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Abstract

Dynamic superscalar processors executemultiple in-
structionsout-of-order by looking for independentopera-
tions within a large window. Thenumberof physicalreg-
isters within the processorhasa direct impacton the size
of this windowas mostin-flight instructionsrequire a new
physicalregister at dispatch. A large multiportedregister
file helps improve the instruction-level parallelism (ILP),
but mayhavea detrimentaleffectonclock speed,especially
in future wire-limitedtechnologies. In this paper, we pro-
posea register file organizationthat reducesregister file
sizeand port requirementsfor a givenamountof ILP. We
usea two-level registerfile organizationto reduceregister
file sizerequirements,anda bankedorganizationto reduce
port requirements.We demonstrateempirically that there-
sultingregisterfile organizationshavereducedlatencyand
(in the caseof the banked organization)energy require-
mentsfor similar instructionsper cycle(IPC) performance
andimprovedinstructionspersecond(IPS)performancein
comparisonto a conventionalmonolithicregisterfile. The
choiceof organizationis dependenton designgoals.

1 Intr oduction

Modern high-performanceprocessorsuse an out-of-
orderdynamicsuperscalarcoreto extract instruction-level
parallelism(ILP) from applications.Theseprocessorsex-
aminea largewindow of in-flight instructionsto find mul-
tiple readyand independentinstructionsevery cycle. The
sizeof this window is oneof the key determinantsof the
degreeof ILP that canbe achieved. However, supporting
a large window of in-flight instructionsalsorequireslarge
structureswithin theprocessor, namely, a largeregisterfile,
issuequeue,andreorderbuffer (ROB). Sincein high fre-
quency designsmicroarchitectstry to settheclockspeedof
theprocessorbasedontheexecutionspeedof simpleinteger
instructions,a largemultiportedregisterfile canpotentially
compromiseclockcycle time.
�
This work wassupportedin part by NSFgrantsEIA-9972881,EIA-

0080124,CCR–9702466,CCR–9701915,CCR–9811929,CCR-9988361,
andCCR–9705594;by DARPA/ITO underAFRL contractF29601-00-K-
0182;andby anexternalresearchgrantfrom DEC/Compaq.

The registerfile sizehasa direct impacton the number
of in-flight instructionssinceevery dispatchedinstruction
that hasa destinationregister is assigneda new physical
register. Hence,once the free registersrun out, the dis-
patchstagegetsstalled,causingthe processorto look for
ILP within a restrictedwindow until theoldestinstructions
commitandfree their registers.Thegrowing gapbetween
memoryandprocessorspeedsresultsin anincreasingnum-
berof longlatency instructions,causingthecommitstageto
befrequentlystalledandfurthernecessitatinga largenum-
berof registers.In addition,the large issuewidths in such
processorsalsorequirea largeread/writebandwidthto the
registerfile. Implementinga largenumberof registerswith
many portsfor thesakeof increasedILP posesa numberof
challengesin termsof bothperformanceandenergy.

The registerfile is a heavily-ported RAM structure. A
processorcapableof issuingeight integerinstructionseach
cycle may needan integer register file with sixteenread
ports (correspondingto two sourceoperandsper instruc-
tion) and eight write ports. Using a register file access
time model derived from CACTI-2.0 [28], we found that
the accesstime for an 80-entry24-portedregisterfile can
exceed1.5nsat0.18� technology, potentiallybeingoncrit-
ical pathsdeterminingthe cycle time. The currenttrends
of increasedfrequencies,dominatingwire delaysatsmaller
technologies[16, 19], and increasedregisterrequirements
becauseof simultaneousmultithreading[26] makeit harder
to implementa registerfile that canbe accessedin a sin-
gle cycle. Having a large register file with a multi-cycle
accesstime posesproblemsof its own. For example,a 3-
cycle registerfile accesstime would requirethreelevelsof
bypassingamongthe functional units, therebyincreasing
the bypassingdelay, anothercycle-timecritical path [19].
A multi-cycle registerfile accesstime would alsodegrade
instructionsper cycle (IPC) by increasingthe branchmis-
predictpenaltyandthe registerfile pressureby increasing
register lifetimes. Furthermore,pipelining the registerfile
is not a trivial taskasit is a RAM structure.

Given theseconstraints,the register files in modern
dynamicsuperscalarprocessorshave beenvery modestly
sized. The Alpha 21264[12] hasas many as 80 integer
physicalregisters,but requiresa clusteredorganizationto



reducethenumberof portsandhencetheaccesstime. Clus-
teringtheregisterfile canpotentiallyhavea detrimentalef-
fectonIPCbecauseof inter-clustercommunication.Farkas
etal [9] showedthatlargerregisterfile sizesresultedin im-
proved IPC even as the sizeswere increasedbeyond 128
entries,but moderndynamicsuperscalarprocessorsdo not
supportthat large a sizebecauseof cycle time constraints.
Modern processorsare also limited by problemsrelating
to power consumption.The registerfile consumesa non-
negligible portionof chip power, around10%accordingto
thepowermodelsbasedon Wattch[2].

In this paper, we addressthe problemof designingthe
registerfile in a more complexity-effective mannerin the
context of dynamicsuperscalarprocessorswhile maintain-
ing IPCandsignificantlyimproving instructionspersecond
(IPS)performance.We follow thecomplexity-effectivede-
sign approachof Palacharlaet al. [19] in that we seekto
reducethe accesstime of critical processorstructures(in
our case,the registerfile) even if this involvesintroducing
otherstructuresthatarenotoncycle timecritical paths.We
achievethisgoalvia two orthogonalapproaches:
� Reducingthe numberof requiredregistersin the reg-

ister file on the critical pathby usinga moreefficient
registerallocationpolicy.

� Reducingregisterfile port complexity without unduly
sacrificingregisterread/writebandwidth.

In termsof energy dissipation,we find that the first tech-
niqueimposesan energy penaltycomparableto its perfor-
manceimprovement,while thesecondtechniqueprovidesa
significantreductionin registerfile energy consumptionin
additionto improvedperformance.

We achieve thefirst objective via a hierarchicaldivision
of registersinto thosewith activeconsumersandthosewait-
ing for preciseconditions.Ourdesigndiffersfrom previous
approachesto register file partitioning (describedin Sec-
tion 6) in beinghardware-basedratherthanrelyingoncom-
piler support. Registersare allocatedfrom the first-level
(L1) registerfile at the time of dispatch. Whena register
valuehasbeencompletelyconsumedby all instructionsthat
sourcethe value,it is moved to the second-level (L2) reg-
ister file. Thesevaluesare retainedin the L2 sincethey
might be neededin the eventof a branchmispredictionor
anexceptinginstruction.SincetheL1 registerfile now con-
tainsonly thosevaluesthatwill besourcedby thefunctional
units,it containsfewer registersthana single-level register
file, and thereforeits accesstime is considerablysmaller.
However, the additional structuresthat are introducedto
keeptrack of the statusof variousregistersconsumenon-
trivial amountsof energy, reducingthepotentialof suchan
organizationasanenergy saving technique.

