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ABSTRACT
Simultaneous Multi-Threading, although effective in increasing pro-
cessor throughput, exacerbates the inductive noise problem such that
more expensive electronic solutions are required even with the use of
previously proposed microarchitectural approaches. We use detailed
microarchitectural simulation together with the Pentium 4 power deliv-
ery model to demonstrate the impact of SMT on inductive noise, and
to identify thread-specific microarchitectural reasons for high noise oc-
currences. We make the key observation that the presence of multiple
threads actually provides an opportunity to mitigate the cyclical cur-
rent fluctuations that cause noise, and propose the use of a prior per-
formance enhancement technique to achieve this purpose.

Categories and Subject Descriptions: C.1.0 [Processor Architectures]:
General

General Terms: Reliability, Design, Performance

keywords: power delivery, inductive noise, clock gating, SMT

1. INTRODUCTION
A long-standing problem in computer systems is that of inductive

noise. Inductive noise, or the Ldi/dt problem, arises when there are
large fluctuations in current through the power delivery network. The
resulting variations in supply voltage reduce transistor drive current,
and hence speed, for supply undershoots, and increase transistor elec-
tric field magnitudes for overshoots. If not adequately limited, these
fluctuations can result in operational failure.

The nature of current fluctuations during machine operation impacts
the degree to which the supply voltage is affected. The magnitude of
the fluctuations has an obvious impact, but the periodicity is also im-
portant. In particular, large, periodic current variations at the resonance
frequency of the chip capacitances and package inductance can result
in significant supply voltage variations.

From a microarchitectural standpoint, therefore, a design in which
current can vary from small to large values (and vice-versa) is generally
more vulnerable to inductive noise than one in which current levels are
more tightly bound. For instance, clock gating, although effective at
reducing average dynamic power, increases the minimum to maximum
possible current swings, and thus may lead to higher inductive noise [3,
5, 14]. Furthermore, a design in which a series of microarchitectural
events cause these current swings to occur at the resonance frequency
is particularly vulnerable to inductive noise. While years ago the clock
frequency was often well below the resonance frequency, today the
situation is reversed. While microprocessor clock frequencies have in-
creased significantly over time, due to the fact that capacitances are
increasing while package inductance keeps decreasing, the resonance
frequency has remained in the tens of MHz range. Thus, in modern
processors, periodic behavior involving, for instance, cache misses, at
resonance can seriously exacerbate inductive noise levels.

Simultaneous Multi-Threaded (SMT) processors are potentially more
vulnerable to inductive noise than single-threaded superscalar designs.
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A natural downside of SMT processors is their larger power dissipa-
tion, due to the fact that they require additional resources (registers,
for example) and that they make better use of these resources (thereby
dissipating more energy) over a given period of execution. This higher
power dissipation, and thus current consumption, can lead to larger
current fluctuations, and thus more inductive noise. The result is that a
more robust power delivery system is required for SMT than for single-
threaded processor. In order for multithreading to become more preva-
lent in everyday systems, it is crucial to limit power delivery network
costs as much as possible. Thus, higher-level microarchitectural tech-
niques need to be devised that specifically target the causes of inductive
noise in SMT processors.

The objectives of this paper, therefore, are twofold. First, we wish
to shed insight on the occurrences of high inductive noise from the
perspective of the microarchitecture. Through detailed simulation, we
show how various microarchitectural events lead to high noise, and
examine the impact of increasing the number of threads on inductive
noise for a given power delivery network.

Our second objective is to devise simple mechanisms for SMT pro-
cessors that complement previously devised single-threaded approaches.
A key observation is that the multiple threads of an SMT processor can
be harnessed to naturally even out the usage of the processor (and thus
limit the occurrences of high current fluctuations).

2. HANDLING INDUCTIVE NOISE IN MOD-
ERN PROCESSORS

Traditionally, limiting inductive noise to a permissible level has been
exclusively handled through electrical solutions such as the use of de-
coupling capacitance at various levels of the system. However, several
microarchitectural-level approaches for handling inductive noise have
been recently advocated for the purpose of reducing the rising costs of
these purely electronic solutions.

