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ABSTRACT

Future microprocessors may become so power constrained
that not all transistors will be able to be powered on at once.
These systems will be required to nimbly adapt to changes
in the chip power that is allocated to general-purpose cores
and to specialized accelerators.

This paper presents Flicker, a general-purpose multicore
architecture that dynamically adapts to varying and poten-
tially stringent limits on allocated power. The Flicker core
microarchitecture includes deconfigurable lanes—horizontal
slices through the pipeline-that permit tailoring an indi-
vidual core to the running application with lower overhead
than microarchitecture-level adaptation, and greater flexi-
bility than core-level power gating.

To exploit Flicker’s flexible pipeline architecture, a new
online multicore optimization algorithm combines reduced
sampling techniques, application of response surface models
to online optimization, and heuristic online search. The ap-
proach efficiently finds a near-global-optimum configuration
of lanes without requiring offline training, microarchitecture
state, or foreknowledge of the workload. At high power al-
locations, core-level gating is highly effective, and slightly
outperforms Flicker overall. However, under stringent power
constraints, Flicker significantly outperforms core-level gat-
ing, achieving an average 27% performance improvement.

1. INTRODUCTION

Microprocessors are becoming increasingly heterogeneous
and power constrained. Future microprocessors will likely
consist of a number of general-purpose cores augmented by a
range of accelerators that are tailored to executing particular
types of applications. Moreover, these microprocessors may
become so power constrained that not all transistors will be
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powered on at once (the so-called dark silicon problem [17,
44]), which requires the system to be nimble in terms of
power allocation. During time quanta when few applica-
tions can be mapped to the accelerators, the general-purpose
cores may be allocated full power. At high accelerator usage,
the general-purpose core power allocation may be severely
capped, and the hardware must flexibly adapt to these con-
stantly changing power budgets while ideally maximizing
throughout at each power point. This paper addresses the
problem of optimizing the performance of general-purpose
multicore architectures that must efficiently adapt to vary-
ing, and at times highly stringent, power allocations.

While DVFS is currently used for dynamic power man-
agement, the push to aggressively scale voltages, perhaps
into the near-threshold regime, is rendering DVF'S largely
ineffective. Core-level gating, in which the core voltage do-
main is gated in order to save power, has emerged as a vi-
able alternative to DVFS due to its ease of implementation
and simple control requirements. Each core is placed in a
separate voltage domain that can be gated through the use
of power transistors, and the number of cores that can be
enabled under the given power budget can be easily deter-
mined. However, core-level gating has three major draw-
backs: (1) Its coarse granularity of power control makes it
difficult to precisely match given power requirements; (2) By
uniformly allocating power to the powered on cores, it fails
to adapt the hardware to the characteristics of the workload;
and (3) It requires the operating system scheduler to adapt
to a varying number of available cores.

Microarchitecture adaptation [1] lies at the other end of
the power-gating spectrum. Here, microarchitecture resources
are dynamically adapted at fine-grain within each core in
order to match application requirements, which addresses
the limitations of core-level gating. This approach has been
proven effective in technologies where dynamic power dom-
inates, and therefore simple gating approaches (such as dis-
abling control and clocks to a portion of a resource) can be
readily implemented. However, microarchitecture adapta-
tion is more challenging in current microprocessors that have
a prominent leakage power component and tens of cores.
To address leakage power, potentially dozens of fine-grain
voltage domains must be implemented within each core’s
pipeline. Moreover, with tens of cores, the control algorithm
must determine the combination of dozens of power knobs
on each of tens of cores that maximizes throughput under
the given power budget, a complex task that is difficult to
perform quickly enough (within a few to tens of millisec-
onds) given the short duration of an operating system time
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Figure 1: Operation of (a) core-level gating versus (b) Flicker for two different intervals, the second of which

has a more stringent power constraint.

slice (tens to hundreds of milliseconds).

