
A High Performance, Energy Efficient GALS Processor Microarchitecture with
Reduced Implementation Complexity �

YongKang Zhu �, David H. Albonesi � and Alper Buyuktosunoglu �

Department of Electrical and Computer Engineering, University of Rochester �

Computer Systems Laboratory, Cornell University �

IBM T. J. Watson Research Center �

Abstract

As the costs and challenges of global clock distribution
grow with each new microprocessor generation, a Globally
Asynchronous, Locally Synchronous (GALS) approach be-
comes an attractive alternative. One proposed GALS ap-
proach, called a Multiple Clock Domain (MCD) processor,
achieves impressive energy savings for a relatively low per-
formance cost. However, the approach requires separat-
ing the processor into four domains, including separating
the integer and memory domains which complicates load
scheduling, and the implementation of 32 voltage and fre-
quency levels in each domain. In addition, the hardware-
based control algorithm, though effective overall, produces
a significant performance degradation for some applica-
tions.

In this paper, we devise modifications to the MCD de-
sign that retain many of its benefits while greatly reducing
the implementation complexity. We first determine that the
synchronization channels that are most responsible for the
MCD performance degradation are those involving cache
access, and propose merging the integer and memory do-
mains to virtually eliminate this overhead. We further pro-
pose significantly reducing the number of voltage levels,
separating the Reorder Buffer into its own domain to per-
mit front-end frequency scaling, separating the L2 cache to
permit standard power optimizations to be used, and a new
online algorithm that provides consistent results across our
benchmark suite. The overall result is a significant reduc-
tion in the performance degradation of the original MCD
approach and greater energy savings, with a greatly simpli-
fied microarchitecture that is much easier to implement.

�This work was supported in part by NSF grants CCR-9701915,
CCR-9811929, and EIA-0080124; by DARPA/ITO under AFRL contract
F29601-00-K-0182; and by an IBM Faculty Partnership Award.

1. Introduction

Advances in semiconductor technology, novel circuit
techniques, and innovation in computer architecture have
resulted in rapid improvements in microprocessor perfor-
mance. Today, hundreds of millions of transistors are suc-
cessfully harnessed to build these increasingly complex de-
vices. However, during the next two or three generations,
high end microprocessor designers will face several ma-
jor challenges. Without argument, one of the biggest chal-
lenges will be to keep power dissipation to reasonable lev-
els. Higher clock frequencies and transistor counts have
made power dissipation a major microprocessor design con-
straint, so much so that it threatens to limit the amount of
hardware that can be included on future microprocessors
and how fast they can be clocked. Another impending limit
will be the global clock distribution design due to larger
die sizes and higher clock speed. Distribution of a high
frequency global clock signal with low clock skew can be
prohibitively expensive in terms of design effort, area, and
power consumption under such circumstances. In addition,
significant across chip and across wafer parameter varia-
tions are added sources of concern for future microproces-
sors.

In such an environment, globally asynchronous, lo-
cally synchronous (GALS) designs provide several benefits
through their use of separate, autonomous units:

� The capability to independently configure each domain
to execute at frequency/voltage settings at or below the
maximum values. This allows domains that are not ex-
ecuting operations critical to performance to be config-
ured at a lower frequency, and consequently, a GALS
microarchitecture has the advantage that power can be
saved.

� Elimination of the need for careful design and fine tun-
ing of a global clock distribution network. Through lo-
cal clock generation units, the problem of dealing with
clock distribution can be confined into several smaller

domains. For example, the impact of parameter varia-
tions on clock skew will be confined within a domain,
and thus will require less design effort and cost for
dealing with clock skew.

� The ability for each domain frequency to track with
parameter variations. In the case of frequency, each
domain can statically run at different frequencies (in-
creasing effective average maximum frequency) by
tracking the variations from ��� noise, ���� , as well
as from temperature. For example, if one of the do-
mains has one sigma slow ���� , the frequency can be
lowered for that domain while the other domains can
run with a relatively higher frequency. On the contrary,
if most of the domains have one sigma fast ���� , the
��� can be statically lowered for the same performance
to save power.

For these reasons, there is a rapidly growing interest
among high end microprocessor designers in adopting a
GALS approach for future products. One major concern re-
garding the GALS processor efforts proposed to date [7, 12]
is increased design and verification complexity. For in-
stance, the Multiple Clock Domain (MCD) approach of [12]
requires separating the processor into four domains (in-
cluding separating the integer and memory domains which
complicates the scheduling of integer load-dependent in-
structions), and the implementation of 32 voltage and fre-
quency levels in each domain. In addition, the hardware-
based control algorithm, though effective overall, produces
a significant performance degradation for some applica-
tions. In order for GALS processor designs like MCD
to be implemented in practice, complexity effective design
simplifications [1] must be discovered. That is, design
modification that significantly reduce design and verifica-
tion complexity, while retaining virtually all of the original
power/performance benefits, must be devised.

In this paper, we make significant simplifications to the
MCD design, and discover additional optimizations that re-
quire very minor design changes. Using the framework
developed by Semeraro et al. [8, 10, 12], we evaluate the
performance and energy cost of modifications to the MCD
design that greatly reduce the implementation complexity.
We first determine that the synchronization channels that
are most responsible for the MCD performance degrada-
tion are those involving cache access, and propose merg-
ing the integer and memory domains to virtually eliminate
this overhead. Perhaps more significantly, this modification
greatly simplifies the integer out-of-order scheduler, as load
hit latencies are no longer subject to a domain crossing, and
are thus deterministic. Load-dependent integer instructions
can therefore be scheduled as in a fully synchronous design.
We then propose significantly reducing the number of fre-
quency/voltage levels, separating the Reorder Buffer into its

own domain to permit front-end frequency scaling, separat-
ing the L2 cache to permit it to be optimized using stan-
dard techniques, and a new online algorithm that provides
consistent results across our benchmark suite. The overall
result is a significant reduction in the performance degra-
dation of the original MCD approach with greater energy
savings, with a greatly simplified microarchitecture that is
much easier to implement.

