Reducingthe Complexity of the RegisterFile in Dynamic SuperscalarProcessors

Raje& Balasubramonidn SandhyeDwarkada$, andDavid H. Albonest
t Departmenbf ComputerScience
! Departmenbf ElectricalandComputerEngineering
Universityof Rochester

Abstract

Dynamic supescalar processos execute multiple in-
structionsout-of-order by looking for independenbpera-
tions within a large window Thenumberof physicalreg-
isters within the processorhasa directimpacton the size
of this windowas mostin-flight instructionsrequire a new
physicalregister at dispatd. A large multiportedregister
file helpsimprove the instruction-level parallelism (ILP),
but mayhavea detrimentaleffecton clodk speedgespecially
in future wire-limitedtechnolagies. In this paper we pro-
posea register file organizationthat reducesregister file
sizeand port requirementsfor a givenamountof ILP. e
usea two-level register file organizationto reduceregister
file sizerequirementsanda banked organizationto reduce
port requirrments We demonstate empirically that the re-
sultingregisterfile organizationshavereducedatencyand
(in the caseof the banked organization)enegy require-
mentsfor similar instructionsper cycle (IPC) performance
andimprovedinstructionsper secondPS) performancen
comparisorto a conventionalmonolithicregister file. The
choiceof organizationis dependenbn designgoals.

1 Intr oduction

Modern high-performanceprocessorsuse an out-of-
orderdynamicsuperscalacoreto extractinstruction-level
parallelism(ILP) from applications. Theseprocessorx-
aminea large window of in-flight instructionsto find mul-
tiple readyand independeninstructionsevery cycle. The
size of this window is one of the key determinantf the
degreeof ILP that canbe achiesed. However, supporting
a large window of in-flight instructionsalsorequireslarge
structureswithin the processgmamely alargeregisterfile,
issuequeue,andreorderbuffer (ROB). Sincein high fre-
gueng designsmicroarchitectsry to setthe clock speecof
theprocessobasedntheexecutionspeedf simpleinteger
instructions alarge multiportedregisterfile canpotentially
compromiseclock cycle time.

*This work was supportedn partby NSF grantsEIA-9972881,EIA-
0080124 CCR-9702466CCR-9701915CCR-9811929CCR-9988361,
andCCR-9705594by DARPA/IT O underAFRL contractF29601-00-K-
0182;andby anexternalresearclgrantfrom DEC/Compag.

The registerfile size hasa directimpacton the number
of in-flight instructionssince every dispatchednstruction
that hasa destinationregisteris assigneda new physical
register Hence,oncethe free registersrun out, the dis-
patchstagegetsstalled, causingthe processoto look for
ILP within arestrictedwindow until the oldestinstructions
commitandfree their registers. The growing gapbetween
memoryandprocessospeedsesultsin anincreasinghum-
berof longlateng instructionscausinghecommitstageto
be frequentlystalledandfurther necessitating large num-
ber of registers.In addition,the largeissuewidthsin such
processorslsorequirea large read/writebandwidthto the
registerfile. Implementingalarge numberof registerswith
mary portsfor the sale of increasedLP posesa numberof
challengesn termsof bothperformanceindeneny.

The registerfile is a heavily-ported RAM structure. A
processocapableof issuingeightintegerinstructionseach
cycle may needan integer register file with sixteenread
ports (correspondingo two sourceoperandsper instruc-
tion) and eight write ports. Using a register file access
time model derived from CACTI-2.0 [28], we found that
the accesdime for an 80-entry24-portedregisterfile can
exceedl.5nsat0.18u technologypotentiallybeingon crit-
ical pathsdeterminingthe cycle time. The currenttrends
of increasedrequenciesgominatingwire delaysatsmaller
technologied16, 19|, andincreasedegisterrequirements
becausef simultaneousnultithreading26] makeit harder
to implementa registerfile that canbe accessedh a sin-
gle cycle. Having a large register file with a multi-cycle
accesdime posesproblemsof its own. For example,a 3-
cycle registerfile accesdime would requirethreelevels of
bypassingamongthe functional units, therebyincreasing
the bypassingdelay anothercycle-time critical path[19].
A multi-cycle registerfile accesgime would alsodegrade
instructionsper cycle (IPC) by increasingthe branchmis-
predictpenaltyandthe registerfile pressureby increasing
registerlifetimes. Furthermore pipelining the registerfile
is notatrivial taskasit isa RAM structure.

Given these constraints,the register files in modern
dynamic superscalaprocessordiave beenvery modestly
sized. The Alpha 21264[12] hasas mary as 80 integer
physicalregisters,but requiresa clusteredorganizationto

reduceghenumberof portsandhencetheaccessime. Clus-
teringtheregisterfile canpotentiallyhave a detrimentalef-
fectonIPC becaus®f inter-clustercommunicationFarkas
etal [9] shovedthatlargerregisterfile sizesresultedn im-
proved IPC even asthe sizeswere increasedeyond 128
entries,but moderndynamicsuperscalaprocessorslo not

supportthatlarge a size becausef cycle time constraints.

Modern processorsare also limited by problemsrelating
to power consumption. The registerfile consumes non-
negligible portion of chip power, around10% accordingto
the power modelshasedn Wattch[2].

In this paper we addresghe problemof designingthe
registerfile in a more compleity-effective mannerin the
context of dynamicsuperscalaprocessorsvhile maintain-
ing IPC andsignificantlyimproving instructiongpersecond
(IPS) performanceWe follow the complexity-effective de-
sign approachof Palacharlaet al. [19] in that we seekto
reducethe accesdime of critical processoistructures(in
our case theregisterfile) evenif this involvesintroducing
otherstructureghatarenot on cycle time critical paths.We
achieve this goalvia two orthogonabpproaches:

e Reducingthe numberof requiredregistersin the reg-
isterfile on the critical pathby usinga moreefficient
registerallocationpolicy.

e Reducingregisterfile port complexity without unduly
sacrificingregisterread/writebandwidth.

In termsof enegy dissipation,we find that the first tech-
nigueimposesan enegy penaltycomparabléo its perfor
manceimprovementwhile the secondechniqueprovidesa
significantreductionin registerfile enegy consumptionn
additionto improvedperformance.

We achieve thefirst objective via a hierarchicaldivision
of registersainto thosewith active consumersindthosewait-
ing for preciseconditions.Our designdiffersfrom previous
approacheso register file partitioning (describedin Sec-
tion 6) in beinghardware-basedatherthanrelyingoncom-
piler support. Registersare allocatedfrom the first-level
(L1) registerfile at the time of dispatch. When a register
valuehasbeencompletelyconsumedy all instructionghat
sourcethe value, it is movedto the second-lgel (L2) reg-
ister file. Thesevaluesare retainedin the L2 sincethey
might be neededn the eventof a branchmispredictionor
anexceptinginstruction.SincetheL1 registerfile now con-
tainsonly thosevalueghatwill besourcedy thefunctional
units, it containsfewer registersthana single-lesel register
file, and thereforeits accesdime is considerablysmaller
However, the additional structuresthat are introducedto
keeptrack of the statusof variousregistersconsumenon-
trivial amountsof enepy, reducingthe potentialof suchan
organizatiorasanenegy saving technique.

To reduceregisterfile port requirementsye proposea
bankedorganizatiornthatbearssimilaritiesto that proposed

for datacacheg[10, 20] aswell as other previously pro-
posedbanked registerfile organizationgdiscussedn Sec-
tion 6). Our approactdiffersfrom theseprior effortsin that
our bankshave a single read port and a single write port
(which we call minimally ported, despitethe factthat our
processors capableof readingsixteenregistersandwriting
eightregisterseachcycle; andwe modela dynamic,single-
cluster superscalaprocessoias opposedo the VLIW or
clusteredsuperscalaprocessomodelsof otherapproaches.
The resultis a more scalablealternatve to a large, mono-
lithic registerfile thatoperategonsiderablyastemwhile dis-
sipatingsignificantlylessenepgy, evenwith the additional
addresgredecodingandoutputmultiplexing required.