Perhaps the first microarchitectural level approach to reducing in-
ductive noise was proposed by Pant et al. [10]. The premise of this ap-
proach is that the rapid current swings introduced by clock gating are
a primary reason for high inductive noise. The technique, therefore,
more gradually activates/deactivates functional units. The smoother
current transition of this scheme comes at the cost of both lower per-
formance and higher average power. Tang et al. [13] attempt to reduce
this overhead by predicting when an instruction is to be issued to the
functional unit, and start gradual wake-up prior to the issue, thereby
reducing the unit wake-up delay.

Grochowski et al. [6] propose to reduce inductive noise via a global
feedback and control system. The authors create an RLC model for
the power delivery network and model the system as a Linear Time
Invarient system whose input is the processor current consumption, and
output is the power distribution voltage. The authors suggest a global
system for obtaining various unit currents on a cycle-by-cycle basis in
order to schedule instruction flow.

We focus on two more recently advocated approaches that provide a
more comprehensive solution to guaranteeing a particular level of sup-
ply voltage integrity. The approach of Joseph et al. [8] is to intervene
before the supply voltage reaches a level that can result in failure. An
on-chip voltage sensor detects when the voltage crosses a threshold ap-
proaching such an emergency level and this triggers either the gating or
firing of functional units and caches to increase/decrease current levels
to stave off the emergency.

An alternative recent technique of Powell and Vijaykumar [11] pre-
vents large current fluctuations from occurring at the resonance fre-



quency. The authors observe that such fluctuations are a result of varia-
tions in instructions per cycle (IPC) at resonance. The proposed damp-
ing technique identifies when such resonances can potentially occur,
and limits the permissible variations in current that can occur at res-
onance. Large current increases are prevented by gating commit and
possibly issue where appropriate, while large current downswings are
avoided by firing gated-off units.

Although both of the latter two techniques are potentially effective
for single-threaded designs, multi-threaded processors stress these ap-
proaches in different ways. The sense-and-intervene approach incurs
a performance overhead whenever active units must be gated off to re-
duce current, and expends additional energy whenever a clock gated
unit must be fired to increase it. The power delivery network must be
robust enough to limit the extent of these occurrences, lest too large
a performance and/or energy penalty be paid. As shown in Section 4,
current fluctuations grow in general with the number of threads and
thus for a constant power delivery network, so does the number of in-
terventions. This in turn, increases the performance and power over-
heads of intervention. Thus, to keep these to a tolerable level, an SMT
processor demands a more expensive packaging solution than a single-
threaded one with the use of intervention.

In terms of the damping technique, we note that the amount of damp-
ing, and thus the performance and energy overheads, is partly a func-
tion of the frequency with which large fluctuations in instruction issue
occur at resonance. For many common applications such as SPEC2000,
issues of more than four instructions are rare, and this characteristic
fundamentally limits the damping overhead to a reasonable level in
conventional processors. SMT processors, by their nature in sharing
issue bandwidth among multiple threads, increase the prevalence of
large group issues, while at the same time, events such as cache misses
still cause periods of low instruction issue. Thus, the range of IPC and
therefore the overhead of damping naturally rises in an SMT proces-
sor. As with intervention, one solution is to employ a more expensive
package with an SMT processor and to lessen the rules for engaging
damping.

We make the key observation that the multiple threads of an SMT
design can be used to even out the usual fluctuations caused by events
that, when occurring in a periodic manner, can result in large current
fluctuations at resonance. We propose that intelligent thread manage-
ment techniques such as those proposed to improve performance [15]
or reduce energy [4] can be used to naturally even out the usage of
processor resources in an SMT machine, and thereby reduce the oc-
currence of large resonances. It is important to note that we do not
propose to guarantee a limit on the amount of noise that can occur.
Rather, we propose to reduce the frequency of high noise situations in
SMT processors to an acceptably small level, and use a technique such
as damping to intervene on these rare occurrences. With these two
complementary mechanisms in place, a less expensive power delivery
system can be safely employed while keeping performance and power
overheads to reasonable levels.

