(c)). The
valid bits associated with every byte in the input queues
indicate which values from each core should be loaded into
the fabric. The global function programmed into the fabric
is performed, the results are placed into the output queue of
each participating processor (Figure 4(d)), and the processor
stores the data as appropriate. A memory fence is executed
following the stores to ensure that no subsequent memory
operations are performed until the barrier is complete.

To determine that all threads have arrived at the barrier,
each SPL cluster maintains a table (the Barrier Table in
Figure 2(b)) with information related to each active barrier.
Each table contains as many entries as cores attached to
an SPL cluster, as each could be participating in a dif-
ferent barrier. The table keeps track of the total number
of threads, the number of arrived threads, and the cores
that are participating in the barrier. The number of arrived
thread and participating cores are updated each time a thread
arrives (Figure 4 ·, ¸, ¹, and º) and the total and arrived
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Figure 5. Parallelization of SPEC 2006 456.hmmer P7Viterbi.

thread counts are compared to determine when to issue an
instruction (»).

In a system with multiple SPL clusters, a dedicated
bus communicates barrier updates among clusters. The bus
transmits the barrier ID as well as the associated application
ID. With a limit of 256 IDs, the shared bus requires only 16
data lines plus control. Each table entry requires 8 bytes:
16 bits for IDs; 4 for number of arrived threads; 4 for
total number of threads; 4 to indicate participating cores;
32 for participating thread IDs; and 4 to indicate if each
participating thread is currently active. In a four cluster (16
core) system, this requires a 128B table for each cluster.

All threads participating in a barrier must be actively
running in order for all input data to be available. Each table
entry maintains a list of the IDs of the local threads that are
participating in the barrier as well as a bit indicating if they
are actively running. If a barrier is ready to be released but
not all participating threads are active, the ReMAP controller
triggers an exception to switch the missing threads back in.
Once all threads are available, the barrier can proceed.

III. COMMUNICATION EXAMPLES

We propose using the SPL to perform both fine-grained
interthread communication and fine-grained barrier synchro-
nization. In this section we show example applications that
benefit from the enhanced communication and additionally
benefit from using the computational power of the SPL while
communicating.

A. Interthread Communication+Computation Example

To illustrate interthread communication, we show an ex-
ample parallelization of the SPEC2006 application 456.hm-
mer. We optimize the inner loop of the P7Viterbi func-
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Figure 6. SPL mc calculation mapping.

tion, which implements the dynamic programming Viterbi
algorithm. The original code for the optimized section is
shown in Figure 5(a) along with a flow chart summarizing
the computation being performed.

We first look at how the SPL can accelerate a portion
of the computation, specifically the calculation of mc. As
shown in Figure 5(b), the core loads the input values needed
to compute mc into the fabric, the SPL computes the value
of mc, and the core receives the result. After receiving mc,
the core computes the values of dc and ic and repeats the
loop. Figure 6 shows the general functionality performed
within each row of the SPL for the optimized section.

The next implementation creates a producer/consumer
thread pair that uses the SPL solely for communication (Fig-
ure 5(c)). The producer thread is responsible for calculating
the values of mc and ic and sending the value of mc from
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Figure 7. Parallelization of Dijkstra’s Shortest Path Algorithm.

the previous iteration to the consumer through the SPL. The
consumer receives this value and uses it to compute dc.

Finally, Figure 5(d) shows how computation and commu-
nication can be combined in the SPL. The producer thread
computes ic and loads the inputs needed for mc. The SPL
computes the value of mc and sends it to the consumer.
The consumer receives this value and uses the value of mc
from the previous iteration to compute dc. Computing mc
in the fabric reduces the amount of work for the producer,
which better balances the threads and further improves the
performance of the parallelization (see Section V-B).

B. Barrier Synchronization+Computation Example
To show the operation of ReMAP barrier synchronization,

we consider a parallel version of Dijkstra’s Shortest Path
Algorithm. Parallel versions of Dijkstra’s Algorithm have
previously been proposed. These algorithms, however, tend
to provide limited or no speedup for small to moderate graph
sizes. By using the SPL to perform the barrier synchroniza-
tion, we can improve the synchronization while also using
the fabric to perform computation during the barriers to
further improve performance.

In the parallel version of Dijkstra’s Algorithm, each
thread is given a portion of the entire graph to maintain.
Figure 7(a) shows pseudocode of the basic parallel algorithm
and the high level flow of the main and helper threads. The
code consists of three sections, delineated by code before,
between, and after the two barriers. In the first section, each
thread determines the minimum value of all unvisited nodes
among its subset and places this value in a global location.