The rest of this paper is organized as follows. The con-
cept of complexity effective design is briefly described in
Section 2, as well as how we adopt this idea to our work.
The microarchitecture of the original MCD design and po-
tential modifications are described in Section 3. Section 4
elaborates in detail on each of our proposed MCD design
modifications and presents experimental results. Section 5
discusses in detail the related work, and we finally conclude
in Section 6.

2. Complexity-Effective Design

To our knowledge, the term complexity-effective was first
used in the context of superscalar processors by Palacharla
et al. [9] to describe a proposed dependence-based microar-
chitecture that organized execution resources into clusters.
The goal was to permit the design to scale to a fast clock
while still achieving high IPC performance.

Since then, the term has been modified for a series of
workshops on Complexity-Effective Design held the last
few years at ISCA. The Introduction in the 2004 workshop
proceedings states the following: “A complexity-effective
design feature or tool either (a) yields a significant perfor-
mance and/or power efficiency improvement relative to the
increase in hardware/software complexity incurred; or (b)
significantly reduces complexity (design time and/or veri-
fication time and/or improved scalability) with a tolerable
performance and/or power impact.”

We adopt this definition in this paper, and strive to find
design features that accomplish both (a) and (b) above for
the MCD microarchitecture. Since the definition of “signifi-
cant” is subject to interpretation, and there is no known met-
ric for “complexity”, we instead make qualitative arguments
that our proposed modifications are indeed “complexity-
effective”.

3. MCD Microarchitecture and Overview of
Potential Modifications

The MCD processor was first proposed by Semeraro et
al. in [12]. The basic idea is to divide the chip into multi-
ple domains each with its own clock and voltage generators
to permit tuning each domain frequency and voltage inde-
pendent of the other domains. Architectural queues that de-
couple different pipeline functions serve as the interfaces
between domains, and are augmented with synchronization

circuitry to ensure that signals on different time bases trans-
fer correctly. Figure 1 shows the domain partitions pro-
posed in [12].

Integer Issue Queue

Int ALUs & Register File

Integer

FP Issue Queue

FP ALUs & Register File

Floating−Point

L1 D−Cache

Load/Store Queue

L2 Cache

Load / Store

Main Memory

External (Main Memory)

Fetch Unit

L1 I−Cache

Front End

ROB, Rename, Dispatch

Figure 1. MCD architecture proposed in [12].

Previous papers have described several control mecha-
nisms to choose when, and to what values, to change do-
main frequencies and voltages. The offline algorithm [12]
post-processes an application trace to find, for each interval,
the configuration parameters that would have minimized en-
ergy, subject to a user-selected acceptable slowdown thresh-
old. The application trace is built up gradually when run-
ning programs in a fully synchronous machine simulator.
All primitive events (instruction fetch, decode, issue and
commit) are collected with time stamps and added into a
directed acyclic graph (DAG) with edges (with lengths) en-
forcing various data and structural dependences. At the end
of each interval the constructed DAG is analyzed to calcu-
late all locations containing “slack”, based on which, the fi-
nal frequency settings are determined. Though impractical,
this algorithm provides a target against which to compare
more realistic alternatives. A more practical control scheme
is the online (attack/decay) algorithm [10], which makes
reconfiguration decisions dynamically during the execution
of a program. However, compared to the offline it achieves
less energy efficiency and at times significantly degrades
performance.

From comparing a conventional microprocessor with
an MCD design, and from reading the authors’ own self-
criticism regarding MCD [8, 10, 12], we have targeted sev-
eral areas for complexity-effective design improvements.

Reducing the complexity of the online control algorithm,
or improving its effectiveness. The online control algo-
rithm has the advantage that it is transparent to software and
therefore can be effective on legacy applications as well as
new ones. Therefore, it is critical to the success of MCD, yet
it adds complexity over the fully synchronous design. We
take the viewpoint that simplifying the online algorithm is
difficult with little impact on its effectiveness and therefore
we seek to achieve the opposite: increase the algorithm’s
effectiveness, in particular its robustness across a variety of
applications, with little impact on its complexity.

Reducing the number and complexity of the synchro-
nization circuits. A second obvious complexity is the
need to synchronize signals that cross domains. Such cir-
cuits need to be carefully designed to avoid metastability,
and they also introduce considerable verification complex-
ity. A reduction in the number of these circuits that are
needed would simplify the MCD design. We perform an
analysis to determine which synchronization channels are
most responsible for the MCD performance degradation.
Eliminating such channels would reduce the performance
overhead and reduce the required number of synchroniza-
tion circuits.

Reducing the dynamic scheduler complexity. A less ob-
vious complication in MCD is created by placing the integer
register file and execution units, and the load-store queue
and L1 data cache, into separate domains. This means that
for an integer load operation, a domain crossing must be
incurred after the effective address (EA) is calculated to ac-
cess the cache, and a second crossing must be made to place
the data into the integer register file. Placing dedicated EA
calculation logic in the memory domain does not remove
either crossing as the register file still needs to be accessed.
The presence of these two domain crossings, together with
the fact that the two domains may run at different frequen-
cies, complicates the scheduling of load-dependent instruc-
tions. In many conventional synchronous designs, the out-
of-order issue logic schedules load-dependent instructions
assuming that the load will hit in the cache. Because the
load hit latency is constant, this is easily achieved. In
MCD, this latency is variable which requires some addi-
tional mechanism to know when a load is to return. To elim-
inate this problem for integer instructions (the complication
remains for floating point instructions, although one domain
crossing is removed for floating point loads), we propose to
investigate the impact on MCD performance and energy ef-
ficiency of merging the integer and memory domains.