Before discussing such techniques in Section 5, we make some ob-
servations about inductive noise in SMT machines in Section 4. First,
we discuss our simulation methodology.

3. SIMULATION METHODOLOGY
We use a heavily modified version of the SimpleScalar toolset [2]

for our simulations. We have created a version that models in detail
an SMT processor running multiple programs as independent threads.
The baseline microarchitecture resembles the Mips R10000 and Al-
pha 21264 with a Reorder Buffer (ROB) and separate integer, float-
ing point, and load/store queues. Each thread has a separate Program
Counter and ROB but otherwise shares the resources of the machine.
The major simulation parameters are shown in Table 1.

In Wattch [1], the absence of clock gating simply causes the peak
power value to be reported. We produced a more realistic no-clock-
gating model in which the full clock power (including latches) is con-

Table 1: SMT simulator parameters.

Parameter Value (for 1/2/4/8 threads)

Clock Frequency 1.5 GHz
Fetch/Decode width 4/6/6/8 instructions
Branch Target Buffer 2K entry, 2-way associative

Return Address Stack entries 32
Branch predictor combination of 2K bimodal and 2-level

Branch mispredict penalty 8 cycles
Reorder Buffer entries/thread 128

Fetch policy ICOUNT.2.8 [16]
Integer physical registers 80/164/256/480

Floating point physical registers 72/164/256/480
Integer Issue Queue entries 48/96/128/172

Floating Point Issue Queue entries 32/64/96/128
Load/Store Queue entries 64/88/106/160

Issue width 4/6/6/8
Commit width 4/6/6/8
Integer ALUs 4/6/6/6

Integer mult/div 1/2/2/3
Floating point ALUs 2/3/3/4

Floating point mult/div 1/2/2/2
ICache 32KB, 2-way, 1/2/4/8 banks
DCache 32KB/64KB/64KB/128KB, 2-way, 2/3/4/4 ports

L2 Cache 2MB, 8-way, 12 cycle latency
Main Memory latency 160 cycles
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Figure 1: Power delivery network model of the Pentium 4.
sumed every cycle, but the combinational logic power varies accord-
ing to activity [3]. We compare the results of this model with that of
the typically-used CC3 clock gating model. Our modified version of
Wattch tracks power dissipation (and thus current delivery) in all mi-
croprocessor units on a cycle-by-cycle basis, and calculates noise using
a power delivery model based on that of the Pentium 4 microprocessor
at 1.5 GHz [7]. The model, shown in Figure 1, includes the induc-
tance and resistance in the power delivery system as well as both high
frequency ceramic and low frequency bulk decoupling capacitances.
It accounts for on chip decoupling and capacitor parasitics: the ESR
(effective series resistance) and ESL (effective series inductance) of
the typical industrial capacitors used in such a network. It also mod-
els the effective resistance and inductance of the board and package
wires. The resonance frequency of the network is 68MHz, or roughly
22 processor clock cycles at 1.5GHz. The simulator tracks activities
at fine granularity and outputs dynamic statistics for relating perfor-
mance, power, and inductive noise to microarchitectural behavior.

We assume that the system is required to guarantee that no voltage
variations higher or lower than 5% of the assumed 1.2V power supply
voltage can occur. We constructed a variety of multi-threaded work-
loads from the SPEC2000 benchmarks, in order to generate a wide
range of noise scenarios that would commonly occur in a real machine.
This permits us to observe general trends and to study how microarchi-
tectural events lead to high inductive noise as the number of threads is
varied.

The workload mixes that we create for this purpose are shown in
Table 2. We use the reference set for each benchmark and run each
simulation for 100 million cycles after fast-forwarding each benchmark
past the initialization phase (as identified in [12]).

The performance and energy of these workloads are given in Fig-
ure 2. For the rest of this paper, performance and energy results will be
given relative to the data in this figure.