In the next section, the main thread computes the global
minimum from these local minimum values and makes this
value globally available. Finally, each thread reads the global
minimum and updates the distances for all of its nodes.

The first optimization is to replace the software barriers
with ReMAP barriers, as shown in Figure 7(b). As with
previous dedicated barrier techniques [2], [27], replacing
the software barriers with ReMAP barriers provides signifi-
cant performance improvements. Performance can be further
improved beyond that possible with previous techniques
by using the computational power of the SPL to compute
the global minimum within the fabric. Figure 7(c) shows
this optimization for the case where all threads share a
single SPL cluster. Each thread computes its local minimum
as before and then loads this value into the SPL. While
performing the barrier, the SPL computes the minimum of
the input values. Each participating core receives the global
minimum from the SPL and updates the distances for its
nodes. Since the SPL outputs the global minimum directly,
one of the barriers is eliminated.

If the threads are spread across multiple clusters, the
fabric still helps compute the minimum; however, this op-
eration is performed in multiple stages and requires an
extra barrier to ensure proper execution. The first stage
computes regional minimum values (minimum values of
all cores in a single cluster). The second barrier ensures
that all clusters have finished storing these results. At the
final barrier each cluster loads the regional minimum values
and the fabric computes the final global minimum. Despite



Table II
ARCHITECTURE PARAMETERS.

OOO1 OOO2
Fetch/Decode/Rename Width 2 4
Issue/Retire Width 1 2
Branch Predictor gshare + bimodal
RAS Entries 32
BTB Size 512B
Integer/FP Registers 64/64
Integer/FP Queue Entries 32/16
ROB Entries 64
Int/FP ALUs 1/1 2/1
Branch Units 1 2
LD/ST Units 1
L1 Inst Cache 8kB 2-way, 2-cycle access
L1 Data Cache 8kB 2-way, 2-cycle access
L2 Cache 1MB per core, 10-cycle access
Coherence Protocol MESI
Main Memory Access Time 100 ns

the extra barrier, performance is still improved over using
ReMAP for communication only (see Section V-C).

IV. EVALUATION METHODOLOGY

We use a modified version of SESC [26] to evaluate our
proposed communication schemes. We assume processors
implemented in 65 nm technology running at 2.0 GHz with
a 1.1V supply voltage. The major architectural parameters
for the single-issue (OOO1) and dual-issue (OOO2) out-of-
order cores used in the evaluation are shown in Table II. We
use Wattch, Cacti, and HotLeakage to model power.

A. Benchmarks
We use benchmarks from the SPEC 2000 [28] and

2006 [29], MediaBench [18], MiBench [10], and Livermore
Loops [19] suites along with the Unix utility wc to analyze
the three usage modes from Figure 1. A complete list of the
benchmarks used for each operation mode, the functions we
optimize in each, and the percentage of total program execu-
tion time consumed by the functions are listed in Table III.
Cjpeg makes use of two operation modes, computation-
only and computation+communication, and is evaluated with
other communicating workloads. We execute two 250 mil-
lion instruction SimPoints [21] for SPEC workloads with
reference inputs and run all other workloads to completion.

To evaluate barrier synchronization we create parallel
versions of the listed applications. Two of the benchmarks,
specifically Livermore Loop 3, which is transformed to
operate on integers, and Dijkstra’s algorithm, include com-
putation in the fabric after synchronization. In Dijkstra’s
Algorithm, computation is performed during the synchro-
nization operation (as in Figure 1(c)). LL3 makes use of two
ReMAP modes of operation: performing computation on the
data within the loop (Figure 1(a)), and using the SPL to
accelerate synchronization between iterations (Figure 1(c)).

B. ReMAP Programming
We modify our workloads by hand to create the pro-

ducer/consumer pairs and SPL mappings. Previous work

Table III
BENCHMARK DETAILS.

Benchmark Functions Optimized % Exec
Time

Computation Only
g721dec fmult 48%
g721enc fmult 46%

mpeg2dec store ppm tga, conv422to444,
conv420to422 63%

mpeg2enc dist1 70%

gsmtoast Calculation of the LTP parameters
Weighting filter 54%

gsmuntoast Short term synthesis filtering 76%
462.libquantum quantum toffoli, quantum cnot 40%

Communication+Computation
wc wc 100%
unepic read and huffman decode 22%
cjpeg rgb ycc convert, jpeg fdct islow 50%
adpcm adpcm decoder 99%
300.twolf new dbox a 30%
456.hmmer P7Viterbi 85%
473.astar regwayobj::makebound2 33%

Barrier Synchronization
Livermore Loop 2 (LL2) 100%
Livermore Loop 3 (LL3) 100%
Livermore Loop 6 (LL6) 100%
Dikjstra’s Algorithm 100%

has shown that compilers can produce good mappings for
reconfigurable architectures [3], [5], [14], [34] and good
partitionings for pipelined applications [15], [20]. We be-
lieve our design could leverage this prior art in an actual
implementation.