We alsoshav thatcombiningthe two techniquedy us-
ing asmallerbankedL1 in conjunctionwith anL2 register
file doesnot resultin furtherimprovementsn IPS. Thisis
dueto thefactthattheaccesgime improvementof splitting
a banled organizationinto two levelsis overriddenby the
smallbut additive (but no morethanadditive) IPC degrada-
tion of thetwo techniquesttheevaluatedechnologypoint.

The organizationof the restof this paperis asfollows.
Section2 outlinesthe operationof a corventionalregister
file. Section3 describeshe proposedwo-level registerfile
organizationwhile Section4 describeghe banked register
file approach.We evaluatethe proposeddesignsin terms
of IPC, accesgimes, and enegy in Section5. Section6
comparesndcontrast®urapproachewith existingrelated
work. Finally, we make concludingremarksin Section?.

2 Conventional RegisterFile Organization

Theregisterfile is typically a RAM structureconsisting
of afixednumberof registerswith asmary write andtwice
asmary readportsasthe maximumnumberof instructions
that canissuein ary cycle. In addition, dynamic super
scalarprocessorsik e the Alpha 21264[12] andthe MIPS
R1000029] useaphysicalregisterallocationpolicy similar
to theoneillustratedhereby anexample:

Original code Renamed code
1. Ir5 <- prl8 <-
2: <- Ir5 ... <- prls8
3: branch to x branch to x
4: 1r7 < 1r3 pr22 <- pr24
50 1r5 <- pr27 <-
6: x: ... < 1Ir5 X: ... <- prls8

At dispatch thefirst write to logical register5 (Ir5) causes
it to getmappedto physicalregister18 (pr18). This value
is readby the next instruction,after which a branchis en-
counteredThebranchis predictedto be nottakenandsub-
sequentlyanothemvrite to Ir5 occurs.At this point, Ir5 gets
mappedo adifferentfree physicalregister pr27. However,

the valuein prl8canstill not be freedasthe branchmay
have beenmispredictedjn which case therewould be an-
otherreadfrom Ir5 (instruction6), which actuallyrefersto
pri8. Furtherif thewrite to Ir7 (instruction4) wereto raise
anexceptionto reflectthecorrectprocessostateJr5 would
have to be mappedo the valuein pr18. Henceprl8cannot
bereleasedackinto thefreelist until the next write to Ir5
(instruction5) commits,which guaranteethatall previous
branchesave beencorrectlypredictedandall previousin-
structionshave not raisedan exception. This mechanism
to releaseregistersbackinto the free pool is easilyimple-
mentedn hardware- the ROB keepstrack of the old phys-
ical registermappingfor eachinstructions logical register
andreleasest atthe time of commit. However, it leadsto
long registerlifetimes sincelong lateng operationgloads
from memory for example)couldhold upthecommitstage
for mary cycles.

3 A Two-Level RegisterFile

Our two-level registerfile usesanallocationpolicy that
leaves valuesthat have potentialreadersin the level one
(L1) registerfile andtransfersothervaluesinto level two
(L2). This significantlyreduceghe numberof requiredL1
entriesfor agivenlevel of IPC performancetherebyreduc-
ing registerfile accesdime. Detailsof the registeralloca-
tion policy andthe requiredmicroarchitecturathangesre
discussedhext.

3.1 Micr oarchitectural Changes

Figurel shavsablockdiagramof our proposednicroar
chitecture,outlining its essentiafeatures. We assumean
8-way issueprocessoin thefollowing discussion.

During rename,register namescorrespondonly to L1
physicalregisters;L2 registersarehiddenfrom the rename
process.We introducea nen hardwarestructure shavn in
Figurel, thatmonitorsthe usagestatisticsfor the L1 phys-
ical registers. For every L1 physicalregister this Usage
Table maintainghe following information:

e A PendingConsumes counterthat keepstrack of the
numberof pendingconsumerof that value. During
rename an instructionthat sourceghe registerincre-
mentsit. Duringissue thesamenstructionwouldthen
decremenit?.

e A singlebit (calledthe Overwritebit) thatis setwhen
thephysicalregisteris nolongerthelatestmappingfor
its logical register

e Anotherbit thatindicatesif a resulthasbeenwritten
into the physicalregister

1An instructionbeingsquashedsa resultof a branchmispredictalso
decrementshe counter

e Thesequencaumberfor the branchimmediatelyfol-
lowing the instructionthatwritesto this physicalreg-
ister(sequencaumberl).

e Thesequencaumberfor the branchimmediatelypre-
cedingthe next instructionthatwritesto the sameog-
ical register(sequenc@umber2).

Mostof theinformationrequiredto updatethistableis read-
ily availableduringtherenamestage Thesequencaumber
counterddentify the variousin-flight branchesandmaybe
asmary bits aslogs(ROBsize). Whenthe numberof L1
physicalregistersfalls belov a pre-setthreshold,registers
thathave a PendingConsumes countof zero,have aresult
in them,andhave their Overwritebit setarecopiedinto the
L2 (providedtherearefree L2 physicalregisters).The cor-
respondind_1 registersarereleasednto the free pool. A
singleL2 ID valid bit, addedto eachROB entry, indicates
thatthe destinatiorregisterID in thatentry correspondso
an L2 register At the time of commit, the registeris re-
leasedackinto thelL2 freepoolinsteadf theL 1 freepool.

The Copy List, which keepstrack of L1-L2 copiesfor
recovery from a branchmispredict,containsthe following
informationfor eachlL2 register:

e The L1 physicalregister namethat had earlier con-
tainedthevalue.

e Thesequencaumberfor the branchimmediatelyfol-
lowing the instructionthatwritesto this physicalreg-
ister

e Thesequenca@umberfor the branchimmediatelypre-
cedingthe next instructionthatwritesto the samelog-
ical register

Thesevaluesare copied from the Usage Table when the
transferis made.

The two branchsequencenumbersstoredindicate the
‘li ve’ periodof aphysicalregistervalue,i.e., theperioddur-
ing which instructionssourcingthis value are dispatched.
If a branchwith a sequencenumberbetweenthe two se-
guencenumbers(both inclusive) for an entry mispredicts,
thenthe L2 registervalueis reinstatedbackto L1, asin-
structionsalong the correctpath may needto sourcethat
value. All suchL2 values(referredto asthe'live’ set)are
copiedbackinto the L1. The original L1 registersof the
‘live’ setare guaranteedo be available for the following
reasons.An L1-L2 copy canoccuronly whenthe Over
write bit is set, thatis, whena newly renamednstruction
(call it instructionRI) hasthe samelogical destinatiorreg-
ister asthe copiedinstruction(Cl). Thus, this is the point
atwhich CI's L1 physicalregistercanbe reused.However,
a branchthat mispredictsand causeghe value of CI to be
restorecbackto L1 by definitionmusthave occurrecbefore
instructionRI. Thus,instructionRI andits successorwill

REGISTER RENAME ISSUE QUEUE

FUs

L1 REGISTER FILE L2 REGISTER FILE

Y
Y

A

A

1A

J€
ROB

USAGE TABLE COPY LIST

Figurel. The Two-Level RegisterFile Organization.

be squashedtherebyguaranteeinghe availability of CI's
original L1 register In addition, this mechanisnrequires
no modificationsof the registermaptable checkpointand
restoratiorprocess.

