
Localized Microarchitecture-Level Voltage
Management

YongKang Zhu
Department of Electrical and Computer Engineering

University of Rochester
Rochester, NY 14627, USA

Email: yozhu@ece.rochester.edu

David H. Albonesi
Computer System Laboratory

Cornell University
Ithaca, NY 14853, USA

Email: albonesi@csl.cornell.edu

Abstract— Diminishing voltage margins, coupled with power
and temperature constraints, call for microarchitecture-level
runtime mechanisms for voltage control. This paper describes
a localized approach for dynamic voltage management within
the domains of a Globally Asynchronous, Locally Synchronous
(GALS) processor design. Dynamic Voltage Scaling at this fine
grain level permits effective temperature management with less
performance impact than global voltage control.

I. INTRODUCTION

For CMOS circuit timing margins to be met, temperature
must be controlled within specified limits. In recent years,
microarchitecture techniques for Dynamic Temperature Man-
agement (DTM) have been proposed for maintaining suitable
operating temperatures with reduced packaging costs [1]. The
premise of this approach is that only a tiny fraction of all
applications produce thermal violations; therefore, a lower cost
package can be employed, so long as the hardware can detect
a potential thermal violation at runtime and react accordingly,
for instance, through Dynamic Voltage Scaling (DVS).

Although DVS is generally the most effective thermal man-
agement response, it has the disadvantage of impacting global
microprocessor performance due the global reduction in clock
frequency, even if the thermal emergency is isolated to a small
region of the die (such as the integer region). Table I shows
the thermal characteristics of the SPEC2000 programs used in
this paper. The simulation parameters, which are presented in
Section III, were chosen to reflect the increased power density
in future process generations, due to the slow scaling of supply
voltage relative the transistor dimensions. One observation
from this table is that the units in the front-end part of the
processor are never among the hottest; therefore, there is
little need to ever throttle performance in that domain for
temperature purposes. Note also that the hottest units are
located within at most two of the regions of the die (integer,
floating point, or load-store).

These results indicate that a localized response to temper-
ature emergencies may be effective in maintaining acceptable
temperature levels while maintaining global performance. One
such approach, localized throttling of the clock within the
region of interest, was previously proposed [2]. However, this
approach only impacts frequency, and therefore is often too
gentle in addressing severe thermal emergencies [2]. Such

TABLE I

THERMAL CHARACTERISTICS OF A FULLY SYNCHRONOUS

MICROPROCESSOR WITHOUT ANY DTM CONTROL FOR SPEC 2000

INTEGER (TOP) AND FLOATING POINT (BOTTOM) PROGRAMS. THE

HOTTEST UNITS ARE THE INTEGER ISSUE QUEUE (INTQ), REGISTER FILE

(IREG), AND EXECUTION UNIT (IEXEC); FLOATING POINT REGISTER FILE

(FREG), ADDER (FADD), AND MULTIPLIER (FMUL); AND THE

LOAD-STORE QUEUE (LSQ).

max temp (degrees C) 3 hottest units
crafty 92.4 iExec, IntQ, iReg
eon 98.0 fAdd, fReg, LSQ
gzip 90.2 iExec, IntQ, iReg
mesa 92.8 fAdd, fReg, IntQ

equake 96.5 iExec, IntQ, iReg
facerec 89.6 fAdd, fReg, fMul
fma3d 91.7 iExec, iReg, IntQ
galgel 125.6 fMul, fAdd, fReg

severe thermal problems are expected to arise more often in
the future with higher power densities and the continuing need
for cost-effective and low profile chip packaging.

In this paper, localized DVS-based DTM is proposed via a
Globally Asynchronous, Locally Synchronous microprocessor
called MCD [3]. In MCD, the major microprocessor functions
are located in separate clock/voltage domains. The advantage
of this approach, in terms of DTM, is that a localized response
can be made to the particular unit which is overheating at any
given point of execution. This permits other domains to main-
tain full speed operation, leading to less performance overhead
compared to a fully synchronous processor with DVS-based
DTM. The performance cost is inter-domain synchronization.
This added cost is shown to be offset by the lower performance
overhead afforded by localized DVS control.