Saving front-end power. The authors of [8, 10, 12] state
that they have had little success in reducing the front-end
frequency without a large performance degradation. This
leaves a considerable amount of potential power savings un-
tapped. We surmise that the reason for this unfavorable out-
come is due to the placement of the Reorder Buffer (ROB)
in the front-end. This choice by the MCD designers means
that whenever the front-end frequency is scaled down, the
commit bandwidth is also scaled commensurately. We thus
propose to move the ROB out of the front-end domain and
always run it at full frequency. Because the ROB consti-
tutes less than 1% of the total chip power [2], if this indeed
does permit the front-end to scale then significant additional
power savings can be realized with a small design change.

Separating out the L2 cache. The L2 cache by virtue of
its size is a significant source of leakage power in today’s

aggressive process technologies. Many commercial designs
solve this problem by using circuit-level power saving tech-
niques, such as the use of thick oxides and high-�� transis-
tors, in the L2 cache, and running at a reduced speed, e.g., at
half of the processor core speed. This reduces the L2 band-
width but many applications are unaffected. In effect, the
L2 cache is already in its own “domain” in modern proces-
sors. We propose, therefore, to remove the L2 cache from
the memory domain and run it at half speed. Our power
calculations no longer take the L2 cache into account, as it
is already low power and no longer part of the core MCD
logic that we wish to optimize.

Simplifying the dynamic frequency and control circuits.
An obvious complexity in MCD is that it assumes that volt-
age and frequency circuits having 32 levels can be imple-
mented in each of its domains. Although local PLLs can
potentially be devised to meet the frequency requirement,
voltage regulators for dynamic microprocessor voltage scal-
ing are implemented at the board level. Having four of
these off-chip regulators would consume pins and create
significant OEM problems. Proposals for on chip regula-
tors assume linear circuits which have poor efficiency and
thus would waste considerable power. We propose there-
fore to investigate MCD designs having four, or preferably
two, levels in each domains. If this can be accomplished
while still being profitable from an energy savings perspec-
tive, then simple voltage switch circuits, such as that pro-
posed for drowsy caches [6], can be adopted.

In the next section, we describe and evaluate these pro-
posed changes in detail.

4. Analysis of Proposed Modifications

In this section, we analyze the proposed complexity-
effective design modifications using the MCD simulation
framework, which is based on the SimpleScalar/Wattch
toolkit [3, 4]. The simulator includes the original online
(attack/decay) algorithm and the offline algorithm proposed
in [12]. We also implemented our modified attack/decay
algorithm (as described in Section 4.1). The microarchitec-
ture parameters were chosen to match those in prior MCD
evaluations (see Table 1). In the original MCD simulator,
Wattch calculated energy by adding up the power numbers
cycle by cycle. This is fine for a fully synchronous ma-
chine but may over-estimate the energy savings in a MCD
processor. In our experiments, we modified the energy ac-
counting code to account for the dynamically varying clock
cycle time. In all experiments, the voltage change is limited
to a rate of 16.7 mV per �s.

In our experiments comparing our modified online algo-
rithm with the original one, for convenience and fairness,
we used the same set of benchmarks and the same simula-
tion windows (see Table 2) as what was used in [8]. We

Configuration Parameter Value
Branch predictor:

Level 1 1024 entries, history 10
Level 2 1024 entries
Bimodal predictor size 1024
Combining predictor size 4096
BTB 4096 sets, 2–way

Branch Mispredict Penalty 7
Decode/Issue/Retire Width 4/6/11
L1 Data Cache 64KB, 2–way set associative
L1 Instruction Cache 64KB, 2–way set associative
L2 Unified Cache 1MB, direct mapped
L1 cache latency 2 cycles
L2 cache latency 12 cycles
Integer ALUs 4 + 1 mult/div unit
Floating–Point ALUs 2 + 1 mult/div/sqrt unit
INT Issue Queue Size 20 entries
FP Issue Queue Size 15 entries
Load/Store Queue Size 64
Physical Register File Size 72 integer, 72 floating–point
Reorder Buffer Size 80

Table 1. Alpha 21264–like architecturalparameters.

Benchmark Simulation Window
adpcm decode entire program (11.2M)
adpcm encode entire program (13.3M)
epic decode entire program (10.6M)
epic encode entire program (54.1M)
g721 decode 0 – 200M
g721 encode 0 – 200M
gsm decode entire program (122.1M)
gsm encode 0 – 200M
jpeg compress entire program (153.4M)
jpeg decompress entire program (36.5M)
mpeg2 decode 0 – 200M
mpeg2 encode 0 – 200M
applu 650 – 850M
art 13,398 – 13,598M
equake 4,266 – 4,466M
gcc 2,000 – 2,200M
gzip 21,185 – 21,385M
mcf 1,325 – 1,525M
swim 575 – 775M
vpr 1,600 – 1,800M

Table 2. Benchmarks and simulation windows.

added another benchmark (gcc) which was not used in [8],
since it has many more memory references (over 65% of
the total number of instructions in the simulated window)
than other seven SPEC2000 benchmark programs. Thus,
our benchmark suite consists of twelve MediaBench pro-
grams and eight SPEC2000 programs, of which four are
floating-point programs and four are integer programs. To
evaluate each of the other proposed modifications, we only
use the eight SPEC2000 benchmarks.