The processoralso needsto recover to a valid regis-
ter file stateon an exception. Sinceexceptionsarenot as
frequentas branch mispredicts,most designs(the MIPS
R10000[29], for example)simply traversethe ROB in re-
verseorderto restoreold registermappings. For the two-
level registerfile, valuesare alsorestoredfrom the L2 to
the L1 asfollows. The'live’ setof the branchclosestto
the ROB head(the exceptinginstruction)is reinstatedas
in a mispredict. Then,the ROB is traversedstartingat the
branchinstructionandmoving towardtheexceptinginstruc-
tion. Eachentrywhosel 2 ID valid bit is sethasits L2 value
restoredo theL1. Becausef thetraversalof theROB, this
processs likely to take a numberof cycles, even though
branchesre often fewer than 10 instructionsapart. Since
exceptionsareinfrequentandthe processf recoveringthe
register mappingsis of comparablecompleity, the over-
headof this copying operationrshouldbe neggligible.

3.2 Complexity of the ProposedStructur es

The Usage Table hasasmary entriesasthe L1. Each
entryrequiredog, (RO Bsize) bitsfor eachsequencaum-
ber (or no morethaneightbits eachfor currentprocessors)
andonly afew bits for the PendingConsumes counter in
additionto the two single-bitfields. As a result,we have
found that the Usage Table accesdime is muchlessthan
that of the L1 registerfile. Note thatthe Overwrite bit is
checkpointecbn every branchso it could be recoveredin
caseof a mispredict. The table look-up to determinel1
registersthat are candidatedor copying to the L2 requires
simple combinationalogic for eachentry The CopyList
andthefew-portedL2 registerfile arealsosmall structures
comparedo the L1. We have modeledtheseaswell and
foundtheir accesgimesto belessthanthatof theL1.

In termsof enengy, the frequentaccesandmodification
of the variousUsage Table fields addsnon-trivial amounts

of overheadIn agivencycle,upto eightinstructionsacross
two basicblocks can be dispatched.Hence,a numberof
registerscould updatetheir sequenc&aumberfields within
the usageable,althoughthe valuebeingwritten into these
fields could be only one of two values(asall instructions
belongto one of two possiblebasicblocks). As aresult,
the structurewould have two setsof bitlinesandwordlines,
but mary decoders.Up to eightinstructionscould update
sequenceumberl andeightmore could updatesequence
number2. Giventhe small size of the fields, the decoder
enegy dominategsheenegy consumptiorfor thisstructure.
To reducethe enegy consumptionthis structurecould be
integratedwith a CAM implementatiorof therenamdable,
or with thefreelist, therebydoingaway with any additional
decodingo identify the registersbeingrenamedhatcycle.

For the PendingConsumes counters,in a given cycle,
up to eight instructionscan dispatchand eight canissue,
resultingin mary possiblecounterupdatesWe alsonoticed
that mostregistersthat were copiedinto the L2 only hada
single consumer Restrictingthe L2 to only suchregisters
resultedin almostno performancelegradation.Hence the
countercould be a single bit, with anotherbit to indicate
overflow andthe register's non-candidag for copying into
theL2. The numberof possiblevaluesthatcanbe written,
and thereforethe word and bit line eneny, is reducedby
this mechanism. Again, the decodingprocessto identify
the counterdominateghe enegy consumption.

The CopyList hasasmary entriesastheL2. It consists
of a RAM partthat storesthe variousfields (not exceeding
24 bits). It alsoconsistsof a CAM part for improved effi-
cieng astheentrieswould haveto compareheirbranchse-
guencenumberswith thatof themispredictedranchwhile
copying valuesbhackinto theL1. Sincethe CAM is invoked
only on a mispredict,its enegy consumptioris negligible
comparedo that of the RAM part. The enegy consump-
tion of the RAM structureis alsolow asonly a singlecopy
is performedeachcycle, requiringa singleread/writeport.

The copying processneednot require additional ports
in the L1. The L1 register ports are often not maximally

utilized becauseaherearent enoughreadyinstructionsor
instructionshave fewer registersourceoperandsThe copy
from the L1 is madeduring theseperiodswhenspareread
portsareavailable.

Our modified ROB has an extra L2 ID valid bit and
loga(max(L1size, L2size)) bits for the registeridentifier.
Sincea comparabléwo-level organizationis likely to have
fewer L1 registers,the sizeof eachentryis practicallyun-
affected. The numberof accesseto the ROB goesup by
thenumberof copiesto L2, but is unlikely to increasecon-
tentionor enegy consumptiorsignificantly

4 A Minimally-P orted Banked RegisterFile

This sectiontackleshesecondsourceof compleity: the
large numberof registerfile portsin awide-issugorocessar
In a processocapableof issuingeightintegerinstructions,
asmary as16 operandsouldbereadfrom, andasmary as
eightoperandscould be written to, the integer registerfile
eachcycle (seeFigure2). Meetingthis high bandwidthre-
guirementvia true multiportingis costlyin termsof access
time, power dissipation,and scalability A similar prob-
lem exists for high bandwidthdata caches,and the alter
nativesto true multiporting that have beenproposedn the
literature[20, 24] are double-pumpingyeplicationof the
arrays,andbanked organizations.Double pumpingcanbe
employedif the accesgime for an array structureis much
smallerthanthe cycle time. It is not very scalableandcan
usually only be employed to help reduceareaas halving
the numberof ports usually reducesthe accesgdime by a
factor of lessthan half. To reducethe compleity of the
registerfile, the Alpha 21264[12] implementsa replicated
registerfile, onein eachcluster so asto reducethe num-
ber of readports. Replicationresultsin a penaltyin terms
of IPC becausef the addedcommunicatiorcostbetween
the clusters. We explore the benefitsof bankingto reduce
multiportingrequirementsn thefollowing sections.

4.1 RegisterFile Port Requirements

Although a processorcapableof issuing eight integer
instructionsand simultaneouslywriting back eightinteger
instructionstheoreticallycould useas mary as 24 integer
register portsin a cycle, the numberof ports requiredon
averagearealot fewerfor severalreasons:

e Many operandsrereadoff of thebypassetwork, not
from theregisterfile.

e Many instructionsonly have a singleregisteroperand.

e A numberof instructionsproduceresultsthat are not
written to the registerfile (branchesstores,effective
addressomputatiorpartof aloador store).

Usingthe processomodeldescribedn Section5, we eval-
uatedthe averageportrequirements$or thebenchmarlpro-
grams.We foundthatfor everyissuednstruction,only 0.64

valueswerereadfrom the registerfile and0.73wereread
off thebypassetwork. In termsof actualperformancewe
obsened that using four readand four write ports caused
very few instructiongto stall dueto a conflictfor a portand
theresultinglPC degradationwasonly 2% on average.This
is athree-foldreductionin the numberof registerports,but
comesatthecostof someadditionalcomplexity in theissue
stage.Along with variousotherstructuralhazardstheissue
stagewith this organizatiorhasto take into accountheport
requirement®f the readyinstructionsandpostponeheis-
sueof instructionsthatdo not have sufficient ports. Theis-
suequeusds alreadyawareof whichregisterscanbereadoff
thebypassetwork — thesearethe sameregistersinvolved
in the wakeuplogic that cycle. The changesn the select
logic aredescribedater To handlethe limited write band-
width, arbitrationlogic is requiredbefore functional units
canwrite resultsontothe resultbus. Sincedestinatiorreg-
istersof instructionsareknown in adwance this arbitration
canoccura cycle in advanceof writing the result. Addi-
tionalregistershaveto beprovidedatthefunctionalunitsto
buffer resultsthatfail to usetheresultbusright away, or the
pipelinefor thefunctionalunit hasto be stalled.