4. SMT INDUCTIVE NOISE ANALYSIS
In this section, we use our toolset to examine inductive noise in SMT

processors. We maintain a constant power delivery model (the Pen-
tium 4 model described in the prior section) as we vary the number



Table 2: Workload mixes.
One thread Two threads Four threads Eight threads

# Benchmark # Benchmark # Benchmark # Benchmark

1 applu 1 applu, art 1 applu, art, equake, lucas 1 galgel, swim, mgrid, mesa, applu, art, equake, lucas
2 art 2 equake, lucas 2 gcc, mcf, perlbmk, parser 2 twolf, bzip2, gzip, vpr, gcc, mcf, perlbmk, parser
3 bzip2 3 galgel, swim 3 galgel, swim, mgrid, mesa 3 galgel, parser, lucas, twolf, equake, bzip2, applu, vpr
4 gcc 4 mgrid, mesa 4 twolf, bzip2, gzip, vpr 4 mgrid, mcf, equake, bzip2, applu, vpr, art, gzip
5 equake 5 galgel, applu 5 applu, vpr, art, gzip 5 galgel, twolf, lucas, parser, equake, perlbmk, applu, cc1
6 galgel 6 mesa, lucas 6 equake, bzip2, applu, vpr 6 mgrid, gzip, equake, perlbmk, applu, cc1, art, mcf
7 gzip 7 mgrid, equake 7 galgel, parser, lucas, twolf 7 applu, art, equake, lucas, twolf, bzip2, gzip, vpr
8 lucas 8 swim, art 8 mgrid, mcf, equake, bzip2 8 galgel, swim, mgrid, mesa, cc1, mcf, perlbmk, parser
9 mcf 9 galgel, twolf 9 galgel, applu, swim, art 9 galgel, applu, swim, art, gzip, perlbmk, vpr, parser
10 mesa 10 mesa, vpr 10 gzip, perlbmk, vpr, parser 10 mgrid, equake, mesa, lucas, twolf, cc1, bzip2, mcf
11 mgrid 11 mgrid, gzip 11 mgrid, equake, mesa, lucas 11 applu, art, equake, lucas, cc1, mcf, perlbmk, parser
12 parser 12 swim, bzip2 12 twolf, gcc, bzip2, mcf 12 galgel, swim, mgrid, mesa, twolf, bzip2, gzip, vpr
13 perlbmk 13 bzip2, mcf 13 applu, cc1, art, mcf 13 galgel, parser, lucas, twolf, applu, vpr, art, gzip
14 swim 14 gzip, perlbmk 14 equake, perlbmk, applu, cc1 14 galgel, applu, swim, art, twolf, cc1, bzip2, mcf
15 twolf 15 twolf, gcc 15 mgrid, gzip, equake, perlbmk 15 mgrid, equake, mesa, lucas, gzip, perlbmk, vpr, parser
16 vpr 16 vpr, parser 16 galgel, applu, twolf, cc1 16 galgel, twolf, lucas, parser, applu, cc1, art, mcf
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Figure 2: Instructions Per Cycle (top) and Energy Per Instruction
(bottom) of the baseline configurations of Table 1 for the work-
loads in Table 2. The IPC breakdown shows the individual thread
contributions to the overall workload IPC.

of threads. This serves to demonstrate how the magnitude of induc-
tive noise, as well as the frequency of high noise situations, grows in
general with the number of threads.

We first show general trends as the number of threads supported by
the processor is increased. Figure 3 shows histograms of power dis-
sipation and supply voltage noise (actual voltage value minus 1.2V)
for one, two, four, and eight threaded machines, accumulated over all
of our workloads, with resources scaled appropriately as described in
Section 3 to match the number of threads. These plots show the num-
ber of occurrences of a given power or noise value during simulation
with and without clock gating. The absence of clock gating results in
a greater average power dissipation as shown by the power graphs for
no clock gating being shifted to the right of that with clock gating in
all four plots. Due to the resistance in the power delivery network,
this results in greater undershoots as indicated by the noise plot for no
clock gating being shifted to the left. This difference becomes more
pronounced as the number of threads, and thus the power dissipation,
is increased. However, we note that this resistive supply noise is small
relative to the added inductive noise of clock gating.