V. RESULTS

We first evaluate ReMAP in the context of a heteroge-
neous CMP executing entire programs and then evaluate the
performance of the optimized regions to show the sources
of the improvements.

A. ReMAP in a Heterogeneous CMP

The ReMAP system is composed of clusters of four
OOO1 cores plus a 24-row SPL, coupled with clusters of
OOO2 cores (Figure 2(a)). An alternative is a cluster of
four OOO2 cores with a dedicated communication network
(OOO2+Comm), similar to previous proposals [7], [24].
Assuming zero hardware cost for the communication net-
work, an OOO2+Comm cluster consumes approximately the
same area as an SPL cluster. In the ReMAP configuration,
regions of code that utilize the SPL are run on the SPL
cluster while other regions are run on an OOO2 core. The
migration overhead is accounted for by draining in-flight
instructions and stopping execution for 500 cycles to model
the time necessary to context switch all state to the new core
(determined by running the requisite code in the simulator).

We compare these two schemes using workloads that
use the SPL for computation alone and those that use the
SPL for computation+communication (results for barrier
synchronization are discussed separately in Section V-C).
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Figure 8. Performance relative to single threaded baseline.
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Figure 9. Energy×delay relative to single threaded baseline.

Computation-only workloads are run concurrently with other
computation-only workloads to account for SPL contention.
Communicating workloads are run separately, but are given
access to only half of the SPL, under the assumption that
the other half is in use by another communicating pair.

The performance improvement of the two configurations
relative to executing the original sequential code on a OOO1
core is shown in Figure 8. ReMAP performs as well or better
than OOO2+Comm in all but one case. On average ReMAP
performs 49% better than OOO2+Comm for computation-
only workloads and 41% better for communicating work-
loads. In the one exception, twolf, the time duration of
the sequential regions are so short that the migration cost
outweighs the benefit of executing these regions on the 2-
way issue core. The performance benefit of executing on
the 2-way issue core during the sequential regions (with
OOO2+Comm) outweighs the benefit of executing on the
SPL during the parallel sections.

Figure 9 shows energy×delay (ED) for the two config-
urations relative to the single threaded baseline. ReMAP
provides better ED than both the baseline and OOO2+Comm
configurations in all but one case. The one exception is
again twolf, where both alternatives achieve worse ED than
the baseline, indicating that twolf should be run as a single
thread on a simple core if energy is a significant concern.
OOO2+Comm also generally provides better ED than the
baseline, but only marginally so in cases such as cjpeg,
astar, and libquantum. With the exception of twolf, ReMAP
provides 45% better performance on average and 35% lower
energy consumption on average than OOO2+Comm.
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Figure 10. Performance improvement of optimized functions relative to
performance of single threaded baseline.

B. Analysis of Optimized Regions

We now analyze the code regions optimized for ReMAP to
see the source of the above improvements. Figure 10 shows
the performance improvements relative to the single threaded
baseline of a single thread using the SPL for computation
(1Th+Comp) and (where appropriate) dual threads with
the SPL used for communication (2Th+Comm) and dual
threads with the SPL used for computation+communica-
tion (2Th+CompComm). We also show the dual threaded
case running on OOO2 cores with idealized communication
hardware (OOO2+Comm). Using the SPL for computa-
tion (1Th+Comp) provides significant performance improve-
ments (289% and 105% on average for computation-only
and communicating workloads, respectively).

Focusing on the workloads employing communication,
using the SPL for producer-consumer communication alone
provides a 38% improvement in performance for the opti-
mized region relative to the single core baseline. Combining
both computation and communication (2Th+CompComm)
increases the average performance improvement to 223%.
It is only with the combination of computation and commu-
nication that ReMAP outperforms the OOO2+Comm alter-
native in all cases (by 79% on average), showing the clear
benefit of integrating SPL computation and communication.

To confirm the need for hardware-based communication,
we also ran the benchmarks with software queues, with
and without SPL computation. Software queues degraded
performance by more than a 180% on average relative to
the OOO1 baseline.

1) Contributing Factors: We analyzed the benchmarks
to identify the factors that contribute to the performance
improvements for combined SPL communication+computa-
tion. Primary among these factors is that the combination of
SPL computation and communication reduces the amount of
time between successive SPL requests relative to using either
technique in isolation, often by 2X or more. This increased
access rate improves performance by increasing the amount
of concurrent processing in the SPL.