To reduceregisterfile port requirements,we proposea
bankedorganizationthatbearssimilaritiesto thatproposed

for datacaches[10, 20] as well as other previously pro-
posedbankedregisterfile organizations(discussedin Sec-
tion 6). Ourapproachdiffersfrom theseprior efforts in that
our bankshave a single readport and a single write port
(which we call minimallyported), despitethe fact thatour
processoris capableof readingsixteenregistersandwriting
eightregisterseachcycle;andwemodeladynamic,single-
cluster, superscalarprocessorasopposedto the VLIW or
clusteredsuperscalarprocessormodelsof otherapproaches.
The result is a morescalablealternative to a large, mono-
lithic registerfile thatoperatesconsiderablyfasterwhiledis-
sipatingsignificantly lessenergy, even with the additional
addresspredecodingandoutputmultiplexing required.

We alsoshow thatcombiningthetwo techniquesby us-
ing a smallerbankedL1 in conjunctionwith anL2 register
file doesnot resultin further improvementsin IPS.This is
dueto thefactthattheaccesstime improvementof splitting
a banked organizationinto two levels is overriddenby the
smallbut additive(but nomorethanadditive) IPCdegrada-
tion of thetwo techniquesattheevaluatedtechnologypoint.

The organizationof the restof this paperis asfollows.
Section2 outlinesthe operationof a conventionalregister
file. Section3 describestheproposedtwo-level registerfile
organizationwhile Section4 describesthe bankedregister
file approach.We evaluatethe proposeddesignsin terms
of IPC, accesstimes, andenergy in Section5. Section6
comparesandcontrastsourapproacheswith existingrelated
work. Finally, wemakeconcludingremarksin Section7.

2 Conventional RegisterFile Organization

Theregisterfile is typically a RAM structureconsisting
of a fixednumberof registerswith asmany write andtwice
asmany readportsasthemaximumnumberof instructions
that can issuein any cycle. In addition, dynamicsuper-
scalarprocessorslike the Alpha 21264[12] andthe MIPS
R10000[29] useaphysicalregisterallocationpolicy similar
to theoneillustratedhereby anexample:

Original code Renamed code
1: lr5 <- ... pr18 <- ...
2: ... <- lr5 ... <- pr18
3: branch to x branch to x
4: lr7 <- lr3 pr22 <- pr24
5: lr5 <- ... pr27 <- ...

... ...
6: x: ... <- lr5 x: ... <- pr18

At dispatch,thefirst write to logical register5 (lr5) causes
it to get mappedto physicalregister18 (pr18). This value
is readby the next instruction,after which a branchis en-
countered.Thebranchis predictedto benot takenandsub-
sequently, anotherwrite to lr5 occurs.At thispoint, lr5 gets
mappedto adifferentfreephysicalregister, pr27.However,



the valuein pr18 canstill not be freedas the branchmay
have beenmispredicted,in which case,therewould bean-
otherreadfrom lr5 (instruction6), which actuallyrefersto
pr18.Further, if thewrite to lr7 (instruction4) wereto raise
anexception,to reflectthecorrectprocessorstate,lr5 would
have to bemappedto thevaluein pr18. Hencepr18cannot
bereleasedbackinto thefreelist until thenext write to lr5
(instruction5) commits,which guaranteesthatall previous
brancheshave beencorrectlypredictedandall previousin-
structionshave not raisedan exception. This mechanism
to releaseregistersbackinto the free pool is easily imple-
mentedin hardware- theROB keepstrackof theold phys-
ical registermappingfor eachinstruction’s logical register
andreleasesit at the time of commit. However, it leadsto
long registerlifetimessincelong latency operations(loads
from memory, for example)couldholdupthecommitstage
for many cycles.

3 A Two-Level RegisterFile

Our two-level registerfile usesanallocationpolicy that
leaves valuesthat have potential readersin the level one
(L1) registerfile and transfersothervaluesinto level two
(L2). This significantlyreducesthenumberof requiredL1
entriesfor agivenlevel of IPCperformance,therebyreduc-
ing registerfile accesstime. Detailsof the registeralloca-
tion policy andtherequiredmicroarchitecturalchangesare
discussednext.

3.1 Micr oarchitectural Changes

Figure1showsablockdiagramof ourproposedmicroar-
chitecture,outlining its essentialfeatures. We assumean
8-way issueprocessorin thefollowing discussion.

During rename,register namescorrespondonly to L1
physicalregisters;L2 registersarehiddenfrom therename
process.We introducea new hardwarestructure,shown in
Figure1, thatmonitorstheusagestatisticsfor theL1 phys-
ical registers. For every L1 physicalregister, this Usage
Tablemaintainsthefollowing information:

� A PendingConsumers counterthat keepstrack of the
numberof pendingconsumersof that value. During
rename,an instructionthat sourcesthe register incre-
mentsit. Duringissue,thesameinstructionwouldthen
decrementit1.

� A singlebit (calledtheOverwritebit) that is setwhen
thephysicalregisteris nolongerthelatestmappingfor
its logical register.

� Anotherbit that indicatesif a resulthasbeenwritten
into thephysicalregister.

1An instructionbeingsquashedasa resultof a branchmispredictalso
decrementsthecounter.

� Thesequencenumberfor thebranchimmediatelyfol-
lowing the instructionthatwrites to this physicalreg-
ister(sequencenumber1).

� Thesequencenumberfor thebranchimmediatelypre-
cedingthenext instructionthatwritesto thesamelog-
ical register(sequencenumber2).

Mostof theinformationrequiredto updatethistableis read-
ily availableduringtherenamestage.Thesequencenumber
countersidentify thevariousin-flight branchesandmaybe
asmany bits as ���
	���
���������������� . Whenthe numberof L1
physicalregistersfalls below a pre-setthreshold,registers
thathave a PendingConsumers countof zero,havea result
in them,andhavetheirOverwritebit setarecopiedinto the
L2 (providedtherearefreeL2 physicalregisters).Thecor-
respondingL1 registersarereleasedinto the free pool. A
singleL2 ID valid bit, addedto eachROB entry, indicates
that thedestinationregisterID in thatentrycorrespondsto
an L2 register. At the time of commit, the register is re-
leasedbackinto theL2 freepool insteadof theL1 freepool.