As the number of threads is increased, more processor resources are
needed and utilized, and thus the maximum power increases. The min-
imum power increases as well, but to a lesser extent, as the increase is
largely due to static power, while both static and dynamic power con-
tribute to the increase in maximum power. This greater power distribu-
tion variation results in greater supply noise as the number of threads is
increased. For the case of clock gating, the noise almost doubles with
an eight-threaded machine compared to one with two threads.

We now demonstrate the differences in high noise scenarios in single
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Figure 3: Histograms of power and noise for clock gating, and no
clock gating, with 1, 2, 4, and 8 threads.
versus multi-threaded machines through our simulation tool, which we
use to capture microarchitectural events that occur near high noise oc-
currences. Figure 4 shows a single-threaded example, the highest noise
occurrence for twolf within the simulated window. Microarchitectural
events such as the occurrence of cache accesses and misses (IL1 Ac-
cess, DL1 Miss, DL2 Miss), register files becoming full, buffer occu-
pancies, and issued, completed, and committed instructions, as well
as current levels and voltage noise, are shown for the case of clock
gating. This figure illustrates the primary cause of high noise in single-
threaded machines: a microarchitectural event, in this case an L1 data
cache miss, that causes a large drop in current, followed by a large in-
crease in current, occurring repeatedly at resonance. The first series of
L1 Dcache misses in this example occurs at a faster rate than the res-
onance frequency, while the second series occurs almost precisely at
resonance. The resulting current oscillation from this second series of
misses results in high supply noise. We have observed that a series of
properly spaced L1 Icache misses or branch mispredictions can cause
a similar situation. As is noted in [11], variation in issue rate at res-
onance is a good indicator of a high noise situation, and we see this
correlation in this figure.

As the number of threads increases, the likelihood that a series of L1
cache misses or branch mispredicts will result in high noise decreases.
With only two threads, certainly one thread may stall for a long period
of time, for instance due to an L2 cache miss, while the other exhibits
the periodic behavior such as that shown in Figure 4. However, with
more running threads, other threads are likely to occupy the machine
when these series of events occurs with a given thread, preventing the
wide current swings that cause high noise levels in the single-threaded
case. Although it is certainly conceivable to construct an L1 miss sce-
nario where high noise can occur with this many threads, the key point
is that the probability of such events, and thus the frequency in which
intervention must occur, is drastically reduced. Such relatively short
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Figure 4: Dynamic execution of twolf showing the maximum noise
scenario within a 330 cycle window.
latency events become less likely to result in a high noise situation as
the number of threads increases.

Using our tool, we have discovered that the main reason for high
noise with many threads is due to the hoarding of processor resources
by one or a few threads, with periodic release of a subset of these
resources, resulting in bursts of activity at resonance. This hoarding
occurs when a non-blocking event causes a thread to fetch and exe-
cute a large number of instructions yet the event must complete before
these instructions can be committed, thereby causing the thread to tie
up many machine registers and issue queue slots. Events such as L1
cache misses that hit in the L2 cache are serviced fast enough to prevent
significant resource hoarding from occurring. L2 cache misses, on the
other hand, are long enough to cause this phenomena. Karkanis and
Smith observed that the SPEC2000 integer benchmarks can continue
to execute far beyond an L2 cache miss, so far as to fill the (single-
threaded) machine resources [9]. Figure 5 shows one example of this
resource hoarding with four threads and periodic freeing of a subset of
resources as the result of a series of L2 cache misses. The different
colors in the graphs show the resource occupancies and events for dif-
ferent threads. Two of the threads in this example experience L2 cache
misses and find enough independent instructions to eventually accu-
mulate most of the machine resources. As the data from cache misses
returns, some of the machine resources are freed as dependent instruc-
tions execute. This permits dispatch of new instructions from the other
threads and their subsequent execution until the point where the re-
sources are once again fully consumed. These bursts of high activity
occur periodically as L2 misses are returned (or as other resources are
freed by other delayed instructions), resulting in high noise levels if
these bursts occur at resonance (as in this figure). Note that issue rate
variations remain a good indicator of high noise events.