4.1. Improving the attack/decay algorithm

The original attack/decay algorithm as proposed by Se-
meraro et al. in [10] periodically monitors the issue queue
occupancy. Whenever the queue occupancy changes by
more than a fixed Threshold, the domain’s frequency is

 0

 20000

 40000

 60000

 80000

 100000

 120000

 0 200 400 600 800 1000 1200

Integer Issue Queue Occupancy

 24 26 28 30 32 34 36 38 40

Integer Issue Queue Occupancy (zoomed in)

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 200 400 600 800 1000 1200

Integer Domain Frequency

 24 26 28 30 32 34 36 38 40

Integer Domain Frequency (zoomed in)

Figure 2. The mismatch between the curve of the
integer issue queue occupancy (upper left) and the
curve of the frequency (bottom left) selected by the
original attack/decay algorithm, for adpcm decode.
The horizontal axis indicates the time intervals.
Zoomed-in curves at the right side show where
the mismatch starts to happen. From Interval 30
to 33, there are two consecutive small drops in the
queue occupancy, followed by a large increase,
and all these three changes are above the thresh-
old, barely for the first two but greatly for the third.
Because the ReactionRatio is fixed, the change on
frequency triggered by a large change ends up be-
ing the same as that by a small change. As a result,
at Interval 33, the selected frequency is much lower
than what it should be.

changed by a fixed ReactionRatio. This is the attack part.
If the queue occupancy change is within the Threshold and
IPC does not increase by more than the pre-specified perfor-
mance degradation, then the domain’s frequency is lowered
slightly. This is the decay part.

Suppose the queue occupancy accurately reflects the pro-
gram demand at different phases of execution. We expect
the frequency to change according to the variation in queue
occupancy. But due to the fixed ReactionRatio, the magni-
tude of the frequency change due to a very large variation
in queue occupancy would be the same as due to a smaller
one which is just barely larger than the Threshold.

This uniform attack would build up the mismatch be-
tween the curves of queue occupancy and frequency grad-
ually (see Figure 2), and finally after a long period, either
higher performance degradation (see adpcm decode in Fig-
ure 3) or less energy savings would occur.

We propose to modify the attack part of the algorithm to
react differently to different queue occupancy changes. The
higher the queue occupancy changes, the greater we attack
(that is, the more aggressively we adjust the frequency).

We assume the same ReactionRatio and Threshold used
in the original algorithm, and propose three options on

how to scale the actual reaction ratio, assuming V =
queue occupancy change ratio / Threshold:

� case C: the frequency changes conservatively upon the
change of queue occupancy, and thus
������	
�����	���� � 	
�����	���� � �

�
� ;

� case M: the frequency changes moderately upon the
change of queue occupancy, and thus
������	
�����	���� � 	
�����	���� � � ;

� case A: the frequency changes aggressively upon the
change of queue occupancy, and thus
������	
�����	���� � 	
�����	���� � � �.

Figure 3 shows the effects of the modified online algo-
rithms. On average, the modified algorithm achieves higher
energy savings with lower performance degradation (except
for case A, where the performance degradation is slightly
higher than that of the original algorithm). Cases M and A
have almost the same energy efficiency as what the near-
optimal offline algorithm can achieve.

For benchmarks adpcm decode and epic decode where
the original algorithm produces high performance degrada-
tion, our modified schemes significantly reduced the per-
formance degradation. Moreover, greater energy savings is
achieved for epic decode.

In comparing the three cases of the modified algorithm,
cases M and A achieve similar performance degradation and
energy savings, while case C, due to its conservative reac-
tions to queue occupancy change, results in a lower perfor-
mance degradation and hence lower energy savings, but is
still superior to the original algorithm. Our new algorithms
are very robust across our benchmark suite. Overall, case
M achieves an 18% energy (not power) savings for a 6%
performance degradation. We favor case M as the modified
algorithm for its design simplicity, and use it in our further
investigations.

4.2. Synchronization channel analysis

Since the different domains of the MCD processor may
operate at different frequencies, inter-domain crossings in-
cur synchronization penalties [12]. More specifically, if the
data to be transferred is latched at the rising clock edge of
the transmitting domain, and the next rising clock edge of
the receiving domain is too close in time, then an extra clock
cycle is assumed for the data to be latched at the receiving
domain. This assumption is consistent with the operation of
inter-domain synchronization circuits [5]. To reduce design
complexity, we would like to simplify such circuits if the
impact is limited. Even better, we seek to remove channels
with a large performance impact and where the energy cost
is low. Therefore, in this section, we study the performance
impact of each inter-domain channel in order to focus on
the most important channels.

0%

5%

10%

15%

20%

25%

ad
pcm

_d
ec

ode

ad
pcm

_e
nco

de

ep
ic_

dec
ode

ep
ic_

en
co

de

g72
1_

dec
ode

g72
1_

en
co

de

gsm
_d

ec
ode

gsm
_e

nco
de

jp
eg

_d
ec

ode

jp
eg

_e
nco

de

m
peg

2_
dec

ode

m
peg

2_
en

co
de

ap
plu ar

t

eq
uak

e
gcc

gzip m
cf

sw
im vp

r

av
er

ag
e

ad.org C M A offline

0%

5%

10%

15%

20%

25%

30%

35%

40%

ad
pcm

_d
ec

ode

ad
pcm

_e
nco

de

ep
ic_

dec
ode

ep
ic_

en
co

de

g72
1_

dec
ode

g72
1_

en
co

de

gsm
_d

ec
ode

gsm
_e

nco
de

jp
eg

_d
ec

ode

jp
eg

_e
nco

de

m
peg

2_
dec

ode

m
peg

2_
en

co
de

ap
plu ar

t

eq
uak

e
gcc

gzip m
cf

sw
im vp

r

av
er

ag
e

-10%

-5%

0%

5%

10%

15%

20%

25%

30%

35%

ad
pcm

_d
ec

ode

ad
pcm

_e
nco

de

ep
ic_

dec
ode

ep
ic_

en
co

de

g72
1_

dec
ode

g72
1_

en
co

de

gsm
_d

ec
ode

gsm
_e

nco
de

jp
eg

_d
ec

ode

jp
eg

_e
nco

de

m
peg

2_
dec

ode

m
peg

2_
en

co
de

ap
plu ar

t

eq
uak

e
gcc

gzip m
cf

sw
im vp

r

av
er

ag
e

Figure 3. Performance degradation (upper), energy savings (middle), and energy delay product improvement
(bottom) using the original (ad.org) and modified attack/decay (with 3 cases: C, M and A) algorithms and the
offline algorithm, on the original MCD processor. The baseline is a fully synchronous machine with the same
architectural parameters.