The CopyList, which keepstrack of L1-L2 copiesfor
recovery from a branchmispredict,containsthe following
informationfor eachL2 register:

� The L1 physical register namethat had earlier con-
tainedthevalue.

� Thesequencenumberfor thebranchimmediatelyfol-
lowing the instructionthatwrites to this physicalreg-
ister.

� Thesequencenumberfor thebranchimmediatelypre-
cedingthenext instructionthatwritesto thesamelog-
ical register.

Thesevaluesare copied from the Usage Table when the
transferis made.

The two branchsequencenumbersstoredindicate the
‘li ve’ periodof aphysicalregistervalue,i.e., theperioddur-
ing which instructionssourcingthis valueare dispatched.
If a branchwith a sequencenumberbetweenthe two se-
quencenumbers(both inclusive) for an entry mispredicts,
then the L2 registervalue is reinstatedback to L1, as in-
structionsalong the correctpath may needto sourcethat
value. All suchL2 values(referredto asthe ‘li ve’ set)are
copiedback into the L1. The original L1 registersof the
‘li ve’ set are guaranteedto be available for the following
reasons.An L1-L2 copy can occur only when the Over-
write bit is set, that is, whena newly renamedinstruction
(call it instructionRI) hasthesamelogical destinationreg-
ister as the copiedinstruction(CI). Thus, this is the point
at which CI’s L1 physicalregistercanbereused.However,
a branchthat mispredictsandcausesthe valueof CI to be
restoredbackto L1 by definitionmusthaveoccurredbefore
instructionRI. Thus,instructionRI andits successorswill
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Figure1. TheTwo-Level RegisterFile Organization.

be squashed,therebyguaranteeingthe availability of CI’s
original L1 register. In addition, this mechanismrequires
no modificationsof the registermaptablecheckpointand
restorationprocess.

The processoralso needsto recover to a valid regis-
ter file stateon an exception. Sinceexceptionsarenot as
frequentas branchmispredicts,most designs(the MIPS
R10000[29], for example)simply traversethe ROB in re-
verseorderto restoreold registermappings.For the two-
level registerfile, valuesare also restoredfrom the L2 to
the L1 as follows. The ‘li ve’ setof the branchclosestto
the ROB head(the excepting instruction) is reinstatedas
in a mispredict.Then,the ROB is traversedstartingat the
branchinstructionandmovingtowardtheexceptinginstruc-
tion. EachentrywhoseL2 ID valid bit is sethasits L2 value
restoredto theL1. Becauseof thetraversalof theROB, this
processis likely to take a numberof cycles,even though
branchesareoften fewer than10 instructionsapart. Since
exceptionsareinfrequentandtheprocessof recoveringthe
register mappingsis of comparablecomplexity, the over-
headof this copying operationshouldbenegligible.

3.2 Complexity of the ProposedStructur es

The Usage Table hasasmany entriesas the L1. Each
entryrequires���
	���
������ ���!���"� bits for eachsequencenum-
ber(or no morethaneightbits eachfor currentprocessors)
andonly a few bits for the PendingConsumers counter, in
additionto the two single-bitfields. As a result,we have
found that the Usage Table accesstime is much lessthan
that of the L1 registerfile. Note that the Overwritebit is
checkpointedon every branchso it could be recoveredin
caseof a mispredict. The table look-up to determineL1
registersthatarecandidatesfor copying to theL2 requires
simplecombinationallogic for eachentry. The CopyList
andthefew-portedL2 registerfile arealsosmallstructures
comparedto the L1. We have modeledtheseaswell and
foundtheir accesstimesto belessthanthatof theL1.

In termsof energy, thefrequentaccessandmodification
of the variousUsage Table fieldsaddsnon-trivial amounts

of overhead.In agivencycle,upto eightinstructionsacross
two basicblocks canbe dispatched.Hence,a numberof
registerscouldupdatetheir sequencenumberfieldswithin
theusagetable,althoughthevaluebeingwritten into these
fields could be only oneof two values(asall instructions
belongto oneof two possiblebasicblocks). As a result,
thestructurewould have two setsof bitlinesandwordlines,
but many decoders.Up to eight instructionscould update
sequencenumber1 andeightmorecouldupdatesequence
number2. Given the small sizeof the fields, the decoder
energydominatestheenergyconsumptionfor thisstructure.
To reducethe energy consumption,this structurecould be
integratedwith aCAM implementationof therenametable,
or with thefreelist, therebydoingawaywith any additional
decodingto identify theregistersbeingrenamedthatcycle.

For the PendingConsumers counters,in a given cycle,
up to eight instructionscan dispatchand eight can issue,
resultingin many possiblecounterupdates.Wealsonoticed
thatmostregistersthatwerecopiedinto theL2 only hada
singleconsumer. Restrictingthe L2 to only suchregisters
resultedin almostno performancedegradation.Hence,the
countercould be a single bit, with anotherbit to indicate
overflow andtheregister’s non-candidacy for copying into
theL2. Thenumberof possiblevaluesthatcanbewritten,
and thereforethe word andbit line energy, is reducedby
this mechanism.Again, the decodingprocessto identify
thecounterdominatestheenergy consumption.

TheCopyList hasasmany entriesastheL2. It consists
of a RAM part thatstoresthevariousfields(not exceeding
24 bits). It alsoconsistsof a CAM part for improvedeffi-
ciency astheentrieswouldhaveto comparetheirbranchse-
quencenumberswith thatof themispredictedbranchwhile
copying valuesbackinto theL1. SincetheCAM is invoked
only on a mispredict,its energy consumptionis negligible
comparedto that of the RAM part. The energy consump-
tion of theRAM structureis alsolow asonly a singlecopy
is performedeachcycle, requiringa singleread/writeport.

The copying processneednot requireadditionalports
in the L1. The L1 registerportsareoften not maximally



utilized becausetherearen’t enoughreadyinstructionsor
instructionshave fewer registersourceoperands.Thecopy
from theL1 is madeduring theseperiodswhenspareread
portsareavailable.

Our modified ROB has an extra L2 ID valid bit and
���
	 � 
�#%$�&'
�(*)��+������,-(/.����!���"�0� bits for the registeridentifier.
Sincea comparabletwo-level organizationis likely to have
fewer L1 registers,the sizeof eachentry is practicallyun-
affected. The numberof accessesto the ROB goesup by
thenumberof copiesto L2, but is unlikely to increasecon-
tentionor energy consumptionsignificantly.