To address this issue, we make the key observation that the multi-
ple threads of a machine can be exploited to smooth out current flow.
Other threads at times will naturally take up the slack in an L2 miss
situation thereby avoiding high current fluctuations and the need for
intervention or damping. In a similar fashion, resource hoarding can
be proactively avoided in an SMT machine through intelligent thread
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Figure 5: Dynamic execution of a four-threaded workload showing
the maximum noise scenario.
management policies. It is this same consistent balance of resource al-
location among threads that is sought in an SMT processor to achieve
good performance and energy efficiency that can be exploited to reduce
the probability of the occurrence of high inductive noise. With inter-
vention or damping in place as a backup safeguard, a guaranteed noise
limit can be achieved with little performance and power overhead.

5. THREAD MANAGEMENT POLICIES FOR
REDUCING HIGH NOISE EVENTS

Fortunately, this “thread resource hoarding” behavior has been pre-
viously identified as a source of performance loss and energy ineffi-
ciency in SMT processors. In terms of the former, Tullsen and Brown [15]
propose a scheme in which fetching is blocked from threads with an
L2 cache miss and instructions from that thread following the miss are
flushed from the machine. This frees up resources for other threads
to make forward progress. Although proposed purely for performance
reasons, this flushing scheme is designed to prevent thread resource
hoarding and thus has the potential to reduce the frequency of high
noise situations.

Similarly, El-Moursy and Albonesi [4] propose schemes for reduc-
ing the energy dissipation of the issue queues in SMT processors. The
idea is to prevent the queues from being filled with instructions that
are likely to sit idle in the queue for a long time by gating fetching
from those threads under particular circumstances. However, because
this approach focuses on shorter latency events that are not the pri-
mary cause of high noise with many threads, we chose to implement
the flushing scheme.

We experimented with three different flushing approaches [15]. In
each, instructions are flushed from a thread whenever it experiences
a single L2 cache miss. No further instructions are fetched from the
thread until the data returns. In the simplest implementation, all in-
structions in the ROB that follow the load that misses (and are from
the same thread) are flushed from the pipeline. We chose this approach
as it provides the best performance and was effective in reducing re-
source hoarding.

Because flushing only serves to reduce the frequency of high noise
without guaranteeing a particular noise bound, a technique like inter-



vention or damping must be in place as a safeguard. Although either
can be used, we chose to implement damping in the results presented
in the next section.
6. RESULTS

In this section, we compare the costs of various damping techniques
with and without flushing compared to a baseline processor without
such safeguards. With damping, it is necessary to maintain a limit on
the amount of current variation that can occur between two points at
half the resonance period [11]. If a larger than permissible current
drop is to occur, dummy instructions are fired to limit the drop. In our
implementation, we fire enough of these instructions to make up the
current drop in the following priority order: floating point multiply, in-
teger ALU, loads from L1 Dcache, and floating point ALU operations.
These instructions consume power without altering the processor sta-
tus. Similarly, if a larger than permissible current rise is to occur upon
an instruction commit or issue, we gate instruction commit to the extent
possible and also instruction issue if necessary. More details on damp-
ing can be found in [11]. Unlike the original approach, which fires the
front end all the time, we permit clock gating as usual in the front end.
Unlike single threaded machines, SMT processors have higher fetch
power, and therefore forcing the front-end to be fully operational all
the time becomes an expensive solution to the noise problem.

The amount of permissible current variation with damping is a trade-
off between the effectiveness in reducing noise and the performance
and power overheads incurred. The smaller the permissible range, the
less noise that is incurred but at greater performance and power over-
heads. As the best implementation is a function of the current range
and thus the number of threads, we implemented several versions of
damping with permissible current ranges of 2, 3, 4, 6, and 8 amps.
These are referred to as the SXX configuration where XX represents the
number of 100mA units in the permissible current range. We exam-
ined the effect of damping alone and when coupled with flushing as
the number of threads is varied. For each option, we determined to
what degree the maximum noise is reduced and the performance and
power overheads.