This additionallogic overheads smallcomparedo the
drasticregister file enegy, area,and accesgime savings
in going from a 24-portedstructureto an 8-portedstruc-
ture. Themostsignificantoverheadwhich we quantifyin a
later section,is the costof drivers/multiplexors usedto di-
rectdatafrom theeightportsto the 24 datapathsThevalues
from the readportshave to now be distributedto multiple
functionalunitinputs. As aworst-casescenariowe assume
thatthe valuereadfrom ary of the portscanbe sourcedoy
ary of the functionalunit inputs. Figure2 shavs the struc-
ture of the limited-portorganizationbeingconsidered We
startwith this basecaseasit representanattractve design
pointandseeif we canfurtherreduceits complexity.

4.2 RegisterFile Banking

In an N-banledregisterfile, thevariousregistersaredis-
tributed among N banks,with eachbank having p ports.
Hence,asmary as N x p valuescanbe readin ary cy-
cle,with theaddedrestrictionthatonly p valuescanberead
from ary onebank. If the operandseingreadin a cycle
areevenly distributedamongthe variousbanks thereis al-
mostno IPC degradationcomparedo a centralregisterfile
with N x p ports,yetcompleity is greatlyreducedaseach
structurehasfewer registersandfewer ports.

We evaluatethe useof a banled registerfile with a sin-
glereadandwrite portperbank.Figure2 shovs a4-banled
organization.Here,aninstructionmay have bothits source
operandsn a singlebank,makingit impossiblefor bothto
be readin the samecycle. Hence,we mustallow ‘partial
reads’i.e., if aninstructioncannotissuebecausef bank
conflicts, but canreadone of its operandsjt doesso and

ports 1-4

port 1 port 2 ... port 15 port 16

4 banks, each with one port

QDDD

feeds 16 muxe

[[[[]output driver

. repeated 16 times

output driver
seorve as mux I L 1L

feeds 16 muxe

output driver,
Sohve o5 m@]

@

... repeated 16 times

Figure2. A corventionalmonolithicregisterfile for an8-issueprocessaramonolithicregisterfile organizationwith a
limited numberof ports,andabanlked,single-port-petbankorganization(only readportsshovn here).

savesthe operandn thelatchat theinput to the functional
unit. Theinstructioncontinuego remainin theissuequeue,
but it marksthe correspondingperandas‘read’. In subse-
guentcycles, the instructioncontinuesto competefor the
bank correspondingo its secondoperand,while holding
up its functionalunit. Whenthe instructionfinally reads
its secondoperand,it startsexecuting. While this is nec-
essaryto avoid deadlock,this phenomenorhasa minimal
impacton performanceasit occursvery infrequentlydue
to operanddeing frequentlyreadoff the bypassnetwork.
Themaximumpercentagef ‘partial reads’outof all issued
instructionswasfoundto be only 4% for a 4-banled orga-
nizationwhile runningem3d

The selectlogic in the issuequeuehasto take into ac-
countthe contentionfor the portsandthe functionalunits,
anddifferentimplementationgantrade-of selectiogic ac-
cesgime with IPC. Onepossibleimplementatiorwould be
to resole conflictsfor portsandfunctional units indepen-
dently (usingPalacharlastreeof request-granblocks[19])
andallow aninstructionto issueonly if it wasableto pro-
cure its functional unit and at leastone register file port.
While thisimplementatiominimally impactsthelateng of
the selectlogic, therecould be instancesvherean instruc-
tion could have issued,but doesnot, potentially degrading
IPC. An alternatie implementatiorcouldtake into account
port and functional unit availability at eachrequest-grant
block, beforeallowing a requestto propagateup the tree.
This couldincreasehe delayof the selectlogic, but would
improve the allocationof resourcego readyinstructions.
We assumedhe latterimplementatiorin our simulations.

5 Evaluation
5.1 Simulation Methodology

We usedSimplescalaf3.0[3] for theAlpha AXP instruc-
tion setto simulatea dynamically scheduledsuperscalar
processomwith the simulation parametersummarizedn
Table 1. The simulator has beenmodified to model the

Fetchqueuesize 16
Branchpredictor comb of bimodaland2-level gshare;
bimodalsize2048;
Levell 1024entries history 10;
Level2 4096entries(global)

Combiningpredictorsize1024;
RAS size32; BTB 2048sets 2-way

Branchmispredictcost 11lcycles
Fetch,dispatchcommitwidth 8
int,fp issuewidth 8,4
ROB andLd/Stqueue 200and100

64 (int andfp, each)

L1 | andD-cache 64KB 2-way, 32-bytelines, 2 cycles
L2 unifiedcache 1.5MB 6-way, 64-bytelines,15 cycles
TLB 128entries,8KB pagesize

Memorylateny 70 cyclesfor thefirst chunk

Issuequeuesize

Memoryports 4 (interleared)
Integer ALUs/mult-div; 8/4
FPALUs/mult-div 4/4

Tablel. Simplescalasimulatorparameters.

memoryhierarchyin greatdetail (includinginterleaved ac-
cess,bus and port contention writebackbuffers, etg). We
model issue queuesthat are smaller than the ROB size
(in Simplescalar the issue queuesand the ROB consti-
tute onesingleunified structurecalledthe RegisterUpdate
Unit (RUU)), a physicalregisterfile and mappingof log-
ical registersto them, and split integer and floating-point
issuequeuesandphysicalregisterfiles, similarto the Alpha
21264 microprocessof12] but enhancedor wider issue.
We alsochoseour ROB andissuequeuesizesin orderto
ensurethatthey did notintroducean additionalbottleneck
soasto focustheresultson theregisterfile.

As benchmarkswe use a wide variety of programs,
from the Olden [22], SPEC2000SPEC95,UCLA Medi-
abench[14], andNAS parallelbenchmarl7] suites. The
benchmarlsetrepresentamix of bothintegerandfloating-
point programsaswell asa mix of memory-intensie low
IPC programs(that tend to run out of registersbecause
of long lateng/ operationghat stall the commit stage)and
non-memory-intensie high IPC programs(thattendto be

Benchmark Input Instrs L1
set simulated
20K, 20

Base
mrate | IPC
1000-1010M | 28% | 0.86

em3d(Olden),FP

sp(NAS-uniproc),FP A, 2500-2525M | 20% | 1.44
gzip (SPEC2K)Int ref 2000-2050M | 1% | 2.04
vpr (SPEC2K)Int ref 2000-2050M | 2% 1.49

crafty (SPEC2k)Int ref 2000-2050M | 1% 2.48
art (SPEC2k) FP ref 300-350M 26% 1.53
gcc(SPEC95))nt ref 300-325M 1% 1.68
perl (SPEC95))nt ref 500-525M 0% 2.73

cjpeg (Mediabench)int test
djpeg (Mediabench)int test

200-225M 0% 1.70
150-175M 0% 3.87

Table2. BenchmarldescriptiorandL1 D-cachemiss
rates. BaselPC represents processomodelwith a
monolithicregisterfile with 160entriesand24 ports.

constrainedoy register file bandwidth). To reducesimu-
lation time for all programs,we studiedcachemiss rate
tracego identify smallerinstructionintervalsthatwererep-
resentatie of thewhole program.The simulationwasfast-
forwardedpastthe initial warm-upphasesandanotherone
million instructionswere simulatedin detail to prime all

structurebeforedoingtheperformanceneasurementver
thechoserinterval. Detailson thebenchmarksirelistedin

Table2. The programswere compiledwith Compags cc,

f77, andf90 compilersfor the Alpha 21164at the highest
optimizationlevel. The programcodeuses3?2 integerand
32floating-pointlogical registernames.