II. DVS-BASED DTM ALGORITHM

Due to the cubic relationship between dynamic power
consumption and operating frequency, DVS has been shown
to be highly effective in reducing chip power consumption.
However, transitioning voltage and frequency is slow, which
makes it difficult to determine the right voltage and frequency
values for the future based on knowledge of current and
previous thermal behavior.



STOPSCALE_UP

STOPSCALE_DN

Temp > T_trigger
Temp <= T_trigger

Temp >= T_trigger − MinDistance

Temp < T_trigger − MinDistance

Adjust T_trigger

THERMAL  EMERGENCY

THERMAL  SAFE  ZONE

Temp stops increasing

Temp resumes increasing

Fig. 1. DTM algorithm.

Control theory based schemes have been proposed to ad-
dress this issue [2], yet their effectiveness is highly dependent
on how well the controlled system is modeled and then lin-
earized. Usually the transfer function of the controlled system
varies when running different benchmarks or different phases
of one benchmark, which makes it difficult to find a good
set of controller parameters for a wide range of applications.
Stability analysis shows how well the pre-specified target is
being followed, but will not necessarily catch any non steady
state characteristics of the system, for system behavior at the
initial period. Finally, such DTM algorithms cannot guarantee
that temperature will not exceed the thermal limit due to the
variety of system response characteristics. Therefore, a fail-
safe backup scheme is required.

The proposed DTM algorithm, shown in Figure 1, does
not specify any target voltage. Rather, it samples temperature
values at a fine enough granularity to catch small changes,
assuming next generation thermal sensor technology. To pre-
vent exceeding the thermal limit, a trigger temperature is
specified for engaging DVS. Since the thermal behavior and
characteristics of every unit is different at different (thermal)
phases of execution, a single trigger temperature does not work
optimally in all cases. Therefore, the algorithm sets the trigger
temperature to an initial value and then dynamically changes
it based on previous thermal behavior. For a fully synchronous
machine, one trigger temperature is used for all units; for an
MCD machine, each domain has one trigger temperature for
all the units in that domain. In both cases, thermal sensors are
assumed for all of the hotspot units.

Each domain is initially in a thermal safe zone (Figure 1).
When any monitored unit temperature exceeds the trigger
temperature, the domain enters the thermal emergency zone
and the voltage and frequency are reduced at a constant speed.
This continues until the maximum temperature is observed
to stop increasing and is below the hard limit. As in Intel’s
XScale processor [4], all circuits operate during the period
of voltage and frequency transition. After the scaling down
process is terminated the temperature either remains between
the trigger temperature and the hard limit; resumes increasing
sometime later, in which case DVS resumes; or gradually

decreases below the trigger temperature and enters the safe
zone.

The trigger temperature is adjusted when the thermal safe
zone is entered after an emergency. During the emergency
period, a special register records the maximum temperature
reached by any unit in that domain. If the value in this register
is larger than the hard limit, the trigger temperature is set
too high and needs to be lowered; if it is smaller, the trig-
ger temperature can be potentially increased. The difference
between the maximum temperature in an emergency and the
hard thermal limit is calculated, and the trigger temperature is
then adjusted in either direction by this difference. Increasing
the thermal temperature may be risky in terms of absolute safe
temperature control, since there should be some temperature
buffer. This is handled by requiring a minimum separation
(0.5 degrees in the algorithm) between the trigger temperature
and the hard limit, and forcing the upper limit of the trigger
temperature to be lowered dynamically; in this paper, the limit
is lowered by 0.5 degrees for every three thermal violations.

If after returning to the safe zone the temperature still
decreases, the voltage is increased until the temperature is
close to the trigger temperature. This minimum temperature
distance (called MinDistance) must be carefully chosen. If
the value is too small, the temperature may oscillate around
the trigger thus incurring an alternating scaling down and up
process. Too large a value increases stability, but may degrade
performance. While dynamic adjustment of the minimum
distance is possible, a static value is used in the algorithm.

The last parameter is the voltage transition speed. In the
proposed algorithm, the scaling up process occurs at the
fastest practical speed, while scaling down occurs at a slower
rate. This reduces the chances that a scaling down process
results in a subsequent need to scale up, thereby incurring
less oscillation and potentially benefiting performance.