Load / Store Queue

L1 D−Cache

Load / Store

Branch Predictor L1 I−Cache

Fetch Unit

Front End

Rename & Dispatch

Main Memory

External (Main Memory)

Functional Units

Issue Queue

Register File

Integer

Functional Units

Issue Queue

Register File

Floating−Point

L2 Unified Cache

Reorder Buffer (ROB)

3

1 2

17

4

6

9

13

5
78

10
11

12

15

14

16

� Channel 1: UL2 Cache � IL1 Cache

� Channel 2: Main Memory � UL2 Cache

� Channel 3: Integer ALU� Branch Predictor

� Channel 4: DL1 Cache � Integer Register File

� Channel 5: DL1 Cache � FP Register File

� Channel 6: Integer Result Bus � Load/Store Queue

� Channel 7: FP Result Bus � Integer Register File

� Channel 8: Integer Result Bus � FP Register File

� Channel 9: Fetch Queue � Integer Issue Queue

� Channel 10: Fetch Queue � FP Issue Queue

� Channel 11: Fetch Queue � Load/Store Queue

� Channel 12: Integer Functional Units � Reorder Buffer

� Channel 13: FP Functional Units � Reorder Buffer

� Channel 14: Load/Store Queue � Reorder Buffer

� Channel 15: Main Memory � IL1 Cache

� Channel 16: Fetch Queue � Reorder Buffer

� Channel 17: UL2 Cache � DL1 Cache

Figure 4. Our proposed MCD domain partition
scheme, along with all possible synchronization
channels among different domains.

Figure 4 shows all the synchronization channels. We use
this opportunity to separate the ROB and L2 cache out to
study these effects as well. This adds two additional chan-
nels (the original MCD design has 15 synchronization chan-
nels; see [11] for details): Channel 16, where synchroniza-
tion occurs when an instruction is being dispatched; and
Channel 17, for synchronizing transfers between the L1
data cache and L2 unified cache.

Figure 5 shows what percentage of the total synchroniza-
tion penalty occurs in each channel for our benchmark suite.
We place vpr in the floating point group due to its large
number of floating-point loads and because its distribution
has a greater resemblance to the floating point benchmarks.
For the floating point benchmarks, Channel 5 is the hot spot
where roughly 50% of the total synchronization penalty oc-
curs, whereas there is no such dominant channel for the inte-
ger benchmarks that on average contributes more than 25%
of the total.

0%

5%

10%

15%

20%

25%

30%

35%

40%

CH_1 CH_2 CH_3 CH_4 CH_5 CH_6 CH_7 CH_8 CH_9 CH_10 CH_11 CH_12 CH_13 CH_14 CH_15 CH_16 CH_17

gcc gzip mcf

0%

10%

20%

30%

40%

50%

60%

70%

80%

CH_1 CH_2 CH_3 CH_4 CH_5 CH_6 CH_7 CH_8 CH_9 CH_10 CH_11 CH_12 CH_13 CH_14 CH_15 CH_16 CH_17

applu art equake swim vpr

Figure 5. Percentage of synchronization penalties
incurred in each individual channel as a percent-
age of the total synchronization penalty incurred.

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

3.5%

4.0%

applu art equake gcc gzip mcf swim vpr average

ch3.sp_free ch4.sp_free ch5.sp_free ch6.sp_free ch16.sp_free ch17.sp_free

Figure 6. Performance improvement (compared to
a realistic MCD processor) when channel x’s penal-
ties are removed (chx.sp free).

However, the magnitude of the synchronization penalties
may not directly reflect the performance impact. Rather,
the tolerance of the application to added latency on each
of the channels is a more significant factor. To determine
the performance impact of each channel’s synchronization
penalty, we individually remove the channel penalties and
measure the resulting performance improvement. We only
present those channels for which, for at least one bench-
mark program, a performance impact of at least 0.5% was
achieved when the synchronization penalties were removed.
Results for Channel 16 and 17 are also presented (although
no benchmark program sees more than 0.5% impact), since
they are the extra channels resulting from our new domain
partition scheme. As is shown in Figure 6, Channels 6, 4,
and 5 have the highest performance impact. These three
channels are related to load operations: Channel 6 for ef-
fective address transfer between the integer and memory
domains, and Channels 4 and 5 for the return of cache data
to the integer and floating-point register files, respectively.
The impact of synchronization on Channels 4 and 6 has a
particularly acute impact on gzip, due to its very small mem-

ory footprint that fits into the L1 data cache. The result is
that the synchronization penalty as a fraction of the average
load latency is highest for gzip, and therefore has the largest
performance impact. An obvious way to greatly reduce the
MCD synchronization penalty is to merge the integer and
memory domains into a single combined domain. This has
the added benefit of simplifying the scheduling of integer
load-dependent instructions.

Recall that Channels 16 and 17 are the extra synchro-
nization channels introduced by separating the ROB and L2
cache. Figure 6 shows that, although not zero, the perfor-
mance impact of these penalties are relatively small com-
pared with those on Channels 3, 4, 5 and 6. There is, there-
fore, the potential for significant gains in moving the ROB
and L2 cache.

4.3. Dynamically scaling the front-end frequency
and separating the L2 cache

The MCD designers found that the frequency of the
front-end could not be scaled without incurring a large per-
formance degradation [12]. This indicates that a hardware
unit within this domain always lies in the critical path of
program execution. We conjecture that this critical struc-
ture is the Reorder Buffer (ROB) for the following reasons.
The ROB connects the front-end and back-end of the exe-
cution pipeline. When an instruction is dispatched from the
front-end, a free ROB entry needs to be allocated; when an
instruction finishes execution and is ready to commit, the
ROB needs to commit the architectural state changes made
by this instruction. Since at any moment the execution bot-
tleneck must be in either the front-end or the back-end, the
ROB is always the key structure that needs to be run at the
full frequency to maintain high performance.