Relative to the single threaded case, by splitting the
application into a producer/consumer pair we can place
sections of code with poor branch or load performance
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Figure 11. Energy×delay of optimized fuctions relative to single threaded
baseline.

in their own thread to reduce or eliminate their impact
on performance. In unepic, for example, the consumer is
responsible for a section of code with both an unpredictable
branch as well as a pointer chasing load. By placing just this
code in the consumer and the rest in the producer, the con-
sumer can start processing these unpredictable instructions
earlier. This reduces the impact of the unpredictability of
these instructions and improves performance. With ReMAP
communication we can also perform computation during the
communication, meaning that each core is now responsible
for approximately half of the SPL instructions (either the
loads or the stores). This reduces the number of instructions
that both threads need to process, which can lead to reduced
pressure on the ROB and other related structures. This leads
to fewer pipeline stalls and therefore better performance.

Compared to just communicating data, performing com-
putation on the data while in flight to the consumer pro-
vides multiple sources of improvement. For one, the SPL
computation removes instructions from one or both threads.
This can better balance the work done by both threads and
allow for more efficient pipelining. Both astar and adpcm,
for example, are consumer bound with just communication.
By performing computation in the SPL, computation previ-
ously performed by the consumer is now performed in the
SPL, leading to more balanced producer/consumer threads.
These more balanced threads spend less time waiting on
a full/empty SPL queue, which improves performance. Re-
moving instructions from one or both of the threads can
also reduce pressure on the ROB and related structures,
again improving performance. Cjpeg and unepic are two
examples that see reduced ROB stall time with integrated
computation. Finally, moving computation inside the SPL
can improve branch prediction in one or both threads by
moving conditional operations into the SPL. Adpcm and wc
are two cases that see such a reduction in misprediction
rate. The improved branch prediction improves processor
efficiency which again improves performance.

2) Energy Efficiency Results: Figure 11 shows the ED of
the three SPL implementations and the OOO2+Comm alter-
native relative to the single threaded baseline without SPL.
While adding computation or communication in isolation
reduces ED in many cases, neither is able to provide enough

performance benefit to overcome the added power consumed
by the extra core and SPL in all cases. ReMAP communica-
tion+computation always improves performance and reduces
energy consumption compared to OOO2+Comm and is the
only option to provide better ED than the the single threaded
baseline in all cases.

C. Fine-Grain Barrier Synchronization

We evaluate the performance of software (SW) versus
ReMAP barriers for our four barrier applications when
executing 2, 4, 8, and 16 threads. Figure 12 shows the
performance for SW and ReMAP barriers (with and without
computation where appropriate) for the 8 and 16 threaded
cases. Results for 2 and 4 threads show similar trends.

Similar to other fine-grained synchronization tech-
niques [2], [25], [27], performing barriers via ReMAP sig-
nificantly improves performance over SW barriers. For the
Livermore Loops, the ReMAP versions start outperforming
the sequential code for much smaller vector lengths. Fine-
grained synchronization also makes larger thread counts
useful for smaller problem sizes. In dijkstra, ReMAP barriers
not only outperform software barriers with the same number
of threads but also outperform software barriers with two or
four times the number of threads in some cases.

1) Fine-Grain Barrier Synchronization with SPL Compu-
tation: Certain parallel benchmarks also benefit from the
computational capabilities of the SPL. This computation
is either performed as part of the barrier operation, as in
dijkstra, or in a separate SPL function that only performs
computation, as in LL3. The execution time and performance
improvements of barriers+computation relative to barriers
alone for the two benchmarks are shown in Figures 12(c-d)
and 13, respectively.

For dijkstra, where the computation is integrated with
the barrier, the benefits of adding computation are most
pronounced with more threads and at finer synchronization
granularities. This occurs because thread synchronization,
which is the portion of code accelerated by the SPL,
consumes more time with smaller problem sizes and more
threads. In the 16 thread case, adding computation provides
up to a 9% improvement versus hardware barriers alone.

In LL3, where the computation is a separate function,
the greatest benefit occurs with fewer threads and coarser
synchronization granularities. In either of these cases each
thread has more work to do between barriers, resulting in
the computation section, the part accelerated by the SPL,
increasing as a percentage of the overall execution time.
When there are an extremely small number of loop iterations
per thread, the Barrier+Comp case can actually perform
worse than synchronization alone as there are not enough
SPL instructions to take advantage of the pipelined nature
of the fabric. This can be seen in Figure 13(a) for small
problem sizes and large thread counts. In each case each
thread has only 2 or 4 iterations to perform and so little
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Figure 12. Per iteration execution time for Livermore loops (a) 2, (b) 6, and (c) 3 and (d) Dijkstra’s Algorithm.
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Figure 13. Performance improvement of barriers+computation over barriers alone for (a) LL3 and (b) dijkstra.

pipelining occurs. For the larger problem sizes, however,
the performance improvement is significant, ranging from
15-26%.