III. EVALUATION METHODOLOGY

The evaluation methodology is based on the SimpleScalar
and Wattch toolkits [5], [6] and the HotSpot temperature mod-
eling tool [1]. The microarchitecture and temperature modeling
parameters are shown in Tables II and III. Temperature sensors
are placed at all relevant units and assumed to have an accuracy
of 0.5 degrees Celsius.

Of the SPEC2000 benchmark programs, the eight with the
most severe thermal problems were chosen; the remaining
benchmarks generated no or very few thermal emergencies.
Each benchmark was fast-forwarded 2 billion instructions,
followed by the warm up of various structures (like branch
predictor and caches) for 100 million instructions, and then the
warm up of different chip units to reach representative tem-
perature values, for another 200 million instructions. Statistics
were then gathered for the next 300 million instructions.

For each result with each benchmark, three simulation
runs were conducted, with each run taking the steady state
temperatures from the previous run as the initial temperatures,
except for the first run which set the initial temperature at
80 degrees Celsius and operated without any DTM control.



TABLE II

ALPHA 21264–LIKE ARCHITECTURAL PARAMETERS.

Configuration Parameter Value
Branch predictor:

Level 1 1024 entries, history 10
Level 2 1024 entries
Bimodal predictor size 1024
Combining predictor size 4096
BTB 4096 sets, 2–way

Branch Mispredict Penalty 7
Decode/Issue/Retire Width 4/6/11
L1 Data Cache 64KB, 2–way set associative
L1 Instruction Cache 64KB, 2–way set associative
L2 Unified Cache 1MB, direct mapped
L1 cache latency 2 cycles
L2 cache latency 12 cycles
Integer ALUs 4 + 1 mult/div unit
Floating–Point ALUs 2 + 1 mult/div/sqrt unit
INT Issue Queue Size 20 entries
FP Issue Queue Size 15 entries
Load/Store Queue Size 64
Physical Register File Size 72 integer, 72 floating–point
Reorder Buffer Size 80

TABLE III

TEMPERATURE MODELING AND THERMAL MANAGEMENT PARAMETERS.

Temperature sampling interval 10000 cycles of a 3GHz clock
Thermal threshold 85 Degree (Celsius)
Nominal frequency 3.0 GHz
Nominal voltage 1.4 Volt
Ambient air temperature 45 Degree (Celsius)
Convection thermal resistance 0.8 K/W
Convection thermal capacitance 140.4 J/K
Die 0.5 mm thick
Heat spreader 1.0 mm thick, 3 cm � 3 cm
Heat sink 6.9 mm thick, 6 cm � 6 cm

For runs with DTM control, initial temperatures were clipped
based on the pre-specified hard limit, which is set at 85 degrees
Celsius. The maximum voltage is 1.4V and the frequency
range is from 3GHz to 1GHz. The fastest voltage transition
speed is 16.7 mV per �s.

The chip floorplan is shown in Figure 2, while the logical
domain partitioning of the MCD processor (proposed in [7])
is shown in Figure 3. The integer and memory domains
are merged to remove those most performance critical inter-
domain channels. The unified L2 cache is in its own domain
and always operates at half frequency (1.5 GHz).

IV. RESULTS

The DVS-based DTM algorithm described in Section II was
applied to both fully synchronous and MCD processors (each
domain independently implementing the algorithm). Figure 4
shows the corresponding performance degradation. Comparing
the bars on the left (fully synchronous microprocessor with
DVS-based DTM) with the maximum temperatures in Table I
shows that for high temperature programs like galgel, eon and
equake, the performance cost is high as well, more than or
almost 10%. The worst performance cost is 27% for galgel,
which is the program that has the highest temperature. For
lower temperature programs such as facerec and gzip, the
performance cost is also small.

fMul

fReg

fAdd

fMap

L2_B

L2_RL2_L Bpred

DcacheIcache

iReg

LSQ

IntQ

iTLB

iExec

dTLB

FpQ

iMap

Fig. 2. Alpha21364 like floorplan showing the different MCD domains.

L1 I−Cache

Fetch Unit

Rename & Dispatch

Front End

FP Issue Queue

FP ALUs & RF

Floating−Point

Int Issue Queue

L1 D−CacheInt ALUs & RF

Load Store Queue

Integer & Memory

Reorder Buffer
L2 Cache

Main Mem

External

Fig. 3. MCD processor with logical domain partitions.