To quantifythe complexity of the baselineandproposed
registerfile organizationsyve usedthe accesgime anden-
ergy modelsof CACTI-2.0 [28] at 0.18u technologyasa
baseline.We modifiedit to modela registerfile (similarto
thatdoneby Farkas[9]). Additional changesveremadeto
modelour proposecdrganizationsdetailsof which appear
in the next subsections.

5.2 Two-level RegisterFile Evaluation

Our basecaseconsistsof a monolithic single-level reg-
isterfile with four readportsandfour write ports. As shall
beseenin the next section this hasalmostthe samelPC as
abasecasewith 16 readand8 write ports. To this, we add
anL2 registerfile with a singlereadanda singlewrite port.
For ourinitial experimentsthesumof theregistersin theL.1
andL2 equalsl60 (int andfp, each),whichis roughlythe
maximumnumberof requiredregistersfor a ROB size of
200. We do not addary additionalportsto thelL1 — copies
to theL2 aremadeonly whentherearefree portsavailable.
We also attemptcopiesonly if thereare fewer than eight
registersin the L1 free registerpool. Whena mispredict
is discovered,registervaluesneedto be copiedbackinto
theLl. We assumehat up to four transferscan be made
without addingto the mispredictpenalty i.e., thatit takes
atleastfour cyclesfor instructionsfrom the correctpathto
reachtheissuestageandthatonecopy canbe madein each
of thesecycles. Theseareratherpessimisti@assumptionsas

100-L1 | 60-L1,40-L2

L1 258 197

L2 0 17

L1-L2 bus 0 17
usagecounters 0 22
sequenc@umberstoragdan usagetable 0 39
copy list 0 8

Total 258 300

Table 3. Enegy breakdavn for the monolithic and
two-level registerfiles. Enegy is showvn asthe arith-
metic meanof pJ/instracrossall programs.

typical superscalapipelinestodayusuallyhave morethan
four stagedeforetheissuestage.If morethanfour copies
needto be made,we stall the fetch stageby anextra cycle
for every additionalcopy.

We startby assuminghattheregisterfile accesgimeis
the critical pathanddetermineghe clock speed.To com-
pare various organizations,we usetwo metrics, IPC and
instructionsper second(IPS), which is derived by divid-
ing the IPC by the accesgime for the registerfile. Fig-
ure3 shavsoverallperformanceesultsusingtheharmonic
mean (HM)) for variousregister file organizations. The
graphon the left shawvs the variationin IPC with the size
of theL1 registerfile. Thesolid line shavs IPCsfor single-
level registerfiles, while the dottedline shons IPCswhen
theseorganizationgreaugmentedvith asecondevel (with
thesumof theL1 andL2 registerfiles held constantat 160
registers). The gap betweenthe two lines representghe
speeduossibleby theadditionof asecondevel. An over
all IPC of 1.67is the maximumpossiblefor a ROB size
(in-flight instructionwindow) of 200 andthe two-level or-
ganizationquickly saturatego this value,having anIPC of
ashigh as1.63with just 80 L1 registers. The single-lesel
organizationrequiresasmary as 140 registersto attainan
IPCof 1.65. Thissuggestshatoutof 140physicalregisters,
only about80 are‘active’ atary giventime. Theremaining
60don't have ary consumersinlesshereis amisprediction
or exceptionandthey canbemovedawayto the L 2.

Assumingthatin highfrequeny designgheregisterfile
accesdime determineghe clock speed,a designerwould
usethe IPS metricto pick the bestdesignpoint. The graph
ontheright in Figure3 shovs how IPSvarieswith the size
of the L1 registerfile. For the single-lesel registerfile, this
valuepeakdor a 100-entryregisterfile. The corresponding
peakfor the two-level organizationis seenfor a 60-entry
L1. Thegapbetweerthetwo curvesillustratesthatthetwo-
level organizatiorstrikesa betterbalancebetweerlPC and
accesdimes- its optimal IPS is 17% betterthanthe opti-
mal IPS with a single-level registerfile. For the two-level
structurewith a 60-entryL1, we also studiedthe effect of
varying the L2 registerfile size andfound that a 40-entry
L2 yieldedIPC within 1% of a 100-entryl2.

The useof a smallerL1 registerfile could also poten-

-
o

=
o
I

Ing
~
L

I
N

[N
L

HM of IPCs
o
0
|

o
o

—&—single level regfile

o
~
|

= @ -two-level regfile

o
[N

o

48regs 60regs 80regs 100regs 120regs 140regs 160 regs

L1 register file size

=
©

,_\
=
3|
[J
P

Ing
~
.

=
N

[N
L

o
0o
.

o
o

—&—single level regfile

o
~
|

HM of IPSs (billion instr/second)

= @ two-level regfile

o
()

0 T T T T T T
48regs 60regs 80regs 100regs 120regs 140regs 160 regs

L1 register file size

Figure3. Graphsshaving IPC andIPSwith varyingL1 registerfile sizesfor the singleandtwo-level organizations.

tially resultin enegy savings. The enegy peraccesswas
estimatedusing CACTI-2.0. For eachportthatwasnot ac-

cessedn a cycle, we assumedhat it consumedLl0% of

its maximumenegy. For the two-level organization,we

alsoconsideredhe costof transfersaacrosghebusbetween
thelL1 andL2. We alsoattemptedo modelthe additional
structurequsagetable,copy list) with CACTI-2.0. It must
be pointed out that modelingtheseauxiliary structuresas
RAMs representenedesignpoint, which might not neces-
sarily bethe mostoptimalin termsof enegy efficiency.

Table3 shavsthevariouscomponentsf theaverageen-
ergy consumptiorfor the 100-entrymonolithic registerfile
and the two-level registerfile. Whenthe auxiliary struc-
tures are not consideredthe two-level organizationcon-
sumes11% lessenegy. The L2 registerfile is a single
portedstructureandit doesnot addsignificantenegy over-
head. Rather thereis a drasticL1 enepgy sasings dueto
thereductionin the sizeof the heavily portedL1 structure.
Whenthe enegy from the otherstructuress takeninto ac-
count, the two-level organizationendsup consumingl6%
more enegy thanthe monolithic basecase. Most of this
enegy comesrom thevariousdecodersn thesestructures,
whichemphasizetheneedto designthemcarefully, sothat
decoderdgrom otherstagesanbe integratedwith them(as
describedn Section3).

To shav behaior on individual applications,we also
shav IPSnumberdor threeof theorganizationsn Figure4.
The first two barsshav IPSsfor single-level registerfiles
with 60 and100registers while thelastbarshows IPSsfor
atwo-level organizationwith 60 registersin the L1 and40
in theL2. All the programsshov anIPC improvementin
goingfrom a 60-entryL1 to a 100-entrylL1, thoughthein-
creasedaccesdime doesnot always translateinto higher
IPS. Thetwo-level organizationdoesa very goodjob iden-
tifying ‘inactive’ registersandmoving themto thelL2, often

IPSs (billion instrs per second)

35

W60-L1
0100-L1 —
0060-L1;40-L.2

N
w
.

]

N

-
ol
I

[
I

0.5 +

0 4 | | | | | | | | | | | |

em3d sp gzip vpr crafty art gcc perl cjpeg djpeg HM

Figure 4. IPSsfor individual applicationsfor single-
level registerfiles of sizes60 and100andatwo-level
organizationwith a 60-entryL1 and40-entryL2.

achieving IPCscomparableo the larger single-level regis-
terfile, while maintaininga low accesgime andexceeding
its IPS. The L1-L2 copiesaccountedor about18% of all

accesse$o the L1. Very few L2-L1 copy-backswerere-
quiredon eachmispredictandin mostcasesthesewereef-

fectedwithout stallingthe front-end. The programvpr was
the only exception- in a 50M instructionsimulation,it ef-

fected22.5M copiesfrom L1 to L2, of which 1.6M hadto

becopiedbackonmispredictsresultingin asmary as0.8M

front-endstalls,andresultingin aminor 0.016CPIloss.