2) Energy Efficiency Results: Figure 14 shows
energy×delay (ED) results for the four synchronization
workloads relative to the single threaded case. In general,
the break even point for ED – the point at which the ED
of the parallel case drops below the sequential case – for
both SW and ReMAP barriers requires a larger problem
size (coarser grained synchronization) than the performance
break even point. This occurs since, especially at very fine
granularities, the performance improvement achieved by
increasing the number of threads is not ideal (i.e., doubling
the number of threads does not halve the run time). For 16
threaded LL2 and LL6, SW barriers never break even for
the problem sizes we investigate. ReMAP barriers always

achieve better ED than their SW counterparts, despite the
additional energy consumed by the SPL.

We also evaluate the performance achieved by replacing
the SPL with additional cores and dedicated fine-grain
barrier support [2], [27]. Since the SPL consumes as much
area as two single-issue cores, we simulate a system where
each SPL is replaced by two additional cores and the cores
are connected with a dedicated barrier network that incurs
no hardware cost. We find that, compared to such a ho-
mogeneous cluster, ReMAP barriers+computation achieves
up to 25.9% and 62.5% lower ED for dijkstra and LL3,
respectively, demonstrating the benefits of ReMAP custom
computation with fine-grain barrier synchronization.

VI. RELATED WORK

A number of research efforts [6], [9], [11] have investi-
gated the high level integration of a reconfigurable fabric on-
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Figure 14. Energy×Delay for Livermore loops (a) 2, (b) 6, and (c) 3 and (d) Dijkstra’s Algorithm relative to sequential execution.

chip. All of these, however, only investigate the integration
with a single core, although Garcia and Compton [11] state
that their technique could be extended to a multicore system.

In [12], configuration data for a reconfigurable coproces-
sor is shared among multiple cores all running the same
application to improve fabric utilization. Chen et al. [8]
investigate the benefits of including reconfigurable ISA
support in a multicore processor and find that combining
program parallelization with custom ISA support provides
larger speedups than the sum of the two techniques applied
in isolation.

StreamIt [15], [30] is a programming language and com-
piler infrastructure aimed at easing the use of pipeline
parallelization. Decoupled Software Pipelining (DSWP) ad-
dresses hardware options for implementing fine-grain com-
munication [24], [23], automatic extraction of streaming
threads [20], data parallelization of pipeline stages [22], and
speculative DSWP [31]. Caspi et al. [7] propose SCORE,
a stream computing model targeted at reconfigurable sys-
tems. Their design incorporates a single CPU and mul-
tiple reconfigurable blocks and streaming occurs between
reconfigurable blocks over a dedicated interconnect. In our
work, communication occurs between CPUs and the shared
reconfigurable fabric is used to perform the communication.

None of this prior work evaluates the energy efficiency
implications of streaming. Energy usage is a non-trivial
concern given the fact that streaming tends to provide less
than ideal speedups.

Beckmann and Polychronopoulos [2] and Shang and
Hwang [27] both propose hardware mechanisms for per-

forming barriers using dedicated interconnect and hardware
tables. IBM’s Cyclops architecture [4] provides dedicated
hardware support for barriers through a special purpose
register and wired-OR. Sampson et al. [25] propose barrier
filters to eliminate the dedicated interconnect required in
most barrier synchronization proposals. The Multi-ALU
Processor [17] provides an explicit barrier instruction in the
ISA and supports register to register communication between
clusters.

VII. CONCLUSIONS

We propose ReMAP, a shared reconfigurable architecture
for accelerating and parallelizing applications in a heteroge-
neous CMP. In addition to accelerating computation like tra-
ditional reconfigurable fabrics, ReMAP can be configured to
facilitate multiple forms of fine-grained communication. In
contrast to previous fine-grain communication approaches,
ReMAP enables custom computation to be integrated with
communication. Combining these multiple modes improves
performance by 45% over an area equivalent system with
larger cores and dedicated hardware communication. We
also show that ReMAP provides better energy efficiency
than can be achieved by using the area consumed by the
SPL for either additional or more powerful cores, providing
a 44% reduction in ED. These results demonstrate the
significant advantages of incorporating reconfigurability into
future heterogeneous CMPs.
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