4 A Minimally-P orted Banked RegisterFile
Thissectiontacklesthesecondsourceof complexity: the

largenumberof registerfile portsin awide-issueprocessor.
In a processorcapableof issuingeight integerinstructions,
asmany as16operandscouldbereadfrom, andasmany as
eight operandscould be written to, the integer registerfile
eachcycle (seeFigure2). Meetingthis high bandwidthre-
quirementvia truemultiporting is costly in termsof access
time, power dissipation,and scalability. A similar prob-
lem exists for high bandwidthdatacaches,and the alter-
nativesto truemultiporting thathave beenproposedin the
literature[20, 24] are double-pumping,replicationof the
arrays,andbankedorganizations.Doublepumpingcanbe
employed if the accesstime for an arraystructureis much
smallerthanthecycle time. It is not very scalableandcan
usually only be employed to help reduceareaas halving
the numberof ports usually reducesthe accesstime by a
factor of lessthan half. To reducethe complexity of the
registerfile, theAlpha 21264[12] implementsa replicated
registerfile, one in eachcluster, so asto reducethe num-
berof readports. Replicationresultsin a penaltyin terms
of IPC becauseof the addedcommunicationcostbetween
the clusters.We explore the benefitsof bankingto reduce
multiportingrequirementsin thefollowing sections.

4.1 RegisterFile Port Requirements

Although a processorcapableof issuing eight integer
instructionsandsimultaneouslywriting backeight integer
instructionstheoreticallycould useasmany as24 integer
registerports in a cycle, the numberof ports requiredon
averagearea lot fewer for severalreasons:
� Many operandsarereadoff of thebypassnetwork, not

from theregisterfile.

� Many instructionsonly havea singleregisteroperand.

� A numberof instructionsproduceresultsthat arenot
written to the registerfile (branches,stores,effective
addresscomputationpartof a loador store).

Usingtheprocessormodeldescribedin Section5, we eval-
uatedtheaverageport requirementsfor thebenchmarkpro-
grams.Wefoundthatfor everyissuedinstruction,only 0.64

valueswerereadfrom the registerfile and0.73wereread
off thebypassnetwork. In termsof actualperformance,we
observed that using four readand four write portscaused
very few instructionsto stall dueto a conflict for a port and
theresultingIPCdegradationwasonly 2%onaverage.This
is a three-foldreductionin thenumberof registerports,but
comesat thecostof someadditionalcomplexity in theissue
stage.Along with variousotherstructuralhazards,theissue
stagewith thisorganizationhasto takeinto accounttheport
requirementsof thereadyinstructionsandpostponethe is-
sueof instructionsthatdo not have sufficient ports.Theis-
suequeueisalreadyawareof whichregisterscanbereadoff
thebypassnetwork — thesearethesameregistersinvolved
in the wakeuplogic that cycle. The changesin the select
logic aredescribedlater. To handlethe limited write band-
width, arbitrationlogic is requiredbeforefunctionalunits
canwrite resultsontotheresultbus. Sincedestinationreg-
istersof instructionsareknown in advance,this arbitration
canoccura cycle in advanceof writing the result. Addi-
tionalregistershaveto beprovidedat thefunctionalunitsto
buffer resultsthatfail to usetheresultbusright away, or the
pipelinefor thefunctionalunit hasto bestalled.

This additionallogic overheadis small comparedto the
drastic register file energy, area,and accesstime savings
in going from a 24-portedstructureto an 8-portedstruc-
ture.Themostsignificantoverhead,whichwequantifyin a
later section,is the costof drivers/multiplexorsusedto di-
rectdatafrom theeightportsto the24datapaths.Thevalues
from the readportshave to now be distributedto multiple
functionalunit inputs.As aworst-casescenario,weassume
that thevaluereadfrom any of theportscanbesourcedby
any of thefunctionalunit inputs.Figure2 shows thestruc-
tureof the limited-portorganizationbeingconsidered.We
startwith this basecaseasit representsanattractivedesign
pointandseeif we canfurtherreduceits complexity.

4.2 RegisterFile Banking

In an 1 -bankedregisterfile, thevariousregistersaredis-
tributed among 1 banks,with eachbank having 2 ports.
Hence,as many as 14352 valuescan be readin any cy-
cle,with theaddedrestrictionthatonly 2 valuescanberead
from any onebank. If the operandsbeingreadin a cycle
areevenly distributedamongthevariousbanks,thereis al-
mostno IPC degradationcomparedto a centralregisterfile
with 163�2 ports,yetcomplexity is greatlyreducedaseach
structurehasfewer registersandfewerports.

We evaluatetheuseof a bankedregisterfile with a sin-
glereadandwrite portperbank.Figure2 showsa4-banked
organization.Here,aninstructionmayhave bothits source
operandsin a singlebank,makingit impossiblefor bothto
be readin the samecycle. Hence,we mustallow ‘partial
reads’,i.e., if an instructioncannotissuebecauseof bank
conflicts,but canreadoneof its operands,it doesso and
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Figure2. A conventionalmonolithicregisterfile for an8-issueprocessor, amonolithicregisterfile organizationwith a
limited numberof ports,andabanked,single-port-per-bankorganization(only readportsshown here).

savestheoperandin the latchat the input to thefunctional
unit. Theinstructioncontinuesto remainin theissuequeue,
but it marksthecorrespondingoperandas‘read’. In subse-
quentcycles, the instructioncontinuesto competefor the
bank correspondingto its secondoperand,while holding
up its functional unit. When the instructionfinally reads
its secondoperand,it startsexecuting. While this is nec-
essaryto avoid deadlock,this phenomenonhasa minimal
impacton performanceas it occursvery infrequentlydue
to operandsbeing frequentlyreadoff the bypassnetwork.
Themaximumpercentageof ‘partial reads’outof all issued
instructionswasfoundto beonly 4% for a 4-bankedorga-
nizationwhile runningem3d.

The selectlogic in the issuequeuehasto take into ac-
countthe contentionfor the portsandthe functionalunits,
anddifferentimplementationscantrade-off selectlogic ac-
cesstime with IPC.Onepossibleimplementationwould be
to resolve conflictsfor portsandfunctionalunits indepen-
dently(usingPalacharla’streeof request-grantblocks[19])
andallow aninstructionto issueonly if it wasableto pro-
cure its functional unit and at leastone register file port.
While thisimplementationminimally impactsthelatency of
theselectlogic, therecouldbe instanceswherean instruc-
tion couldhave issued,but doesnot, potentiallydegrading
IPC.An alternative implementationcouldtake into account
port and functional unit availability at eachrequest-grant
block, beforeallowing a requestto propagateup the tree.
This couldincreasethedelayof theselectlogic, but would
improve the allocationof resourcesto ready instructions.
We assumedthelatterimplementationin oursimulations.