Figure 6 shows the degree of reduction in the maximum noise under-
shoots and overshoots for the baseline configurations and with damp-
ing. For the baseline machine, the maximum noise undershoot in-
creases by a factor of 2.2 for four threads, and by 3.3 for eight threads
relative to the single threaded configuration. The undershoot noise is
higher than the overshoot noise due to the resistive noise. This is ex-
acerbated in larger machine configurations due to their larger current
levels. As shown in this figure, the more tight the permissible damp-
ing current limit, the lower the noise level. This however comes, as we
will present later, at both a performance and power cost. While tighten-
ing the allowed current limit up to 2 Amperes (S20) is effective in the
single threaded configuration, most of the noise limiting gains in SMT
processors are obtained by the 4 Amperes (S40) limit and above. These
results demonstrate that architectural level techniques like damping can
complement circuit level approaches to reduce overall design cost. The
results show a reduction in the maximum noise of more than a half.
This permits a less costly power delivery network to be used.

Damping combined with flushing achieves this goal at a lower en-
ergy and performance cost, and yet maintains the same noise levels
obtained by damping alone. Part of the reason for this lower perfor-
mance and energy cost is illustrated in Figure 7, which compares the
power and energy histograms for the baseline and with flushing for the
case of clock gating. With four and especially with eight threads, there
are far fewer high noise occurrences with the use of flushing. (In fact,
with eight threads, flushing even reduces the maximum over and un-
dershoot values for our workloads.) The implication is that damping
needs to be engaged less often with the use of flushing.

However, Table 3 shows that in practice, this is only partially true.
This table shows the percentage of cycles in which the different damp-
ing schemes (with and without flushing) limit commit/issue to bound

the current increase. Also shown is the percent reduction in these activ-
ities with the addition of flushing. As the number of threads increases,
so does the amount of limit commit/issue activity. The impact is par-
ticularly pronounced for schemes with a less restrictive current limit.
Less restrictive current limits cause intervention only when the proces-
sor switches between idle (because of resource hoarding, for example)
and busy states. In all cases, flushing dramatically reduces the amount
of this type of damping activity.

However, this table also shows that while flushing prevents resource
hoarding by one or more threads, in doing so, it suddenly removes
many instructions from the processor and hence causes a drop in the
processor activity. When this drop exceeds the permissible current
limit, firing occurs. With two threads the probability of exceeding
the permissible current limit increases, causing a 19% increase in fir-
ing intervention cycles, and about a 25% increase in the firing power.
The actual firing power, however, is very small; on average, the fir-
ing power for S40, S60, and S80 are 10, 50, and 150 mW, respectively.
With more threads, the probability of falling below the permissible cur-
rent limit because of flushing decreases, due to the fact that while one
thread is being flushed many more threads are still active. Damping
S60 and Damping S80 reduce firing incidents for four threads by 30%
and 54%, respectively, and reduce the firing power by 29% and 52%,
respectively. The tighter current limit of Damping S40 causes firing
power to decrease by only 1% with four threads. For the eight thread
configuration, the current variation permissible limit is too small caus-
ing an increase in firing power incidents for all three damping schemes.
The increase is lower with less tight current limits, however.

Nevertheless, the firing penalty is smaller than the energy savings
from flushing due to more efficient resource usage. Figures 8 and 9
compare the relative weighted performance improvement [15] and en-
ergy per instruction (EPI) of the various schemes relative to the base-
line machine with no damping or flushing. Damping effectively re-
duces maximum noise levels with a modest overhead for a small num-
ber of threads. For example, S40 lowers noise levels significantly with
a 0.6% performance penalty for a single thread, and a 2.4% perfor-
mance overhead with four threads. The energy overheads are similarly
modest. With eight threads, the performance and energy costs of S40
increase to 5% and 10%, respectively, and noise levels are reduced by
about 40% compared to the baseline. S80 provides more tolerable per-
formance and energy overheads for eight threads but at the cost of a
15% increase in the noise levels compared to S40.