5.3 Banked RegisterFile Evaluation

We now studytheimplicationsof a registerfile thathas
a singlereadanda singlewrite port, but is organizedinto
N banks.For N = 4, it hasthe samepeakreadandwrite
bandwidthasthe basecase,but incursan IPC degradation

becausef the addedconstraintthat two valuescannotbe
sourcedin the samecycle if they lie in the samebank.
The banksare high-orderinterleared, i.e., the high-order
operandaddresdits selecthecorrectbankto reador write.

We usea processowith the parameterslescribedn the
earliersectionandusea 160-entryregisterfile (int andfp,
each)in orderto study a high IPC model with the most
potentialfor bank conflicts. For the banked structure,we
shaw resultswith four and eight banks,with the registers
distributed equally amongthese. At the time of rename,
free registersare picked out of the banksin a round-robin
orderto ensurethat thereis a fair distribution of registers
amongthe banks. Therecanbe at mosteight outstanding
partial readsat ary giventime (onefor eachinteger func-
tional unit) andat mosteightresultscanbe buffereddueto
afailureto getaccesdo thewrite ports.

Figure 5 shavs IPC resultsfor various organizations.
The first bar shovs a corventional organizationwith 24
ports. The secondbar shows the choserbasecasethathas
a single bank,allowing four readsandfour writesin a cy-
cle. As canbe seen,the chosenbaseis within 2% of the
24-portedregister file. The third bar shavs the effect of
usingfour banks,eachwith onereadport and eight write
ports, while the fourth bar also hasfour banks, but only
a singlereadand a single write port. Thus, the third bar
shaws the penaltyimposedby conflicts for readportsand
thefourth barshavstheadditionalpenaltybecausef write
port conflicts. Whencomparedwith the organizationwith
24 ports, thereis a 1% drop in IPC becauseof readcon-
flicts. Thedegradatiorincreaseso 5% whenwrite conflicts
are also taken into account. (However, the IPC degrada-
tion when comparedwith the organizationwith the same
read/writebandwidthis only 3%.) The mostsignificantiPC
degradationsare seenfor someof the high ILP programs,
like djpeg, perl, crafty, andgzip- the greaterthe numberof
instructionsissuingevery cycle, the greaterthe numberof
bankconflicts. TheIPC for djpeg is about10% worsethan
thenon-banledregisterfile with the samebandwidth.

For the4-banledorganizationgachfunctionalunitinput
multiplexesoneof thefour valuesreadfrom theregisterfile
(Figure2). If morethanonefunctionalunit attemptgo read
thesameregisterin thesamecycle, this canbedonewithout
having to readthatvaluetwice, i.e., the valueis readonce
andmultiplexedto both functionalunitswithout any added
logic. Instead,f this valueis readtwice, it leadsto a great
numberof bankconflicts,resultingin afurther4%IPCloss.
This happendecaussomeregistershave mary consumers
in the samecycle, mostnotably the stackpointer

To reducebankconflicts, we attemptedsimple schemes
whereregister mappingswere steeredo specificbanksto
avoid conflicts. Steeringthe two operandsof the same
instructionto differentbanksdid not yield much benefit.
Sinceoneof theoperandss usuallyreadoff thebypasset-

IPCs

IPCs

M single bank, 16-rd, 4-wr
|Osingle bank, 4rd, 4-wr
Ofour banks, 1rd, 8wr each
B four banks, 1rd, 1wr each A

%

HM

sp gzip cjpeg djpeg
Figure5. IPCsfor the corventionalandthe basecase
(single bank with four read and four write ports),
and for organizationswith four banks. The third
bar shows the effect of limited readports, the fourth
shavs the effect of limited readandwrite ports.

em3d vpr art gcc perl

4.5

M single bank, 16-rd, 4-wr
Osingle bank, 4rd, 4-wr
Oeight banks, 1rd, 8wr each
H eight banks, 1rd, 1wr each

35

em3d

HM

art

sp gzip crafty perl cjpeg djpeg

Figure6. IPCswith eightbankorganizations.

vpr gce

work, this phenomenoris not a sourcefor conflicts. We
tried to seeif two instructionsssuedn the samecycleona
regularbasis.If suchinstructionswvereidentified,thesource
(andalsotheirdestinationyegisterscouldbemappedo dif-
ferentbanksto helpreducethe chance®f a conflict. How-
ever, dueto the unpredictablenatureof schedulingoecause
of cachemisses,resourceconflicts, etc, we obsered that
two instructionsthatissuedtogetherin a cycle werelikely
to dosoagainduringtheirnext instantiatiorwith aprobabil-
ity of only 20%. Simplepredictorsthatexploitedthis prop-
erty to steerregistersto specificbanksshaved negligible
improvements. More complicatedpredictorscould possi-
bly do a betterjob, but because¢he maximumimprovement
possiblewasonly 5%, we did not attemptthese.

The easiestway to reduceconflictsis to simply imple-
mentmorebanks.Figure6 repeatghe experimentsn Fig-
ure5, but with eightbanks.Thereis almostno degradation
becausef readportconflicts. Thewrite portconflictsresult

Organization IPC Access IPS Enegy
L1/L2 | banks | ports/bank time(ns) | (BIPS) | pJ/instr
160 1 16-,8-w | 1.70 251 0.68 1524
160 1 4-r, 4-w 1.67 1.35 124 368
100 1 4-r, 4-w 154 1.12 1.38 258
60 1 4-r, 4-w 1.18 0.91 1.30 187
60/40 1 4-r, 4-w 1.45 0.91 1.59 300
160 4 1-r,1-w 1.62 0.97 1.67 84
160 8 1-r,1-w 1.68 0.98 171 107
100 4 1-r,1-w 1.49 0.94 1.59 73
60/40 4 1-r,1-w 1.39 0.91 1.53 183

Table4. Summaryfor variousorganizations.

in a2% IPC losswhencomparedwith the 24-portedregis-
terfile. However, the costof aneight-banledstructureis a
potentialincreasen accessime, whichwe now evaluate.

In determiningthe accesdime of the monolithic struc-
ture with fewer ports (four readand four write), we have
to take two additionaldelaysinto account. First, the sig-
nal readoff the bitline hasto be distributedvia a driver to
asmary as 16 possibledatapathgeight integer units, two
operandnputseach).At eachof thesedatapathsthereex-
ists a multiplexor thatthenselectshe datareadout of one
of the four readportsandforwardsit to the functionalunit
input. We modified CACTI-2.0 to take thesetwo effects
into account.The corventionalorganizationsimply hasan
outputdriver that transmitsthe datato the functional unit.
Thefewer-portedstructurehasa buffer thatfeeds16 output
drivers. The outputdrivers(which aretristatebuffers and
sene asthemultiplexors)alsohave a greaterdelaybecause
four of themdrive the samebus.

Thefour-bankedorganizatiorhasa similar outputstruc-
ture asthe fewer-portedorganization.Oncethefour values
arereadout, they follow thesamepathasin thelatter. How-
ever, accesgime is reducedecausehe delayto readdata
outof eachbankis smaller(eachstructurds one-quartethe
sizeandhasone-quartethe readandwrite ports). We also
takeinto accounthetimetakento propagate signalacross
the breadthof all thebanks.