The performance cost of localized DVS within MCD (rela-
tive to the baseline MCD performance) is on average less than
that of global DVS (relative to the performance of the fully
synchronous processor) and significantly so, for some bench-
marks. Since domains in an MCD processor are independent,
the performance impact of DVS is largely confined within the
domain where the hot spots are located. Maintaining full speed
operation in other domains is especially important when one
or all of the other domains are very performance critical. If
there is execution slack in the hot spot domain when DVS is
applied, then the performance loss is further reduced.

The difference in performance cost between localized DTM
on MCD and global DTM is particularly striking for galgel,
the program with the most severe thermal problem. As shown
in Figure 5, for the MCD DVS-DTM case, only the floating
point domain frequency is reduced, as the other two domains
do not contain hot spots. For Global DVS-DTM, all three
domain frequencies must be reduced by the same amount.
This has a huge performance cost for galgel since for this
benchmark, all three domains are performance critical, con-
taining critical paths through the execution dataflow graph.
Therefore, the ability to maintain almost full speed operation
in two of the three domains through localized DTM in MCD
has a huge performance advantage in programs like galgel.



0%

5%

10%

15%

20%

25%

30%

cr
af

ty

eo
n

g
zi

p

m
es

a

eq
u

ak
e

fa
ce

re
c

fm
a3

d

g
al

g
el

av
er

ag
e

P
er

fo
rm

an
ce

 O
ve

rh
ea

d

Global DVS-DTM

baseline MCD

MCD DVS-DTM

Fig. 4. Performance degradation relative to a fully synchronous machine
without any DTM control. The bar in the middle shows the performance
degradation of MCD without any DTM control.

 0.5
 1

 1.5
 2

 2.5
 3

 3.5

 0  20  40  60  80  100  120

Fr
eq

ue
nc

y 
(G

H
z)

(msec)

Global DVS-DTM

front-end
int+mem

fp
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 0  20  40  60  80  100  120

Fr
eq

ue
nc

y 
(G

H
z)

(msec)

MCD DVS-DTM

front-end
int+mem

fp

Fig. 5. Frequency profiles for galgel, on the left for a fully synchronous
machine (all curves overlap), and on the right for MCD.

An advantage of global DVS is the cooling of neighboring
units results in better heat removal from the hot spot due
to a steeper temperature gradient; therefore, the voltage does
not have to be lowered as much in the affected domain as
in the MCD case, as seen for the floating point domain in
galgel (Figure 5). However, this factor did not have as large
a performance impact as the ability to maintain high speed
operation of the front-end and integer/memory domains.

Figure 6 shows the temperature profiles without and with
DTM control, for galgel, eon, equake, and mesa, which are the
four benchmarks that have the most severe thermal problems.
The temperature is effectively maintained below the thermal
limit. There are at most only two cases at the very beginning of
the simulations (at the beginning of the second warm-up phase
and before the mechanisms are able to fully react) where the
limit is exceeded by less than 0.05 degrees. The only exception
is facerec, which is the only program where the upper limit of
the trigger temperature is lowered three times (nine thermal
violations) at the early time of the second warm-up phase
and then no extra thermal violation occurs. Such rare, mild
violations are unlikely to result in operation problems due to
timing violations or lifetime reliability.

V. SUMMARY

While localized dynamic temperature management has the
potential for maintaining safe operational temperatures with
less peformance overhead, doing so is problematic within
a full synchronous processor. This paper proposes localized
DTM within the domains of a GALS microprocessor. The
performance overhead is considerably less for MCD versus

 50
 55
 60
 65
 70
 75
 80
 85
 90
 95

 100
 105
 110
 115
 120
 125
 130

 0  20  40  60  80  100  120

T
em

pe
ra

tu
re

 (
C

el
si

us
)

(msec)

fMul
fAdd
fReg
FpQ
IntQ
LSQ

iExec
iReg
iMap
iTLB
dTLB
Bpred
fMap

Dcache
Icache
L2_L
L2_R
L2_B

 50
 55
 60
 65
 70
 75
 80
 85
 90
 95

 100
 105
 110
 115
 120
 125
 130

 0  20  40  60  80  100  120

T
em

pe
ra

tu
re

 (
C

el
si

us
)