These drawbacks are addressed using a new approach pro-
posed in this paper that is based on two observations: (1)
Applications vary in the pipeline width that best balances
performance and power consumption; and (2) Often one sec-
tion of the pipeline is out of balance with respect to the oth-
ers, which creates slack in one or more pipeline sections. The
proposed approach, called Flicker, divides each pipeline sec-
tion within each core into deconfigurable lanes—horizontal
slices through the pipeline-that permit tailoring an individ-
ual core to the running application with lower overhead than
microarchitecture adaptation. Each lane in a Flicker core
constitutes an individually controllable power domain. In
all, there are nine power domains within each pipeline-three
within each of the front-end, execute back-end, and memory
sections of the pipeline-requiring six power-gating circuits
(plus three more, if needed, for core-level shutdown), which
is far fewer than microarchitecture adaptation.

Figure 1 compares the operation of core-level gating and
Flicker for an illustrative 16 core system under two operat-
ing intervals with different power allocations. For core-level
gating, a number of cores are entirely shut down depending
on the power constraint. For Flicker, all cores remain oper-
ational, but lanes are power gated within each core depend-
ing on application characteristics. In this manner, Flicker
provides finer grain allocation of power to applications ac-
cording to their need for particular pipeline resources.

Despite its relative simplicity compared to microarchitec-
ture adaptation, a Flicker system with tens of cores presents
a far more challenging global optimization problem than
core-level gating. Given a power budget, the Flicker global
controller must determine the combination of powered lanes
within different cores that maximizes performance, and con-
verge reasonably quickly to limit overhead. To address this
problem, Flicker’s online optimization approach efficiently
finds a near-global-optimum configuration of lanes without
requiring offline training, microarchitecture state, or fore-
knowledge of the workload. Compared with prior approaches,
Flicker’s approach is purely online, and-through reduced
sampling techniques, application of response surface models

to online optimization, and heuristic online search—converges
quickly to a near-optimal solution. Due to its purely online
“black box” approach, the Flicker control algorithm adapts
on-the-fly to different machine microarchitectures and to
machines that run a wide variety of applications.

The rest of this paper is organized as follows. In the next
section, related work is discussed. The Flicker core microar-
chitecture is presented in Section 3 followed by a description
of the runtime control approach in Section 4. The evalua-
tion methodology is discussed in Section 5 and results in
Section 6. The paper concludes in Section 7.

2. RELATED WORK

Related work in microarchitectural approaches to dynamic
power management is first presented, followed by a discus-
sion of global optimization approaches that attempt to de-
termine the hardware configuration that maximizes perfor-
mance given a power constraint.

2.1 Power Efficient Microarchitecture

DVFS is widely used for dynamic power management, and
prior work explores adapting this approach to multicore pro-
cessors. Isci et al. [24] develop the maxBIPS DVFS algo-
rithm for multicore systems. Sharkey et al. [40] extend this
work by exploring both DVF'S and fetch toggling, and design
tradeoffs such as local versus global management. Bergam-
aschi et al. [4] conduct further work on maxBIPS and com-
pare its discrete implementation to continuous power modes.
While DVFS is effective today, the movement towards pro-
cessors with razor thin voltage margins (e.g., near-threshold
computing) and the need for potentially tens of dynami-
cally scalable voltage domains in large-scale multicore sys-
tems threatens to render DVFS largely ineffective.

A viable alternative to DVFS is core-level gating, in which
each core is placed in a separate domain within which the
supply voltage can be individually gated. Core-level gat-
ing is widely implemented in processors (e.g., [28]) and re-
searchers (e.g., [32]) have developed techniques for deter-
mining when to shut down cores given a power constraint.



A variety of proposed approaches dynamically adapt core

microarchitecture resources to match workload requirements.