Based on this conjecture, we propose to remove the ROB
from the front-end domain and make it a new stand-alone
domain always running at the full frequency. We have al-
ready observed in the prior section that doing so should have
little performance impact. The effect on energy of not being
able to scale the ROB should be small as well, as it com-
prises about 1% of the total chip power [2]. Thus, we create
a five domain MCD processor called 5d in the following
discussion.

Figure 7 shows the frequency curves in the front-end do-
main before and after separating the ROB out, for swim, us-
ing the offline algorithm. We find that, while the frequency
curves are almost identical in the other domains, more op-
portunities are exposed for scaling the frequency of the
front-end domain with the separation of the ROB. Thus, the
simple design change of making the ROB a full-frequency
standalone domain should yield even greater MCD savings.
Although we do not evaluate the energy savings of remov-
ing the L2 from the memory domain (as it uses a differ-
ent energy saving approach than MCD), the prior section

showed that the performance impact would be minor. We
call the resulting six domain MCD processor 6d.

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0 5e+07 1e+08 1.5e+08 2e+08

(G
H

z)

4d -- front-end dom

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0 5e+07 1e+08 1.5e+08 2e+08

(G
H

z)

5d -- front-end dom

Figure 7. The frequency curves in the front-end do-
main, before and after separating the ROB out, for
swim, with the offline algorithm.

0%

1%

2%

3%

4%

5%

6%

7%

8%

9%

applu art equake gcc gzip mcf swim vpr average

4d 5d 6d

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

applu art equake gcc gzip mcf swim vpr average

-5%

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

applu art equake gcc gzip mcf swim vpr average

Figure 8. Performance degradation (upper), en-
ergy savings (middle) and energy delay prod-
uct improvement (bottom), for 4, 5 and 6-domain
MCD schemes, using the modified (case M) at-
tack/decay algorithm. The baseline is a fully syn-
chronous machine with the same architectural pa-
rameters.

Figure 8 compares the effects of separating out the ROB
and L2 cache using the modified online algorithm. The
overall performance impact as expected from prior results is
small in both cases, and is somewhat impacted by the online
algorithm taking advantage of the ability to scale the front-
end domain. As expected, the energy savings improves with
the separate ROB, but to a small degree. This is due to the
fact that, in our simulation model, the power consumption
of the front-end is only about 12% of the total chip power.

Thus, the new algorithm is recouping a large fraction of this
potential savings. The potential impact is higher for designs
that have greater front-end power. Finally, there could pos-
sibly be some small performance and energy cost for sep-
arating out the L2 cache (like the higher performance drop
for gcc in Figure 8), but this would be easily overridden by
the ability to use thick oxides and high-�� transistors.

4.4. Merging the integer and memory domains

Recall that we have three major motivations for explor-
ing the merging of the integer and memory domains. First,
we found that the channels between these domains that in-
volve cache access were those that had the highest con-
tribution to the MCD performance degradation. Second,
removing those channels reduces the number of synchro-
nization circuits. Finally, merging the domains removes
a major source of MCD complexity: the issue compli-
cations of scheduling dependent instructions, based on a
load that makes two domain crossings and is therefore non-
deterministic.

Figure 9 shows the effects of merging these domains us-
ing the modified online algorithm. Note that the online al-
gorithm needs to monitor queue occupancy to make recon-
figuration decisions. In the merged domain, we have two
queues – the integer and load store queues. In our exper-
iment we formed the new queue occupancy by adding the
two occupancies together with each weighted by 0.5. We
experimented with weightings between 0 and 1 and found
that equally accounting for both queues gave the best result.
As is shown in Figure 9, merging greatly reduces the perfor-
mance degradation as expected from our prior results, with
a small enough reduction on energy savings to maintain a
similar energy delay product. Note that the worst case per-
formance degradation for these benchmarks is reduced from
6.5% to 4.7%. With the obvious impact on the MCD design,
merging the domains is a very complexity-effective design
decision.

Based on the analysis above, we propose to partition the
chip into the following 5 domains:

� ROB domain — always running at full frequency;

� L2 cache domain — always running at half frequency;

� fetch domain — same as the original MCD design, ex-
cept ROB;

� floating-point domain — same as the original MCD
design;

� integer and memory domain — same as combining the
integer and memory domains in the original MCD de-
sign, except the L2 cache.

0%

1%

2%

3%

4%

5%

6%

7%

applu art equake gcc gzip mcf swim vpr average

org merged

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

applu art equake gcc gzip mcf swim vpr average

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

applu art equake gcc gzip mcf swim vpr average

Figure 9. Performance degradation (upper), energy
savings (middle) and energy delay product im-
provement (bottom), for 6-domain MCD schemes,
before (org) and after (merged) merging the inte-
ger and memory domains, using the modified on-
line algorithm. The baseline is a fully synchronous
machine with the same architectural parameters.

4.5. Simpler frequency scheme

The original MCD design uses 32 different frequencies
evenly distributed from 250 MHz to 1.0 GHz – which re-
quires a complicated scheme to generate and switch among
these 32 frequency levels, as well as the accompanying
voltages. In this section, we study how much energy
efficiency would be compromised by simpler, more eas-
ily implementable schemes, requiring only a few frequen-
cies/voltages.

Assuming all 32 frequencies are equally important, we
conducted experiments using 7 evenly-spaced frequencies
(from 250 MHz, with a step of 125 MHz, up to 1.0 GHz).
However, we find that the 32 frequencies are not equally
important. For frequencies that are below 500 MHz, only
the lowest (250 MHz) is heavily used when there are no ac-
tivities in one domain (like the floating-point domain when
an integer benchmark is running); the other low frequency
values are seldom used. Based on this observation, we then
conducted experiments on using only 4 frequencies: 250
MHz, 500 MHz, 750 MHz and 1.0 GHz.