When flushing is added to S40 with four and eight threads, perfor-
mance improves by 13% and 5%, energy per instruction is reduced by
and 14% and 9%, and noise levels are still within those achieved by
damping. For four threads, adding S40 to the baseline reduces perfor-
mance by an average of 2.4% and a maximum of 8.5%. When S40 is
added to a baseline that uses flushing, the average and maximum per-
formance degrades by only 1.1% and 2.3% respectively. Average and
maximum energy do increase, but by a lesser amount: from 0.5% and
1.2% without flushing, to 1% and 1.9% with flushing. The fact that
the maximum noise levels are reduced with flushing for eight threads
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Figure 6: Maximum noise overshoots and undershoots for the
baseline and with damping with varying number of threads and
with damping factor.



Table 3: Percentage of cycles in which damping limits commit/issue and fires units averaged over all the workload mixes for a given
configuration. Also shown is the reduction in these events with the addition of flushing.

Configuration # Threads Limit Commit/Issue Firing Incidents Firing Power per Cycle (W)

No Flushing With Flushing Reduction No Flushing With Flushing Reduction No Flushing With Flushing Reduction

Damping S40 1 1.4% – – 1.1% – – 0.04 – –
2 5.6% 4.9% 12% 2.4% 2.8% -19% 0.12 0.15 -25%
4 5.3% 3.3% 38% 3.0% 2.9% 2% 0.16 0.16 1%
8 13.3% 11.2% 15% 15.5% 16.8% -8% 1.63 1.79 -10%

Damping S60 1 0.3% – – 0.2% – – 0.01 – –
2 2.2% 1.7% 24% 0.7% 0.9% -22% 0.04 0.05 -31%
4 2.2% 1.0% 54% 0.8% 0.6% 30% 0.04 0.03 29%
8 6.4% 4.9% 24% 6.5% 6.8% -4% 0.58 0.60 -4%

Damping S80 1 0.0% – – 0.0% – – 0.00 – –
2 0.9% 0.5% 43% 0.2% 0.3% -28% 0.01 0.01 -35%
4 1.0% 0.3% 73% 0.3% 0.1% 54% 0.01 0.01 52%
8 3.5% 2.5% 31% 2.3% 2.2% 6% 0.19 0.17 9%
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Figure 7: Histograms of power and noise with clock gating for
baseline and with flushing.
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Figure 8: Relative performance of damping only and with flush-
ing averaged over the workload mixes. For a given number of
threads, performance is relative to the baseline with that number
of threads.
indicates that it has mitigated most of the highest noise events found in
our workload mixes, and that these are indeed due to resource hoarding
as described in Section 4.

In summary, these results demonstrate how the multiple threads in
an SMT machine provide the means to even out current flow in the
presence of a potential high noise scenario. While we have shown that
this may not always occur naturally, the use of proactive thread man-
agement techniques (such as flushing) can be used to mitigate these
noise occurrences. With a complementary failsafe mechanism such as
damping in place, along with an appropriate power delivery network,
safe noise levels can be guaranteed with a large number of threads with-
out compromising performance or energy.

7. CONCLUSIONS AND FUTURE WORK
Due to increasing current swings and the relationship between the

operating frequency of the microprocessor and the resonance frequency
of the power delivery system, inductive noise has become a major
concern for microprocessor developers. Through a detailed modeling
methodology, we have shown how SMT processors exacerbate induc-
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Figure 9: Relative EPI of damping only and with flushing.

tive noise in ways that make current microarchitectural level techniques
ineffective without more expensive electrical solutions or additional
control. We make the observation that intelligent thread management
can be used to provide this additional control. In particular, we use
a previously developed performance technique to prevent L2 cache
misses from one or more threads from hoarding machine resources and
then periodically releasing a subset, a scenario that results in bursts of
activity at resonance. With this approach applied to an SMT proces-
sor with damping, performance improves, energy per instruction is re-
duced, and noise is reduced to acceptable levels with a less expensive
power delivery network.
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