Adaptation techniques that gate resources throughout the
pipeline [1, 14, 22, 35] have been shown to be effective at
reducing dynamic power, but are not as readily applicable
to controlling leakage due to the many power-gating circuits
required within the core pipeline. Moreover, with possibly
dozens of power knobs within each core and tens of cores in
a multicore system, finding the combination of knobs that
maximizes throughput within the specified power constraint
is challenging, given that the operating system may tem-
porally reschedule threads (and change power allocations)
every time slice (tens to hundreds of milliseconds). Oth-
ers [2, 3, 9, 16, 18, 19, 26, 45] propose to gate only a subset
of the core hardware, which limits the power savings.

In a prior workshop paper [34], we propose a lane-based
microarchitecture for fault tolerance. When a lane is de-
configured due to a wear-out defect, lanes in other pipeline
sections may be deconfigured to rebalance the pipeline. The
saved power is transferred to other functions to boost per-
formance. Flicker’s application is quite different and its op-
timization approach is not covered in this prior work.

2.2 Global Optimization Algorithms

Several offline optimization approaches have been pro-
posed [10, 30, 31, 48], some for microarchitecture optimiza-
tion, but have limited applicability to online adaptation.

Lee and Brooks [30] propose regression techniques for de-
sign space exploration, and suggest that these techniques
can be applied to offline application profiling. Lee et al. [31]
propose an offline multiprocessor model to reduce simulation
time. These approaches target offline simulation rather than
online adaptation where the timescale is more constrained.
The offline design space exploration work of Yi et al. [48] re-
lates to Flicker’s application of Fractional Factorial design.

Chen et al. [10] present a framework for offline resource
demand estimation. While they mention that the approach
could be used for online dynamic resource management, they
do not present online profilers to make this feasible. More-
over, the framework is only applicable to uniprocessors.

Flicker’s online approach bears similarity to the work of
Lee and Brooks [29], who propose an analysis framework—
using sampling, splines, and the Genetic Algorithm—to re-
duce the computation required to evaluate whether online
adaptivity should be pursued. They perform an offline anal-
ysis of the potential of online adaptivity, using regression
models instead of simulations to explore the design space.
Flicker’s optimization approach uses sampling, prediction,
and optimization to solve a different problem: strictly on-
line, runtime adaptation of the Flicker microarchitecture.

Dubach et al. [15] perform online adaptation using offline
training of a single core model. Flicker tackles the problem
of optimizing over tens of cores, for which straightforward
decisions such as maximizing one core’s response (the ap-
proach in [15]) are ineffective. Moreover, Flicker’s black box
approach makes it suitable for machines that run applica-
tions that are much different than the training set.

Teodorescu and Torrellas [43] consider global power man-
agement in the presence of process variations and propose
using linear optimization to determine how to allocate power
to cores. However, as shown later, linear optimization does
not perform well for adapting the Flicker microarchitecture.

Bitirgen et al. [5] and Ipek and Martinez [23] use ma-

chine learning (as opposed to surrogate response surfaces)
for adaptation of shared caches and off-chip memory band-
width. Their artificial neural networks approach requires
calibration for each runtime application, as well as region
specific counters and usage histograms. Flicker’s use of Ra-
dial Basis Function surrogate models eliminates calibration
and requires only two system measured responses (power
and throughput).

SimFlex uses sampling theory to measure minimal yet rep-
resentative samples of benchmarks to reduce multiprocessor
simulation time [46]. Flicker’s application of sampling the-
ory solves a very different sampling problem: online work-
load characterization. Ponomarev et al. [35] address the dy-
namic online problem, but without the use of statistical sam-
pling. However, since there is no global optimization, their
approach only requires sampling current configurations.

In prior work (e.g., [33, 36, 37, 38]), we use Radial Basis
Functions to solve global optimization problems with RBF
surfaces of dimension of up to 200. However, this prior work
used offline analysis. Flicker’s search method in conjunction
with the RBF (which involves a combination of an RBF
surface with a heuristic related to [36]) is an online approach
that requires a solution within a few milliseconds.