5 Evaluation

5.1 Simulation Methodology

WeusedSimplescalar-3.0[3] for theAlphaAXP instruc-
tion set to simulatea dynamically scheduledsuperscalar
processorwith the simulation parameterssummarizedin
Table 1. The simulator hasbeenmodified to model the

Fetchqueuesize 16
Branchpredictor comb. of bimodaland2-level gshare;

bimodalsize2048;
Level1 1024entries,history10;

Level2 4096entries(global)
Combiningpredictorsize1024;

RAS size32;BTB 2048sets,2-way
Branchmispredictcost 11cycles

Fetch,dispatch,commitwidth 8
int,fp issuewidth 8,4

ROB andLd/Stqueue 200and100
Issuequeuesize 64 (int andfp, each)
L1 I andD-cache 64KB 2-way, 32-bytelines,2 cycles
L2 unifiedcache 1.5MB 6-way, 64-bytelines,15cycles

TLB 128entries,8KB pagesize
Memorylatency 70cyclesfor thefirst chunk
Memoryports 4 (interleaved)

IntegerALUs/mult-div; 8/4
FPALUs/mult-div 4/4

Table1. Simplescalarsimulatorparameters.

memoryhierarchyin greatdetail (includinginterleavedac-
cess,bus andport contention,writebackbuffers,etc). We
model issuequeuesthat are smaller than the ROB size
(in Simplescalar, the issuequeuesand the ROB consti-
tuteonesingleunifiedstructurecalledtheRegisterUpdate
Unit (RUU)), a physicalregisterfile andmappingof log-
ical registersto them, and split integer and floating-point
issuequeuesandphysicalregisterfiles,similar to theAlpha
21264microprocessor[12] but enhancedfor wider issue.
We alsochoseour ROB andissuequeuesizesin order to
ensurethat they did not introducean additionalbottleneck
soasto focustheresultson theregisterfile.

As benchmarks,we use a wide variety of programs,
from the Olden [22], SPEC2000,SPEC95,UCLA Medi-
abench[14], andNAS parallelbenchmark[7] suites. The
benchmarksetrepresentsamix of bothintegerandfloating-
point programs,aswell asa mix of memory-intensive low
IPC programs(that tend to run out of registersbecause
of long latency operationsthat stall the commit stage)and
non-memory-intensive high IPC programs(that tendto be



Benchmark Input Instrs L1 Base
set simulated mrate IPC

em3d(Olden),FP 20K, 20 1000-1010M 28% 0.86
sp(NAS-uniproc),FP A, 2500-2525M 20% 1.44

gzip (SPEC2k),Int ref 2000-2050M 1% 2.04
vpr (SPEC2k),Int ref 2000-2050M 2% 1.49

crafty (SPEC2k),Int ref 2000-2050M 1% 2.48
art (SPEC2k),FP ref 300-350M 26% 1.53
gcc(SPEC95),Int ref 300-325M 1% 1.68
perl (SPEC95),Int ref 500-525M 0% 2.73

cjpeg (Mediabench),Int test 200-225M 0% 1.70
djpeg (Mediabench),Int test 150-175M 0% 3.87

Table2. BenchmarkdescriptionandL1 D-cachemiss
rates.BaseIPC representsa processormodelwith a
monolithicregisterfile with 160entriesand24ports.

constrainedby register file bandwidth). To reducesimu-
lation time for all programs,we studiedcachemiss rate
tracesto identify smallerinstructionintervalsthatwererep-
resentativeof thewholeprogram.Thesimulationwasfast-
forwardedpastthe initial warm-upphasesandanotherone
million instructionswere simulatedin detail to prime all
structuresbeforedoingtheperformancemeasurementsover
thechoseninterval. Detailson thebenchmarksarelistedin
Table2. The programswerecompiledwith Compaq’s cc,
f77, andf90 compilersfor the Alpha 21164at the highest
optimizationlevel. The programcodeuses32 integerand
32floating-pointlogical registernames.

To quantifythecomplexity of thebaselineandproposed
registerfile organizations,we usedtheaccesstime anden-
ergy modelsof CACTI-2.0 [28] at 0.18� technologyasa
baseline.We modifiedit to modela registerfile (similar to
thatdoneby Farkas[9]). Additional changesweremadeto
modelour proposedorganizations,detailsof which appear
in thenext subsections.

5.2 Two-level RegisterFile Evaluation

Our basecaseconsistsof a monolithicsingle-level reg-
isterfile with four readportsandfour write ports.As shall
beseenin thenext section,this hasalmostthesameIPC as
a basecasewith 16 readand8 write ports.To this, we add
anL2 registerfile with asinglereadandasinglewrite port.
Forourinitial experiments,thesumof theregistersin theL1
andL2 equals160(int andfp, each),which is roughly the
maximumnumberof requiredregistersfor a ROB sizeof
200. We do not addany additionalportsto theL1 – copies
to theL2 aremadeonly whentherearefreeportsavailable.
We also attemptcopiesonly if thereare fewer thaneight
registersin the L1 free registerpool. Whena mispredict
is discovered,registervaluesneedto be copiedback into
the L1. We assumethat up to four transferscanbe made
without addingto the mispredictpenalty, i.e., that it takes
at leastfour cyclesfor instructionsfrom thecorrectpathto
reachtheissuestageandthatonecopy canbemadein each
of thesecycles.Theseareratherpessimisticassumptionsas

100-L1 60-L1,40-L2
L1 258 197
L2 0 17

L1-L2 bus 0 17
usagecounters 0 22

sequencenumberstoragein usagetable 0 39
copy list 0 8

Total 258 300

Table 3. Energy breakdown for the monolithic and
two-level registerfiles. Energy is shown asthearith-
meticmeanof pJ/instracrossall programs.

typical superscalarpipelinestodayusuallyhave morethan
four stagesbeforetheissuestage.If morethanfour copies
needto bemade,we stall the fetchstageby anextra cycle
for everyadditionalcopy.

We startby assumingthat theregisterfile accesstime is
the critical pathanddeterminesthe clock speed.To com-
parevariousorganizations,we usetwo metrics, IPC and
instructionsper second(IPS), which is derived by divid-
ing the IPC by the accesstime for the register file. Fig-
ure3 showsoverallperformanceresults(usingtheharmonic
mean(HM)) for various register file organizations. The
graphon the left shows the variation in IPC with the size
of theL1 registerfile. Thesolid line showsIPCsfor single-
level registerfiles, while the dottedline shows IPCswhen
theseorganizationsareaugmentedwith asecondlevel (with
thesumof theL1 andL2 registerfiles heldconstantat 160
registers). The gap betweenthe two lines representsthe
speeduppossibleby theadditionof asecondlevel. An over-
all IPC of 1.67 is the maximumpossiblefor a ROB size
(in-flight instructionwindow) of 200 andthe two-level or-
ganizationquickly saturatesto this value,having anIPC of
ashigh as1.63with just 80 L1 registers. The single-level
organizationrequiresasmany as140 registersto attainan
IPCof 1.65.Thissuggeststhatoutof 140physicalregisters,
only about80are‘active’ atany giventime. Theremaining
60don’t haveany consumersunlessthereis amisprediction
or exceptionandthey canbemovedaway to theL2.