(msec)

fMul
iExec
IntQ
LSQ
iReg
fAdd
fReg
FpQ

iTLB
iMap

dTLB
Bpred
fMap

Dcache
Icache
L2_R
L2_L
L2_B

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

 0  20  40  60  80  100  120

T
em

pe
ra

tu
re

 (
C

el
si

us
)

(msec)

fAdd
fReg
LSQ
IntQ
fMul

iExec
FpQ
iReg

iTLB
iMap

dTLB
Bpred

Dcache
fMap

Icache
L2_R
L2_L
L2_B

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

 0  20  40  60  80  100  120

T
em

pe
ra

tu
re

 (
C

el
si

us
)

(msec)

LSQ
fAdd
iExec
IntQ
iReg
fReg
FpQ
fMul
iTLB
iMap

dTLB
Bpred

Dcache
fMap

Icache
L2_R
L2_L
L2_B

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

 0  20  40  60  80  100

T
em

pe
ra

tu
re

 (
C

el
si

us
)

(msec)

iExec
IntQ
LSQ
iReg
FpQ

fAdd
iTLB
fReg
fMul
iMap

dTLB
Bpred

Dcache
fMap

Icache
L2_R
L2_L
L2_B

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

 0  20  40  60  80  100

T
em

pe
ra

tu
re

 (
C

el
si

us
)

(msec)

iExec
IntQ
LSQ
iReg
fAdd
fReg
FpQ
fMul
iTLB
iMap

dTLB
Bpred
fMap

Icache
Dcache

L2_R
L2_L
L2_B

 55

 60

 65

 70

 75

 80

 85

 90

 95

 0  20  40  60  80  100  120

T
em

pe
ra

tu
re

 (
C

el
si

us
)

(msec)

fAdd
fReg
IntQ
LSQ

iExec
fMul
iReg
FpQ

iTLB
iMap

dTLB
Bpred

Dcache
fMap

Icache
L2_R
L2_L
L2_B

 55

 60

 65

 70

 75

 80

 85

 90

 95

 0  20  40  60  80  100  120

T
em

pe
ra

tu
re

 (
C

el
si

us
)

(msec)

fAdd
IntQ
LSQ

iExec
iReg
fReg
fMul
FpQ

iTLB
iMap

dTLB
Bpred

Dcache
fMap

Icache
L2_R
L2_L
L2_B

Fig. 6. Temperature profiles without (left) and with (right) DTM control,
for galgel, eon, equake and mesa (top to bottom) on an MCD machine.

global DTM, and the difference is particularly striking for
applications in which all domains are performance critical.
With increasing power density levels causing more thermal
violations for the same packaging cost in the future, such
localized techniques will become increasingly necessary to
achieve acceptable performance.

REFERENCES

[1] K. Skadron, M. R. Stan, W. Huang, S. Velusamy, K. Sankaranarayanan,
and D. Tarjan, “Temperature-aware microarchitecture,” in Proceedings of
the 30th International Symposium on Computer Architecture, June 2003.

[2] K. Skadron, T. Abdelzaher, and M. Stan, “Control-theoretic techniques
and thermal-RC modeling for accurate and localized dynamic thermal
management,” in Proceedings of the 8th International Symposium on High
Performance Computer Architecture, February 2002.

[3] G. Semeraro, G. Magklis, R. Balasubramonian, D. H. Albonesi,
S. Dwarkadas, and M. L. Scott, “Energy-efficient processor design using
multiple clock domains with dynamic voltage and frequency scaling,” in
Proceedings of the 8th International Symposium on High Performance
Computer Architecture, February 2002.

[4] L. T. Clark, “Circuit design of XScale microprocessors,” in 2001 Sympo-
sium on VLSI Circuits, Short Course on Physical Design for Low Power
and High Performance Microprocessors, June 2001.

[5] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: A framework for
architectural-level analysis and optimization,” in Proceedings of the 27th
International Symposium on Computer Architecture, June 2000.

[6] D. Burger and T. Austin, “The SimpleScalar tool set, version 2.0,”
Department of Computer Science, University of Wisconsin-Madison,
Technical Report 1342, June 1997.

[7] Y. Zhu, D. H. Albonesi, and A. Buyuktosunoglu, “A high performance,
energy efficient, GALS processor microarchitecture with reduced imple-
mentation complexity,” in Proceedings of the International Symposium
on Performance Analysis of Systems and Software, March 2005.