3. FLICKER MICROARCHITECTURE

The Flicker core microarchitecture bridges the gap be-
tween fine-grain microarchitecture adaptation (which incurs
high overheads) and core-level gating (which is coarse grain
and cannot adapt to individual thread behavior). The pipeline
is power-gated at the granularity of horizontal pipeline slices
(lanes), which permits rapid adaptation of the width of dif-
ferent pipeline regions. While cores are homogeneous in de-
sign, they can be dynamically reconfigured into a heteroge-
neous multicore system that meets power constraints.

Lanes are implemented within three decoupled pipeline
regions: Front End (FE - fetch, decode, ROB, rename, dis-
patch), Execute (EX - issue queues, register files, functional
units) and Memory (MEM - load and store queues), each
of which has four lanes. Two lanes remain powered on ex-
cept when power gating the entire core. This power domain
includes non-redundant structures, such as the Integer Mul-
tiplier, which must remain powered on for proper operation.

Each pipeline lane includes a sub-bank of the associated
queues, even though they are not technically part of the
pipeline “width.” As the peak bandwidth of a pipeline re-
gion is reduced by deconfiguring a lane, the buffering re-
quirements (and the issue window requirements) are reduced
commensurately. Thus, the associated queues within the re-
gion can be downsized to save power.

Lane-based deconfiguration requires both physical gating
and logical correctness mechanisms. The physical gating
mechanisms include sleep transistors that power gate each
of the blocks within a lane. Supply voltage levels must be
slightly increased to account for the voltage drop across the
sleep transistors, and decoupling capacitance also increased
in order to reduce voltage fluctuations in the power grid [25].

The logical correctness mechanisms (which are always pow-
ered) ensure proper pipeline operation when lanes are de-
configured. For instance, deconfiguration of a front end lane
requires preventing instructions from being slotted into the
deconfigured lane. For the back end, a functional unit asso-
ciated with a deconfigured lane is marked as perpetually in
use within the issue queue selection logic.



Flicker’s array structures leverage techniques previously
proposed for reliability and power management. For the
Fetch Queue and the ROB, Bower et al. [6] develop circular
structures with spares that can be deconfigured at a fine-
grain, per-entry level by feeding fault information into the
head and tail pointer advancement logic. Flicker implements
these techniques at a coarse-grain by banking the queues and
deconfiguring an entire bank, thus requiring a map of only
four bits, one for each bank that can be deconfigured. Un-
like [6], the microarchitecture does not require spare banks;
therefore, the buffer size is also updated when banks are de-
configured or reenabled. The issue queue is based on Drop-
sho et al. [14], who demonstrate a coarse-grain partitioned
RAM/CAM based issue queue that dynamically adapts its
size to program demands.

Physical gating of deconfigured functionality within a lane
leverages power-gating techniques proposed to reduce leak-
age power and to implement microprocessor deep sleep states,
such as C6. Intel Core i7 microprocessors implement power-
gating transistors to shut off idle cores [28], and a number
of designers have proposed a variety of power-gating tech-
niques [11, 25, 41]. Power-gated functional blocks are aggre-
gated into six individually controllable power-gated lanes,
two for each of the FE, EX, and MEM regions (plus three
additional power-gating circuits that are used, if needed, for
core-level gating). The logical correctness circuitry is always
powered to ensure correct pipeline operation.

Sleep transistor area overhead estimates vary from 2-6%
depending on the implementation, size of clusters, and tech-
nology node [27, 41]. Moreover, advanced sleep transistor
sizing algorithms can considerably reduce the area over-
head [11]. In addition to the sleep transistors, area over-
heads are introduced by additional decoupling capacitance
that is incorporated to reduce voltage fluctuations, resulting
in a total estimated overhead of 15% [25]. While dynamic
power is slightly increased (by approximately 2% according
to [25]), static power can be reduced by 90%.

4. RUNTIME CHARACTERIZATION AND
OPTIMIZATION

Flicker periodically characterizes application behavior and
determines the combination of powered lanes that maxi-
mizes performance without exceeding the specified power
constraint. The run time is divided into 100 ms time quanta
comprising four phases: configuration sampling, surrogate
surface fitting, optimization, and steady (Figure 2).