Assumingthatin high frequency designstheregisterfile
accesstime determinesthe clock speed,a designerwould
usetheIPSmetric to pick thebestdesignpoint. Thegraph
on theright in Figure3 showshow IPSvarieswith thesize
of theL1 registerfile. For thesingle-level registerfile, this
valuepeaksfor a100-entryregisterfile. Thecorresponding
peakfor the two-level organizationis seenfor a 60-entry
L1. Thegapbetweenthetwo curvesillustratesthatthetwo-
level organizationstrikesa betterbalancebetweenIPC and
accesstimes- its optimal IPS is 17% betterthanthe opti-
mal IPS with a single-level registerfile. For the two-level
structurewith a 60-entryL1, we alsostudiedthe effect of
varying the L2 registerfile sizeandfound that a 40-entry
L2 yieldedIPC within 1%of a 100-entryL2.

The useof a smallerL1 registerfile could also poten-
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Figure3. Graphsshowing IPCandIPSwith varyingL1 registerfile sizesfor thesingleandtwo-level organizations.

tially result in energy savings. The energy per accesswas
estimatedusingCACTI-2.0. For eachport thatwasnot ac-
cessedin a cycle, we assumedthat it consumed10% of
its maximumenergy. For the two-level organization,we
alsoconsideredthecostof transfersacrossthebusbetween
theL1 andL2. We alsoattemptedto modeltheadditional
structures(usagetable,copy list) with CACTI-2.0. It must
be pointedout that modelingtheseauxiliary structuresas
RAMs representsonedesignpoint,whichmight not neces-
sarilybethemostoptimalin termsof energy efficiency.

Table3 showsthevariouscomponentsof theaverageen-
ergy consumptionfor the100-entrymonolithicregisterfile
and the two-level register file. When the auxiliary struc-
turesare not considered,the two-level organizationcon-
sumes11% lessenergy. The L2 register file is a single
portedstructureandit doesnotaddsignificantenergy over-
head. Rather, thereis a drasticL1 energy savings due to
thereductionin thesizeof theheavily portedL1 structure.
Whentheenergy from theotherstructuresis takeninto ac-
count,the two-level organizationendsup consuming16%
more energy than the monolithic basecase. Most of this
energy comesfrom thevariousdecodersin thesestructures,
whichemphasizestheneedto designthemcarefully, sothat
decodersfrom otherstagescanbeintegratedwith them(as
describedin Section3).

To show behavior on individual applications,we also
show IPSnumbersfor threeof theorganizationsin Figure4.
The first two barsshow IPSsfor single-level registerfiles
with 60 and100registers,while thelastbarshows IPSsfor
a two-level organizationwith 60 registersin theL1 and40
in the L2. All the programsshow an IPC improvementin
goingfrom a 60-entryL1 to a 100-entryL1, thoughthein-
creasedaccesstime doesnot always translateinto higher
IPS.Thetwo-level organizationdoesa very goodjob iden-
tifying ‘inactive’ registersandmoving themto theL2, often
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Figure4. IPSsfor individual applicationsfor single-
level registerfilesof sizes60and100anda two-level
organizationwith a60-entryL1 and40-entryL2.

achieving IPCscomparableto the largersingle-level regis-
ter file, while maintaininga low accesstime andexceeding
its IPS.The L1-L2 copiesaccountedfor about18% of all
accessesto the L1. Very few L2-L1 copy-backswerere-
quiredon eachmispredictandin mostcases,thesewereef-
fectedwithout stallingthefront-end.Theprogramvpr was
theonly exception- in a 50M instructionsimulation,it ef-
fected22.5M copiesfrom L1 to L2, of which 1.6M hadto
becopiedbackonmispredicts,resultingin asmany as0.8M
front-endstalls,andresultingin a minor0.016CPI loss.

5.3 BankedRegisterFile Evaluation

We now studytheimplicationsof a registerfile thathas
a singlereadanda singlewrite port, but is organizedinto
1 banks.For 187:9 , it hasthesamepeakreadandwrite
bandwidthasthe basecase,but incursan IPC degradation



becauseof the addedconstraintthat two valuescannotbe
sourcedin the samecycle if they lie in the samebank.
The banksare high-orderinterleaved, i.e., the high-order
operandaddressbitsselectthecorrectbankto reador write.

We usea processorwith theparametersdescribedin the
earliersectionandusea 160-entryregisterfile (int andfp,
each)in order to study a high IPC model with the most
potentialfor bankconflicts. For the banked structure,we
show resultswith four andeight banks,with the registers
distributed equally amongthese. At the time of rename,
free registersarepicked out of the banksin a round-robin
order to ensurethat thereis a fair distribution of registers
amongthe banks. Therecanbe at mosteight outstanding
partial readsat any given time (onefor eachinteger func-
tional unit) andat mosteightresultscanbebuffereddueto
a failureto getaccessto thewrite ports.

Figure 5 shows IPC resultsfor various organizations.
The first bar shows a conventionalorganizationwith 24
ports. Thesecondbarshows thechosenbasecasethathas
a singlebank,allowing four readsandfour writes in a cy-
cle. As canbe seen,the chosenbaseis within 2% of the
24-portedregister file. The third bar shows the effect of
usingfour banks,eachwith onereadport andeight write
ports, while the fourth bar also has four banks,but only
a single readand a singlewrite port. Thus, the third bar
shows the penaltyimposedby conflicts for readportsand
thefourthbarshowstheadditionalpenaltybecauseof write
port conflicts. Whencomparedwith the organizationwith
24 ports, thereis a 1% drop in IPC becauseof readcon-
flicts. Thedegradationincreasesto 5%whenwrite conflicts
are also taken into account. (However, the IPC degrada-
tion when comparedwith the organizationwith the same
read/writebandwidthis only 3%.) ThemostsignificantIPC
degradationsareseenfor someof the high ILP programs,
like djpeg, perl, crafty, andgzip- thegreaterthenumberof
instructionsissuingevery cycle, the greaterthe numberof
bankconflicts.TheIPC for djpeg is about10%worsethan
thenon-bankedregisterfile with thesamebandwidth.