Figure 10 compares the effects of using full-range fre-

quency and using a fewer number. A 4-frequency scheme
achieves much the same energy efficiency as the full-
frequency scheme, without seriously degrading perfor-
mance. As expected, the energy savings is reduced as
the algorithm identifies less opportunity for energy savings.
However, such a small number of frequencies and voltages
could be generated using simple switches as with drowsy
caches [6], making the design much easier to realize.

0%

3%

6%

9%

12%

15%

18%

21%

applu art equake gcc gzip mcf swim vpr average

ff 7f 4f 2f

-10%

0%

10%

20%

30%

40%

50%

applu art equake gcc gzip mcf swim vpr average

-10%

0%

10%

20%

30%

40%

50%

applu art equake gcc gzip mcf swim vpr average

Figure 10. Performance degradation (upper), en-
ergy savings (middle) and energy x delay prod-
uct improvement (bottom), for 6-domain MCD
schemes, with the offline algorithm, using full
range frequency and simpler frequency schemes.
The baseline is a fully synchronous machine with
the same architectural parameters.

Two frequencies, however, are not enough to yield sig-
nificant improvements in both performance and energy. The
performance degradation is reduced, but this is only because
the offline algorithm is unable to find many opportunities
for energy savings with only two frequencies. For vpr, ap-
plu and equake, the energy-delay product is even worse than
the baseline.

4.6. Putting it all together

Figure 11 compares, across all the benchmark programs
listed in Table 2, the original MCD with the online algo-
rithm of [10] with our modified MCD that separates the
ROB and L2, combines the integer and memory domains,

uses four frequencies in each of the three domains (front-
end, int+mem, and floating point), and the modified on-
line algorithm. The overall performance degradation is re-
duced from 7.0% to 3.9%, the energy savings increases
from 14.1% to 19.0%, and the energy delay product is im-
proved from 8.2% to 15.8%, with our proposed modifica-
tions. The performance degradation to energy (not power)
savings ratio of the new scheme is a very favorable 4.8. Fur-
thermore, our approach requires fewer synchronization cir-
cuits due to merging two domains, much simpler dynamic
frequency and voltage scaling circuitry (only four levels),
and a simpler integer instruction scheduler. Moreover, the
modest changes that we proposed to the MCD microarchi-
tecture (moving the ROB and modifying the online algo-
rithm) have yielded significant benefits.

5. Related Work

A GALS approach to processor microarchitecture was
proposed by Semeraro et al. in [12] and Iyer and Mar-
culescu in [7]. Our work is built on the design presented
in [12]; we propose a new domain partition scheme that
achieves the same energy efficiency with lower performance
degradation.

The performance impact of synchronization has been
studied in [7, 12], and it has been demonstrated that a MCD
processor with an out-of-order superscalar core would be
more capable of tolerating the performance effects of syn-
chronization penalties than with an in-order issue core [11].
While these efforts studied the overall impact of all the syn-
chronization penalties incurred in all synchronization chan-
nels, our work identified the most important channels where
the imposed penalties have the biggest performance im-
pact (though their amount is not necessarily the highest).
We proposed to remove those penalties by domain merging
and showed the new domain partition scheme achieves es-
sentially same energy savings but with lower performance
degradation, compared to the original design.

A number of schemes have been devised to control a
MCD processor. In [12], an offline algorithm is proposed.
It analyzes program traces built from execution on a fully
synchronous machine and makes decisions on when and to
what value the frequency should change. Though not prac-
tical in some application environments, it sets an optimal
limit against which more practical schemes can be targeted.
We used this algorithm in our work to see the effects of our
modified algorithm and to test the effects of implementing
fewer frequencies. Magklis et al. proposed a more practi-
cal profile-based control scheme [8], which applies the of-
fline algorithm only to those “important” procedures and
loop nests identified by profiling runs. Both of these ap-
proaches are software-based. The first hardware-based ap-
proach, the attack/decay algorithm, is proposed by Semer-
aro et al. in [10]. In Section 4.1, we analyzed the potential

0%

5%

10%

15%

20%

25%

30%
ad

pc
m

_d
ec

od
e

ad
pc

m
_e

nc
od

e
ep

ic
_d

ec
od

e
ep

ic
_e

nc
od

e
g7

21
_d

ec
od

e
g7

21
_e

nc
od

e
gs

m
_d

ec
od

e
gs

m
_e

nc
od

e
jp

eg
_d

ec
od

e
jp

eg
_e

nc
od

e
m

pe
g2

_d
ec

od
e

m
pe

g2
_e

nc
od

e

ap
pl

u

ar
t

eq
ua

ke gc
c

gz
ip

m
cf

sw
im vp

r
av

er
ag

e

org mod

0%

5%

10%

15%

20%

25%

30%

35%

40%

ad
pc

m
_d

ec
od

e
ad

pc
m

_e
nc

od
e

ep
ic

_d
ec

od
e

ep
ic

_e
nc

od
e

g7
21

_d
ec

od
e

g7
21

_e
nc

od
e

gs
m

_d
ec

od
e

gs
m

_e
nc

od
e

jp
eg

_d
ec

od
e

jp
eg

_e
nc

od
e

m
pe

g2
_d

ec
od

e
m

pe
g2

_e
nc

od
e

ap
pl

u

ar
t

eq
ua

ke gc
c

gz
ip

m
cf

sw
im vp

r
av

er
ag

e

-20%

-10%

0%

10%

20%

30%

40%

ad
pc

m
_d

ec
od

e
ad

pc
m

_e
nc

od
e

ep
ic

_d
ec

od
e

ep
ic

_e
nc

od
e

g7
21

_d
ec

od
e

g7
21

_e
nc

od
e

gs
m

_d
ec

od
e

gs
m

_e
nc

od
e

jp
eg

_d
ec

od
e

jp
eg

_e
nc

od
e

m
pe

g2
_d

ec
od

e
m

pe
g2

_e
nc

od
e

ap
pl

u

ar
t

eq
ua

ke gc
c

gz
ip

m
cf

sw
im vp

r
av

er
ag

e

Figure 11. Performance degradation (upper), energy savings (middle) and energy x delay improvement (bottom),
over a fully synchronous machine with the same architectural parameters. org stands for the original MCD
design with the original online algorithm using full-frequency scheme; mod stands for the new domain partition
scheme with our modified online algorithm and four frequencies/voltages.