Table 4 summarizeghe featuresof the four organiza-
tions evaluated. According to the accesgtimes obtained
from CACTI-2.0,reducingthenumberof portsin themono-
lithic structurefrom 24 portsto 8 reduceshe accesgime
from 2.51nsto 1.35ns,a 46% drop, even when account-
ing for the additionaldelay of the buffer and outputmulti-
plexors. By further splitting the registerfile into 4 banks,
eachwith onereadand onewrite port, the accesdime is
reducedby an additional 28% to 0.97ns. Of this delay
0.11nswasbecauseof the buffer and the mux and0.24ns
wasbecausef the propagatiordelayacrosghe breadthof
all the banks.With the 8-banledstructure the accesgime
increaseslightly. Eventhoughthe accesgime for anindi-
vidual bankdecreasest takeslongerto propagate signal
acrosall banks.Giventhatthesedrasticaccessimereduc-

tionsarepossiblewith almostnegligible IPC penaltiesthe
IPS metricsfor the banked organizationsare correspond-
ingly much higher - the 8-banled registerfile hasan IPS
thatis 38% higherthanthe single-bankdregisterfile.

In termsof registerfile enegy, the 24-portedstructure
consumed 524pJper instructionon average. The single-
bank 8-ported structure achieves more than a factor of
four lower enegy consumption(368pJ/instr). The four-
banlked structureshaws a further reductionby a factor of
4.4 for a perinstructionconsumptionof 84pJ.Finally, by
usingthe eight-banled structure,enegy increaseslightly
to 107pJ/instrThis occursbecaus¢he additionaldecoders,
bitlines, and wordlines of the eight-banled structurestill
dissipateenegy underour modelevenwhenidle, although
theenepy of the selectedbankis reduced.

The useof fewer portsintroducessomelogic in the se-
lect stageof the issuequeueand somearbitrationlogic at
the functional units. Our analysishasnot taken into ac-
countthe extra enegy consumedwithin thesestructures.
Giventhatthe proposedegisterfile organizationgonsume
about18 timeslessenepgy thanthe basecase,we expect
thattheseoverheadsvould be comparablynegligible. The
powermodelsbasebnWattch[2] attributeverylittle power
to the selectlogic whencomparedvith theregisterfile.

5.4 Combining the Two Techniques

So far, we have studiedthe two orthogonalaspectsof
theregisterfile in isolation- the numberof entriesandthe
bandwidth.In this subsectionwe seethe effect of combin-
ing thetwo, i.e., usinga smallerbanked L1 in conjunction
with an L2 registerfile. The banlked organizationreduces
accesdime aswell asenegy consumptiorfor a maminal
IPC loss,while the two-level organizationalsoreducesac-
cesstime but with a potentialincreasen enegy consump-
tion dueto auxiliary structures.

Figure 7 shavs the IPS of the combinedtwo-level,
banlkedapproactaswell asthatof theindividualtechniques
for eachbenchmark.Table4 providesa breakdevn of the
performance&umbersaswell asaveragesnegy. In compar
ing thetwo-level, banked,andcombinedorganizationswe
find that IPS performanceactually degradesslightly when
thetechniquesarrecombined.The reasons thatthe access
time improvementof splitting a banked organizationinto
two levelsis overriddenby the IPC degradationincurred.
With sucha smallnumberof registersin eachbankto begin
with, the bitline delay ceasedo dominatethe accesdime
to the point wherefurtherreducingthe numberof registers
in eachbankvia splitting into two levels hasdiminishing
returns. Thus, eventhoughthe IPC degradationeffects of
combining the two techniquesare additive (but no more
thanthis), the reductionsin accesdime arenot. We also
foundthatthis heldtruefor thelargerregisterfiles likely to
beimplementedn simultaneousnultithreadedprocessors.

IPSs

35

W 100-L1, single bank, 4rd, 4wr
[0100-L1, four banks, 1rd, 1wr each M
3 1060-L1, 40-L2, single bank, 4rd, 4wr

F60-L1, 40-L2, four banks, 1rd, 1wr each

crafty art gce perl cjpeg djpeg HM

Figure 7. IPSsfor the single-level basecase for the
single-level banked organization, for the two-level
non-banled,andthe two-level bankedorganizations.

For example,with 512total registers,an eight-way banked
registerfile hasanaccesgime of 1.05nsin 0.18u technol-
ogy, while a two-level eight-way banked organizatiornwith
256registerseachin L1 andL2 hasonly aslightly lowerac-
cesgtime of 0.99ns.Thus,we concludethatat leastfor the
0.18u parametershatwe usedin our analysis,combining
thetechnigquesloesnot afford ary advantage.

We alsofind that for a given numberof registers(100
in this case),the two-level and banked organizationgper
form identically The advantageof the two-level organiza-
tion is its simplerlayoutcomparedo the banked organiza-
tion, which requiresmary wiresto spanthe breadthof the
registerfile and mary outputmultiplexers. If layout con-
siderationsare the overriding concern,then the two-level
organizationis the mosteffective meansto reduceregister
file accesdime andincreasdPS. If enegy considerations
areparamountthenthe bankedapproactprovidesa signif-
icantenegy sasings in additionto a marked performance
improvement.

6 RelatedWork

Cruzetal [6] useatwo-level hierarchicalinclusive reg-
ister file organization(wherethe secondlevel containsall
values).In comparisonpur organizationusesan exclusive
cachingpolicy thatavoidsthe IPC lossfrom missingin the
first level. However, the penaltyis a potentiallylarger size
and accesgime for the L1. Hence,the choice of which
organizationworks betterwould dependon the target fre-
gueng, the processparametergthe registerfile size that
canbesupportedn asinglecycle), andthe benchmarlset.

Zalameaet al [31] proposedatwo-level registerfile that
is compilercontrolledfor reducedregister spilling in the
contet of VLIW processorsThe Cray-1[23] alsoimple-
menteda software-controllectwo-level hierarchicalregis-

terfile. YungandWilhelm [30] exploredthe possibility of
cachingpart of the registerfile with an LRU replacement
policy in thecontext of anin-orderprocessarSwenserand
Patt [25] proposeda hierarchicahon-inclusveregisterfile,
wheredifferentbankshave differentsizesandspeeds.
Processor implementations, such as the HP PA-
8000[13], maintaina logical registerfile that holds com-
mitted values,andthe renameregistersaremaintainedn a
separatdank(perhapsn the ROB). Sincea functionalunit
couldsourcevaluesin eitherbank,this partitioninginto two
banksdoesnotresultin areductionin accessime.
Theconditionsunderwhich aregistercanbedeallocated
have beendealtwith in detailby Moudgill etal [18]. Wal-
laceandBagherzadeli27] andMonrealetal [17] propose
delayingthe allocationof registersuntil thetime to actually
write the value,therebyimproving its utilization.
Partitioned non-hierarchicalregister file organizations
have beenproposedn thepast[1, 4,5, 8,12, 15, 21]. These
organizationshave clustersof functional units, with each
clusterhaving its own privateregisterfile. While theseorga-
nizationsreduceporting requirementger cluster they still
provide dedicatedoorts per functionalunit, andthey incur
additionallateng (in extra cycles)whenvaluesfrom other
clustersneedto be communicatedin our bankedorganiza-
tion, thebanksareadjacentandaretreatedasonestructure.
As aresult,we pay a penaltyin termsof a slightly longer
accesdime asanoperandcouldbe sourcedrom ary of the
banks which requiresa multiplexor andthe addeddelay of
having to crossmultiple banks.However, this choicemakes
it possibleto have asfew asa singlereadandsinglewrite
port per bank. Suchan organizationwasalso proposecdby
Jansserand Corporaal[11] in the context of a VLIW pro-
cessor Their schemeaequirescompilersupportandincurs
a non-trivial IPC degradation.In comparisonpur scheme
doesnot requirecompiler supportand usesa wider issue
processanVe alsoquantifythe effect of theaddedcircuitry
on accesdime and enegy, and evaluateits impacton the
performancef adynamicsuperscalaprocessar

7 Conclusions

The registerfile is a key bottleneckin moderndynamic
superscalaprocessorsBothalargenumberof registersand
mary portsarenecessaryo supporta large window of in-
flight instructionsandextractenoughlLP. The accesgime
of theregisterfile is, however, critical in determiningcycle
time, requiringthatits designbe assimpleaspossible.The
registerfile may alsobe a significantcontributor to overall
pawer consumption.