For the4-bankedorganization,eachfunctionalunit input
multiplexesoneof thefour valuesreadfrom theregisterfile
(Figure2). If morethanonefunctionalunit attemptsto read
thesameregisterin thesamecycle,thiscanbedonewithout
having to readthat valuetwice, i.e., thevalueis readonce
andmultiplexedto bothfunctionalunitswithout any added
logic. Instead,if this valueis readtwice, it leadsto a great
numberof bankconflicts,resultingin afurther4%IPCloss.
Thishappensbecausesomeregistershavemany consumers
in thesamecycle,mostnotably, thestackpointer.

To reducebankconflicts,we attemptedsimpleschemes
whereregistermappingsweresteeredto specificbanksto
avoid conflicts. Steeringthe two operandsof the same
instruction to different banksdid not yield much benefit.
Sinceoneof theoperandsis usuallyreadoff thebypassnet-
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work, this phenomenonis not a sourcefor conflicts. We
tried to seeif two instructionsissuedin thesamecycleon a
regularbasis.If suchinstructionswereidentified,thesource
(andalsotheirdestination)registerscouldbemappedto dif-
ferentbanksto helpreducethechancesof a conflict. How-
ever, dueto theunpredictablenatureof schedulingbecause
of cachemisses,resourceconflicts, etc, we observed that
two instructionsthat issuedtogetherin a cycle werelikely
todosoagainduringtheirnext instantiationwith aprobabil-
ity of only 20%.Simplepredictorsthatexploitedthis prop-
erty to steerregistersto specificbanksshowed negligible
improvements. More complicatedpredictorscould possi-
bly doabetterjob, but becausethemaximumimprovement
possiblewasonly 5%,we did not attemptthese.

The easiestway to reduceconflicts is to simply imple-
mentmorebanks.Figure6 repeatstheexperimentsin Fig-
ure5, but with eightbanks.Thereis almostno degradation
becauseof readportconflicts.Thewrite portconflictsresult



Organization IPC Access IPS Energy
L1/L2 banks ports/bank time(ns) (BIPS) pJ/instr
160 1 16-r, 8-w 1.70 2.51 0.68 1524
160 1 4-r, 4-w 1.67 1.35 1.24 368
100 1 4-r, 4-w 1.54 1.12 1.38 258
60 1 4-r, 4-w 1.18 0.91 1.30 187

60/40 1 4-r, 4-w 1.45 0.91 1.59 300
160 4 1-r, 1-w 1.62 0.97 1.67 84
160 8 1-r, 1-w 1.68 0.98 1.71 107
100 4 1-r, 1-w 1.49 0.94 1.59 73

60/40 4 1-r, 1-w 1.39 0.91 1.53 183

Table4. Summaryfor variousorganizations.

in a 2% IPC losswhencomparedwith the24-portedregis-
ter file. However, thecostof aneight-bankedstructureis a
potentialincreasein accesstime,which wenow evaluate.

In determiningthe accesstime of the monolithic struc-
ture with fewer ports (four readand four write), we have
to take two additionaldelaysinto account. First, the sig-
nal readoff the bitline hasto be distributedvia a driver to
asmany as16 possibledatapaths(eight integer units, two
operandinputseach).At eachof thesedatapaths,thereex-
istsa multiplexor that thenselectsthedatareadout of one
of thefour readportsandforwardsit to thefunctionalunit
input. We modified CACTI-2.0 to take thesetwo effects
into account.Theconventionalorganizationsimply hasan
outputdriver that transmitsthe datato the functionalunit.
Thefewer-portedstructurehasabuffer thatfeeds16output
drivers. The outputdrivers(which aretristatebuffers and
serveasthemultiplexors)alsohaveagreaterdelaybecause
four of themdrive thesamebus.

Thefour-bankedorganizationhasasimilaroutputstruc-
tureasthefewer-portedorganization.Oncethefour values
arereadout,they follow thesamepathasin thelatter. How-
ever, accesstime is reducedbecausethedelayto readdata
outof eachbankis smaller(eachstructureis one-quarterthe
sizeandhasone-quarterthereadandwrite ports).We also
takeinto accountthetimetakento propagateasignalacross
thebreadthof all thebanks.

Table 4 summarizesthe featuresof the four organiza-
tions evaluated. According to the accesstimes obtained
fromCACTI-2.0,reducingthenumberof portsin themono-
lithic structurefrom 24 portsto 8 reducesthe accesstime
from 2.51nsto 1.35ns,a 46% drop, even when account-
ing for theadditionaldelayof thebuffer andoutputmulti-
plexors. By further splitting the registerfile into 4 banks,
eachwith onereadandonewrite port, the accesstime is
reducedby an additional 28% to 0.97ns. Of this delay,
0.11nswasbecauseof the buffer andthe mux and0.24ns
wasbecauseof thepropagationdelayacrossthebreadthof
all thebanks.With the8-bankedstructure,theaccesstime
increasesslightly. Eventhoughtheaccesstime for anindi-
vidual bankdecreases,it takeslongerto propagatea signal
acrossall banks.Giventhatthesedrasticaccesstimereduc-

tionsarepossiblewith almostnegligible IPC penalties,the
IPS metricsfor the banked organizationsare correspond-
ingly muchhigher - the 8-banked registerfile hasan IPS
thatis 38%higherthanthesingle-bankedregisterfile.

In termsof registerfile energy, the 24-portedstructure
consumes1524pJper instructionon average. The single-
bank 8-ported structureachieves more than a factor of
four lower energy consumption(368pJ/instr). The four-
banked structureshows a further reductionby a factorof
4.4 for a per instructionconsumptionof 84pJ.Finally, by
usingthe eight-bankedstructure,energy increasesslightly
to 107pJ/instr. Thisoccursbecausetheadditionaldecoders,
bitlines, and wordlinesof the eight-banked structurestill
dissipateenergy underour modelevenwhenidle, although
theenergy of theselectedbankis reduced.

The useof fewer portsintroducessomelogic in the se-
lect stageof the issuequeueandsomearbitrationlogic at
the functional units. Our analysishasnot taken into ac-
count the extra energy consumedwithin thesestructures.
Giventhattheproposedregisterfile organizationsconsume
about18 times lessenergy than the basecase,we expect
that theseoverheadswould becomparablynegligible. The
powermodelsbasedonWattch[2] attributeverylittle power
to theselectlogic whencomparedwith theregisterfile.

5.4 Combining the Two Techniques

So far, we have studiedthe two orthogonalaspectsof
the registerfile in isolation- thenumberof entriesandthe
bandwidth.In this subsection,we seetheeffectof combin-
ing the two, i.e., usinga smallerbankedL1 in conjunction
with an L2 registerfile. The banked organizationreduces
accesstime aswell asenergy consumptionfor a marginal
IPC loss,while the two-level organizationalsoreducesac-
cesstime but with a potentialincreasein energy consump-
tion dueto auxiliarystructures.