During the sampling phase, an application runs for short
sampling periods, each of which has a different combina-
tion of enabled lanes. Since the cores are identical, sam-
pling on all 32 cores occurs in parallel, but configurations
are staggered to avoid global power overshoots. Enhanced
sampling techniques (Section 4.2) significantly reduce the
sampling time over full sampling and increase sampling ac-
curacy. Next, performance and power surrogate functions
are fitted to the sampled data (Section 4.3). Finally, using
the surrogate functions, an optimization algorithm deter-
mines the combination of powered up lanes on the Flicker
cores that maximizes global performance under the specified
power constraint (Section 4.4). The system operates with
this configuration for the remainder of the 100 ms interval.
After this time, the process is repeated if the operating sys-
tem schedules different threads or changes the power limit.

Configuration Sampling
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Figure 2: Online characterization and optimization—
consisting of configuration sampling, surrogate sur-
face fitting, and optimization—followed by steady-
state operation.

4.1 Experimental Design Approach

The characterization of each running process is formulated
as a multivariate statistical experimental design, which re-
sults in an empirical model that correlates hardware resource
allocation with power and performance. This design is used
by the Flicker optimization algorithm to maximize global
performance within the power budget that is allocated for
each 100 ms interval.

The two types of variables in a multivariate optimization
procedure are responses and factors, where the responses are
observed (or sampled) output values dependent on the val-
ues taken on by the factors. The response variables for this
experimental design are the throughput and power consump-
tion of the running thread, and the goal is to characterize
the effect of different lane allocations on these variables in
order to obtain an optimal resource allocation. The factors
are the controlled independent variables that affect the re-
sponse of the system. In Flicker, the three pipeline regions
(FE, BE, and MEM) are the factors of the experiment, de-
noted as X1, X2, and X3, respectively. Each of the factors
can take on three different levels (four active lanes - fully
provisioned, three active lanes, and two active lanes). Thus,
there are 3% = 27 configurations for each core.

4.2 Optimized Sampling Techniques

In a Full Factorial design, depicted in Figure 3 (left), all
27 core configurations are sampled and their effect on the
response variables is measured. The design space is repre-
sented as a cube, with the edges representing the levels of
the factors, the corners indicating the high and low values
of each factor, and the dots marking the sampled configu-
rations as dictated by the experimental design. The large
number of samples needed for a Full Factorial design limits
its usefulness in runtime applications, as a large portion of
the OS time slice may be spent sampling suboptimal con-
figurations. To address this issue, two well known methods
are explored that reduce the cost of experimentation while
estimating response surface parameters with high precision:
Box-Behnken and Fractional Factorial designs.
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4.2.1 Reducing Sampling Time: Box-Behnken and
Fractional Factorial Designs

Box-Behnken design [7] and Fractional Factorial design [47]
are based on the sparsity-of-effects principle: the highest
contributors to responses are likely the main (single factor)
and low-level (two factor) interactions. Moreover, they are
both balanced and orthogonal for optimal efficiency.

Box-Behnken design selects configurations to sample that
are at the midpoints of the edges of the design space and
at the center, as shown in Figure 3 (center). This design
requires at least three factors with at least three levels each.
Since the effect of the factors on the dependent variable is
not linear, the Box-Behnken design is attractive because it
allows for quadratic response surface fitting. The number of
samples required for a Box-Behnken design is 2k(k— 1)+ C,
where k represents the number of factors and C' the num-
ber of center points. There are three factors for a Flicker
pipeline, and the (3, 3, 3) centerpoint is included, which
results in 13 required samples.

A class of Fractional Factorial designs called 3*~7 design,
where k is the number of factors and 3 represents the num-
ber of levels of each factor, is also considered. A 37! design
reduces the number of samples by three, and 3~2 reduces
the number of samples by nine. Since it is unfeasible to
construct an accurate response surface for three factors us-
ing only three samples, a 3*~! design, referred to as 3MM3
(3 Minus Modulus 3”) and shown in Figure 3 (right), is
considered. The 3MM3 design requires only nine samples
compared to 13 for the Box-Behnken design.