In this paper we addresghe lateng and enegy con-
sumption of the register file using two orthogonal ap-
proacheghat can be combined. The novel contributions
of the paperare: a hierarchicaldivision of registersinto
thosewith active consumersaandthosewaiting for precise

conditions(differentfrom earlier partitioning proposalsn
being hardware-base@nd not compilerbased)the useof
minimally-portedregister file banks,which hasnot been
studiedin the context of dynamicallyschedulegrocessors;
andathoroughevaluationof IPC, accesgime, andenengy.

Our resultsshow that the use of a two-level structure
helpsreducethe accesdime of the first-level registerfile
in comparisorto a single-level registerfile for roughly the
samelPC. When using the instructionsper secondmet-
ric, thetwo-level organizatiorperformsl7%betterthanthe
bestsingle-level organization.Using a banked single-port-
perbankregisterfile organizatiorreducesiccessimesby a
factorof morethantwo andenegy consumptiorby afactor
of morethan18whencomparedo a corventionalorganiza-
tion. Thesémprovementsareobtainedwithoutasignificant
degradationn IPC. Thechoiceof technique— two level or
banked— is dependentn designgoals.

References

[1] A. Baniasadiand A. Moshovos. Instruction Distribution
Heuristics for Quad-Cluster Dynamically-ScheduledSu-
perscalaiProcessors.In Proceedingsof MICRO-33 pages
337-347Dec2000.

[2] D.Brooks,V. Tiwari,andM. Martonosi. Wattch: A Frame-
work for Architectural-Lerel Pover AnalysisandOptimiza-
tions. In Proceeding®f ISCA-27 June2000.

[3] D.BurgerandT. Austin. The Simplescalaifoolset,Version
2.0.TechnicaReportTR-97-1342 Universityof Wisconsin-
Madison,Junel997.

[4] R.CanalJ.M. ParcerisaandA. GonzalezDynamicCluster
AssignmentMechanismsin Proceeding®f HPCA-6 2000.

[5] A. Capitanio,N. Dutt, andA. Nicolau. PartitionedRegister
Filesfor VLIWs: A PreliminaryAnalysisof Trade-ofs. In
Proceeding®f MICRO-25, 1992.

[6] J.-L. Cruz, A. Gonzalez,M. Valero, and N. P. Topham.
Multiple-Banked Register File Architectures. In Proceed-
ingsofthelSCA-27 pages316—3252000.

[7] D. Bailey, etal. The NAS Parallel Benchmarks. Techni-
cal ReportTR RNR-94-007 NASA AmesResearctCenter
March1994.

[8] K. Farkas,P. Chaw, N. Jouppi,andZ. Vranesic. The Mul-
ticluster Architecture: ReducingCycle Time throughParti-
tioning. In Proceeding®f ISCA-24 1997.

[9] K. FarkasN. Jouppi,andP. Chow. RegisterFile Considera-
tionsin DynamicallyScheduledProcessorsin Proceedings
of HPCA 1996.

[10] L. Gwennap.PA-8500's 1.5M cacheaidsperformance Mi-
croprocessoiReport 11(15),Novemberl7,1997.

[11] J. Jansserand H. Corporaal. Partitioned Register File for
TTAs. In Proceeding®f MICRO-28 1995.

[12] R.Kessler The Alpha21264MicroprocessorlEEE Micro,
19(2):24-36March/April 1999.

[13] A. Kumar The HP PA-8000RISC CPU. IEEE Computer
17(2),March1997.

[14] C. Lee, M. Potkonjak, and W. Mangione-Smith. Media-
bench:A Tool for Evaluatingand SynthesizingMultimedia
and CommunicationsSystems. In Proceedingsf MICRO-
30, pages330-335,1997.

[15] P. Lownegy, S. Freudenbeger, T. Karzes, W. Lichtenstein,
R. Nix, J. O'Donnell, and J. Ruttenbeg. The Multiflow
Trace SchedulingCompiler Journal of Supecomputing
7(1-2):51-142May 1993.

[16] D. Matzke. Will PhysicalScalabilitySabotagé’erformance
Gains?IEEE Computey 30(9):37—-39Sept1997.

[17] T. Monreal, A. Gonzalez,M. Valero, J. Gonzalez,and
V. Vinals. Delaying PhysicalRegister Allocation through
Virtual-PhysicalRegisters. In Proceedingsof MICRO-32,
pagesl86—192Nov 1999.

[18] M. Moudgill, K. Pingali,andS. Vassiliadis RegisterRenam-
ing andDynamic Speculation:an Alternative Approach. In
Proceeding®f MICRO-26, 1993.

[19] S.PalacharlaN. Jouppi,andJ.Smith. Compleity-Effective
SuperscalaProcessorslin Proceeding®f ISCA-24 1997.

[20] J.Rivers,G. Tyson,E. Davidson,andT. Austin. On High-
BandwidthData CacheDesignfor Multi-Issue Processors.
In Proceeding®f MICRO-30, pagest6-56,1997.

[21] S.Rixner, W. Dally, B. Khailary, P. Mattson,U. Kapasi,and
J. Owens. Reggister Organizationfor Media Processing.In
Proceeding®f HPCA-6 Jan2000.

[22] A. RogersM. Carlisle,J. Repyy, andL. Hendren.Support-
ing Dynamic Data Structureson Distributed Memory Ma-
chines.ACM TOPLAS Mar 1995.

[23] R. Russell. The Cray-1ComputerSystem. In Readingsn
ComputerArchitecture, 2000.

[24] G. Sohiand M. Franklin. High-BandwidthData Memory
Systemdor SuperscalaProcessorsin Proceeding®f ASP-
LOS pagess3-62,1991.

[25] J.SwenserandY. Patt. HierarchicalRegistersfor Scientific
Computersin Proceeding®f ICS, pages346—354,1988.

[26] D. Tullsen, S. Eggers,andH. Levy. SimultaneousMulti-
threading:Maximizing On-ChipParallelism.In Proceedings
of ISCA-22 pages392—-403,1995.

[27] S.Wallaceand N. Bagherzadeh.A ScalableRggister File
Architecturefor DynamicallyScheduledProcessorsn Pro-
ceedingof PACT, Oct 1996.

[28] S.Wilton andN. Jouppi. An EnhancedAccessand Cycle
Time Model for On-Chip Caches. TechnicalReport TN-
93/5,CompadWesternResearctiab, 1993.

[29] K. Yeager The MIPS R10000SuperscalaMicroprocessor.
IEEE Micro, 16(2):28—-41April 1996.

[30] R.YungandN. Wilhelm. CachingProcessofzeneralReg-
isters. In Proceedingsof the International Confeenceon
CircuitsDesign 1995.

[31] J.Zalamea,).Llosa,E. AyguadeandM. Valero. Two-Level

HierarchicalRegister File Organizationfor VLIW Proces-
sors.In Proceeding®f MICRO-33 Dec2000.