Figure 7 shows the IPS of the combined two-level,
bankedapproachaswell asthatof theindividualtechniques
for eachbenchmark.Table4 providesa breakdown of the
performancenumbersaswell asaverageenergy. In compar-
ing thetwo-level, banked,andcombinedorganizations,we
find that IPS performanceactuallydegradesslightly when
thetechniquesarecombined.Thereasonis that theaccess
time improvementof splitting a banked organizationinto
two levels is overriddenby the IPC degradationincurred.
With suchasmallnumberof registersin eachbankto begin
with, the bitline delayceasesto dominatethe accesstime
to thepoint wherefurtherreducingthenumberof registers
in eachbankvia splitting into two levels hasdiminishing
returns. Thus,even thoughthe IPC degradationeffectsof
combining the two techniquesare additive (but no more
than this), the reductionsin accesstime arenot. We also
foundthatthis heldtruefor thelargerregisterfiles likely to
be implementedin simultaneousmultithreadedprocessors.
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For example,with 512total registers,aneight-way banked
registerfile hasanaccesstime of 1.05nsin 0.18� technol-
ogy, while a two-level eight-way bankedorganizationwith
256registerseachin L1 andL2 hasonly aslightly lowerac-
cesstime of 0.99ns.Thus,we concludethatat leastfor the
0.18� parametersthat we usedin our analysis,combining
thetechniquesdoesnotafford any advantage.

We also find that for a given numberof registers(100
in this case),the two-level andbanked organizationsper-
form identically. Theadvantageof the two-level organiza-
tion is its simplerlayoutcomparedto thebankedorganiza-
tion, which requiresmany wires to spanthebreadthof the
registerfile andmany outputmultiplexers. If layout con-
siderationsare the overriding concern,then the two-level
organizationis the mosteffective meansto reduceregister
file accesstime andincreaseIPS. If energy considerations
areparamount,thenthebankedapproachprovidesa signif-
icant energy savings in addition to a marked performance
improvement.

6 RelatedWork

Cruzet al [6] usea two-level hierarchicalinclusive reg-
ister file organization(wherethe secondlevel containsall
values).In comparison,our organizationusesanexclusive
cachingpolicy thatavoidstheIPC lossfrom missingin the
first level. However, thepenaltyis a potentiallylargersize
and accesstime for the L1. Hence,the choiceof which
organizationworks betterwould dependon the target fre-
quency, the processparameters(the register file size that
canbesupportedin a singlecycle),andthebenchmarkset.

Zalameaet al [31] proposeda two-level registerfile that
is compiler-controlledfor reducedregister spilling in the
context of VLIW processors.The Cray-1[23] alsoimple-
menteda software-controlledtwo-level hierarchicalregis-

ter file. YungandWilhelm [30] exploredthepossibilityof
cachingpart of the registerfile with an LRU replacement
policy in thecontext of anin-orderprocessor. Swensenand
Patt [25] proposeda hierarchicalnon-inclusiveregisterfile,
wheredifferentbankshavedifferentsizesandspeeds.

Processor implementations, such as the HP PA-
8000[13], maintaina logical registerfile that holdscom-
mittedvalues,andtherenameregistersaremaintainedin a
separatebank(perhapsin theROB). Sincea functionalunit
couldsourcevaluesin eitherbank,thispartitioninginto two
banksdoesnot resultin a reductionin accesstime.

Theconditionsunderwhicharegistercanbedeallocated
have beendealtwith in detailby Moudgill et al [18]. Wal-
laceandBagherzadeh[27] andMonrealet al [17] propose
delayingtheallocationof registersuntil thetime to actually
write thevalue,therebyimproving its utilization.

Partitioned non-hierarchicalregister file organizations
havebeenproposedin thepast[1, 4,5,8, 12, 15, 21]. These
organizationshave clustersof functional units, with each
clusterhaving its own privateregisterfile. While theseorga-
nizationsreduceportingrequirementspercluster, they still
provide dedicatedportsper functionalunit, andthey incur
additionallatency (in extra cycles)whenvaluesfrom other
clustersneedto becommunicated.In our bankedorganiza-
tion, thebanksareadjacentandaretreatedasonestructure.
As a result,we pay a penaltyin termsof a slightly longer
accesstimeasanoperandcouldbesourcedfrom any of the
banks,which requiresa multiplexor andtheaddeddelayof
having to crossmultiplebanks.However, thischoicemakes
it possibleto have asfew asa singlereadandsinglewrite
port perbank. Suchan organizationwasalsoproposedby
JanssenandCorporaal[11] in the context of a VLIW pro-
cessor. Their schemerequirescompilersupportandincurs
a non-trivial IPC degradation.In comparison,our scheme
doesnot requirecompiler supportand usesa wider issue
processor. Wealsoquantifytheeffectof theaddedcircuitry
on accesstime andenergy, andevaluateits impacton the
performanceof a dynamicsuperscalarprocessor.

7 Conclusions

The registerfile is a key bottleneckin moderndynamic
superscalarprocessors.Bothalargenumberof registersand
many portsarenecessaryto supporta largewindow of in-
flight instructionsandextractenoughILP. Theaccesstime
of theregisterfile is, however, critical in determiningcycle
time,requiringthatits designbeassimpleaspossible.The
registerfile mayalsobea significantcontributor to overall
powerconsumption.

In this paper, we addressthe latency and energy con-
sumption of the register file using two orthogonal ap-
proachesthat can be combined. The novel contributions
of the paperare: a hierarchicaldivision of registersinto
thosewith active consumersandthosewaiting for precise



conditions(different from earlierpartitioningproposalsin
beinghardware-basedandnot compiler-based);the useof
minimally-portedregister file banks,which hasnot been
studiedin thecontext of dynamicallyscheduledprocessors;
anda thoroughevaluationof IPC,accesstime,andenergy.

Our resultsshow that the useof a two-level structure
helpsreducethe accesstime of the first-level registerfile
in comparisonto a single-level registerfile for roughly the
sameIPC. When using the instructionsper secondmet-
ric, thetwo-level organizationperforms17%betterthanthe
bestsingle-level organization.Usinga bankedsingle-port-
per-bankregisterfile organizationreducesaccesstimesby a
factorof morethantwo andenergy consumptionby afactor
of morethan18whencomparedto aconventionalorganiza-
tion. Theseimprovementsareobtainedwithoutasignificant
degradationin IPC.Thechoiceof technique— two level or
banked— is dependenton designgoals.
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