4.2.2 Improving Sampling Accuracy:
Replicated Sampling

In online sampling, the measured responses are not only
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Figure 5: Typical sampling approach where each
configuration is run once for a 1 ms period (top).
Replicated sampling where each configuration is run
S times, for 1/S ms sub-periods, and the results av-
eraged over the S sub-periods (bottom).

a function of the change in microarchitecture but also of
the temporal fluctuations in application behavior. If these
temporal fluctations are large, the samples become “noisier”
and thus the response surfaces are less accurate.

This noise, depicted in Figure 4 for the applu benchmark,
can be addressed by increasing the size of the samples, but
doing so increases sampling overhead by reducing the length
of the steady interval. In an alternative replicated sam-
pling approach, shown in Figure 5, multiple smaller sam-
ples (replicates) of each configuration are taken at different
points and then averaged.

In this example, each of three original 1 ms sample peri-
ods is split into three sub-periods with a duration of 1/3 ms.
Samples corresponding to the same configurations are eval-
uated at slightly different points in the application and their
responses averaged, which filters high frequency noise. As
the number of replicates increases, high frequency noise is
more effectively filtered, but the sample size decreases, which
has two drawbacks. First, microarchitectural events such as
cache misses and branch mispredictions are less “smoothed
out” by shorter samples. Second, the deconfiguration and re-
configuration overheads become more prominent with more
frequent sampling. As is shown in Section 6, using eight
replicates significantly improves sampling accuracy.



4.3 Exploiting Radial Basis Functions
for Online Optimization

A response surface model (or surrogate model) is an inex-
pensive approximation of computationally expensive func-
tions for which an a priori description or formula is not
available, and information can only be obtained through
time-consuming direct evaluation of the functions. These
models are particularly well-suited to approximating global
throughput and power on a Flicker core, since they con-
struct response functions from a subset of function evalua-
tions obtained through reduced sampling. Two metamodels,
T(x1,x2,23) and P(x1,x2,x3), are constructed to approxi-
mate the throughput and power responses.

The simplest response surfaces that are frequently used
for online architectural adaptation are first and second order
polynomials (linear and quadratic functions). However, lin-
ear functions poorly predict the responses of the Flicker sys-
tem (Section 6.2), and quadratic functions require a larger
number of datapoints (sample points). Moreover, both first
and second order polynomial functions are non-interpolating:
the values on the response surface are not necessarily equal
to the values obtained during sampling.

An interpolating model that places a Radial Basis Func-
tion (RBF) at each sampled point [20, 33, 36, 37, 38] over-
comes the limitations of simpler response surfaces. More-
over, the approach requires no offline training and very little
state: 45 unique matrix elements (integers) for 3MM3 and
91 for Box-Behnken, which are fixed and independent of the
workload. Refer to the Appendix for a discussion of the
RBF model. The performance of a RBF response surface is
compared to simpler response surfaces in Section 6.2.

4.4 Global Performance Optimization Algorithm

Once metamodels T and P are constructed to fit each
core, the optimization step finds the set of core configu-
rations that maximizes performance while abiding by the
provided power constraint. Since each core can be config-
ured in 27 ways, an N core system will have a total of 277
possible sets of core configurations, making runtime exhaus-
tive search of the space impractical for even modest values
of N. To permit the OS to have the flexibility to tempo-
rally reschedule threads within a reasonable time granular-
ity (tens to hundreds of milliseconds), and given the time re-
quired for sampling, the optimization algorithm should con-
verge to a near-optimal combination of enabled lanes with
a runtime no longer than a few milliseconds.