problems with this algorithm and proposed modifications
which better bound the performance degradation while sav-
ing additional energy. Another hardware-based approach
was recently proposed by Wu et al. [13], who applied tra-
ditional control theory to make reconfiguration decisions.
The target being controlled is the queue occupancy. A tar-
get queue occupancy is pre-specified, and both the change
of queue occupancy and the speed of the change are moni-
tored. The algorithm is stable in theory under the assump-
tion that the queues will never fill.

6. Conclusions

In this paper, we presented our work towards achieving
a more complexity-effective MCD design. We first pre-
sented our modification to the original attack/decay algo-
rithm, which remedies the problem of high performance
degradation in some cases of the original algorithm and
achieves better energy efficiency, while adding little com-
plexity to the control circuitry. We then studied the do-
main partition problem and proposed to separate out the
ROB and L2 cache, which results in a dynamically scal-
able front-end domain, and the freedom to use standard L2
cache low-power techniques. Based on the new domain
partition scheme, we studied the performance sensitivity
to synchronization penalties on every channel and found
that the channels involving cache access are the ones for
which performance is the most sensitive. Based on this ob-
servation, we proposed to merge the integer and memory
domains to remove these hot channels. Finally, we found
that a simpler 4-frequency scheme reaps most of the en-
ergy efficiency that could be achieved with the 32-frequency
scheme. A 4-frequency designing greatly simplifies the im-
plementation of the frequency and voltage controller. We
finally compared our new MCD design (new domain par-
titioning, the modified online algorithm and a simpler 4-
frequency scheme) with the original MCD design and found
that the new approach improves both performance and en-
ergy efficiency. The net result of all these optimizations is
a design with more compelling performance and energy re-
sults yet which is much more implementable as compared
to the original MCD design.

References

[1] P. Bose, D. H. Albonesi, and D. Marculescu. Power
and Complexity Aware Design. In IEEE Micro, Septem-
ber/October 2003. Guest Editor’s Introduction for Special
Issue on Power and Complexity Aware Design.

[2] P. Bose, D. Brooks, A. Buyuktosunoglu, P. W. Cook, K. Das,
P. G. Emma, M. Gschwind, H. Jacobson, T. Karkhanis,
P. Kudva, S. Schuster, J. Smith, V. Srinivasan, V. V. Zyuban,
D. H. Albonesi, and S. Dwarkadas. Early Stage Definition of
LPX: A Low Power Issue-Execute Processor. In Proceedings

of the 2nd International Workshop on Power-Aware Com-
puter Systems, in conjunction with the 8th International Sym-
posium on High Performance Computer Architecture, Febru-
ary 2002.

[3] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A frame-
work for architectural-level analysis and optimization. In
Proceedings of the 27th International Symposium on Com-
puter Architecture, June 2000.

[4] D. Burger and T. Austin. The SimpleScalar tool set, version
2.0. Technical Report CS-TR-97-1342, Department of Com-
puter Science, University of Wisconsin, June 1997.

[5] A. Chakraborty and M. R. Greenstreet. Efficient Self-Timed
Interfaces for Crossing Clock Domains. In Proceedings of
9th International Symposium on Asynchronous Circuits and
Systems, May 2003.

[6] K. Flautner, N. S. Kim, S. Martin, D. Blaauw, and T. Mudge.
Drowsy Caches: Simple Techniques for Reducing Leakage
Power. In Proceedings of the 29th International Symposium
on Computer Architecture, May 2002.

[7] A. Iyer and D. Marculescu. Power and Performance Eval-
uation of Globally Asynchronous Locally Synchronous Pro-
cessors. In Proceedings of the 29th International Symposium
on Computer Architecture, May 2002.

[8] G. Magklis, M. L. Scott, G. Semeraro, D. H. Albonesi, and
S. Dropsho. Profile-based dynamic voltage and frequency
scaling for a multiple clock domain processor. In Proceed-
ings of the 30th International Symposium on Computer Ar-
chitecture, June 2003.

[9] S. Palacharla, N. P. Jouppi, and J. E. Smith. Complexity-
Effective Superscalar Processors. In Proceedings of the 24th
International Symposium on Computer Architecture, June
1997.

[10] G. Semeraro, D. H. Albonesi, S. G. Dropsho, G. Magklis,
S. Dwarkadas, and M. L. Scott. Dynamic frequency and volt-
age control for a multiple clock domain microarchitecture.
In Proceedings of the 35th Annual IEEE/ACM International
Symposium on Microarchitecture, November 2002.

[11] G. Semeraro, D. H. Albonesi, G. Magklis, M. L. Scott, S. G.
Dropsho, and S. Dwarkadas. Hiding Synchronization Delays
in a GALS Processor Microarchitecture. In Proceedings of
10th International Symposium on Asynchronous Circuits and
Systems, April 2004.

[12] G. Semeraro, G. Magklis, R. Balasubramonian, D. H. Al-
bonesi, S. Dwarkadas, and M. L. Scott. Energy-efficient pro-
cessor design using multiple clock domains with dynamic
voltage and frequency scaling. In Proceedings of the 8th In-
ternational Symposium on High Performance Computer Ar-
chitecture, February 2002.

[13] Q. Wu, P. Juang, M. Martonosi, and D. W. Clark. Formal
Online Methods for Voltage/Frequency Control in Multiple
Clock Domain Microprocessors. In Proceedings of the 11th
International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, October 2004.