Specifically, the optimization algorithm must solve the
constrained integer global optimization problem of maximiz-
ing performance under a given power budget. In order to
take fairness into account, the geometric mean throughput
is chosen as the performance objective function:

N
f(f) = HTi(mlmew‘r&) (1)

where N is the number of cores, ¥ is a vector of size N
consisting of the current configuration for each core, and
Ty(21,, @2, x3,) is the BIPS of the i'" core.

The objective function further has the constraint of meet-
ing a certain power budget. Deb’s constraint handling method
[12] differentiates between feasible and infeasible (over power
budget) solutions by penalizing configurations that consume

more power than allowed, ensuring that infeasible solutions
are never chosen over feasible solutions. The final function
has the form:

F@) = { /(@)

1—g(%)

if g(Z) < mazPower

(2)

T
if (&) > maxPower

where ¢(Z) is the constraint violation function and is defined
as the current power consumption of the entire core: g(&) =
Zfil Pi(wlz‘ax%vx&')'

The solution for the objective function is the vector &,
the configuration of each core that results in the best global
performance. The solution vector consists of discrete rather
than continuous variables, which makes it difficult to apply
classical mathematical techniques such as derivative or limit-
based methods.

Heuristic algorithms are effective in searching complex
spaces, and their computational time can be adjusted by
limiting the number of objective function evaluations at the
expense of solution accuracy. Flicker’s runtime system in-
corporates the Genetic Algorithm, which uses information
gathered from past searches about an unknown space to
bias future searches towards more useful subspaces. Each
core configuration is encoded as one gene of a chromosome,
and each gene takes the integer values 0 to C'— 1, where C is
the number of possible configurations for each core. A com-
bination of N genes form one chromosome of a population,
where N is the number of cores.

Tournament selection with replacement is used to pick the
mating pool, with two children from each parent pair created
using single point crossover at the boundary of the genes and
a high mutation probability. To prevent the algorithm from
losing the current best solution, elitism is implemented by
replacing a random child with the best parent. A variety
of parameter values are explored offline and a desirability
function [13, 21] constructed in order to find parameters
that would optimize the algorithm over a variety of power
constraints. This methodology produces the following pa-
rameters: a population size of 20 individuals, a crossover
probability of 0.9, and a mutation probability of 0.6. The
simulation is run for 25 generations (which corresponds to
500 objective function evaluations) as a compromise between
algorithm accuracy and computation time, and consumes
1% of the 100 ms interval for a 32 core configuration.

S. EVALUATION METHODOLOGY

The evaluation methodology combines enhanced versions
of SESC [39], Wattch [8], Cacti [42], and HotLeakage [49].
An extensive design space study is performed to determine a
balanced baseline core microarchitecture whose parameters
are shown in Table 1.

The simulated 32 core systems run 20 multiprogrammed
workloads. Each workload is constructed by randomly se-
lecting one of 13 SPEC CPU 2000 benchmarks (applu, wup-
wise, mesa, mgrid, ammp, apsi, twolf, crafty, parser, vpr,
vortex, bzip2, and gcc) to run on each core. Each bench-
mark runs with the reference input set and is fast-forwarded
five billion instructions, after which the workload is run for
100 ms, the length of a time quantum.

To evaluate the system under a variety of power cap sce-
narios, a nominal power value is determined by averaging
the power consumption of the benchmarks and multiplying
by the number of cores (32). The system is evaluated at



Table 1: Architectural parameters.

Front End Branch Predictor: gshare + bimodal
64 entry RAS, 2KB BTB
128 entry ROB
4-wide fetch/decode/rename/retire
Execution out-of-order, 4-wide issue/execute

Core 80 Integer Registers, 80 FP Registers
32 entry Integer Queue, 24 entry FP Queue
32 entry Load Queue, 16 entry Store Queue
4 Integer ALUs, 1 Integer Mult/Div Unit
1 FP ALU, 1 FP Mult/Div Unit

On-chip LT Instruction Cache: 8KB, 2-way, 2 cycles
Caches L1 Data Cache: 8KB, 2-way, 2 cycles
L2 Cache: 1MB, private, 8-way, 15 cycles
Memory 200 cycle Tatency
Operating 1V Vdd
Parameters 4.0 GHz frequency

eight different power constraints, from 90% to 55% of the
nominal power. The baseline system uses core shutdown to
meet the given power budget.

6. EXPERIMENTAL RESULTS
6.1 Replicated Sampling

The throughput estimation error of the sampled response
for no replicates and up to eight replicates across all bench-
marks is shown in Figure 6. For each configuration (combi-
nation of enabled lanes), the error is measured as the percent
difference between the real response (result when running
the configuration for the full 100 ms interval) and the aver-
age response of the replicated sample (1 ms total).

Two opposing effects must be balanced in order to ob-
tain accurate samples. On the one hand, more replicates
reduces high frequency noise by obtaining responses at dif-
ferent points of the benchmark execution. However, the
smaller samples are more susceptible to noise caused by

cache misses, branch mispredictions, and small software loops.

As shown in Figure 6, sampling accuracy increases when in-
creasing the number of replicates from none to eight. The
spread between the 25" and 75" percentiles narrows con-
siderably with eight replicates compared to no replication.
The mean error is close to zero, indicating that sampling on
average accurately captures the true response of the system.
Power estimation shows similar results. The remainder of
this work uses replicated sampling with eight replicates’.

6.2 Surrogate Response Surfaces

A comparison of the accuracy of the surrogate surfaces for
characterizing throughput and power is provided in Figure 7.
The y-axis represents the percentage by which the predicted
responses deviate from the real responses, and each box plot
depicts statistics collected across all benchmarks. For each
application, a response surface is built on the Full Factorial
(27 points), Box-Behnken (13 points), and the 3MM3 (nine
points) designs. Real (100 ms) responses are used instead of
short samples for the observation points to isolate the effects
of surrogate surface fitting from sampling error.

1Simply using no replication with shorter samples, e.g., 0.1
ms, produces prediction errors in excess of 300%. Using
longer samples slightly improves accuracy but at the cost of
shortening the steady phase.
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Figure 6: Box plots of throughput estimation error
due to sampling for the Box-Behnken design. Each
1 ms sample period is split into 1, 2, 4, or 8 sub-
periods. The total number of points for each plot is
the number of samples times the number of bench-
marks. For replication, each sample point is the
average of the replicates (1 ms total runtime).

Even when constructed using the Full Factorial design,
the linear model fits the data the worst, with a residual per-
cent error as high as 15-20% in both directions, meaning
that responses are both overestimated and underestimated.
The fitting of a quadratic surface to the Full Factorial ob-
servations reduces both throughput and power error. The
Box-Behnken design yields very good results, with only a
slight increase in the number of outliers.

The prediction accuracy dramatically worsens when build-
ing the quadratic surface on only nine observation points
(3MM3 design), since a quadratic response surface for three
variables requires ten coefficients, which cannot be obtained
using only nine samples. By eliminating quadratic terms,
this effectively reduces the quadratic function to an almost
linear one.

Since the RBF response surface is an interpolating model,
the residual error is zero if the RBF surface is built using
the Full Factorial design (not shown in the graph). The
use of fewer observations points from the Box-Behnken de-
sign to create an RBF surrogate surface produces extremely
accurate results, with a small spread and relatively few out-
liers. 3MM3 provides far more accurate results with an RBF
rather than a quadratic surface, but accuracy degrades rel-
ative to the Box-Behnken design with RBF due to the fewer
number of observation points.

All in all, the combination of Box-Behnken design, eight-
way replicated sampling, and RBF surrogate surfaces pro-
vides accurate performance and power models for use during
optimization with modest runtime overhead.

6.3 Global Optimization Algorithm

To evaluate the accuracy of Flicker’s runtime character-
ization and optimization approach, a near-oracle optimiza-
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Figure 7: Box plots of percent residual error be-
tween the predicted and actual system responses for
the combination of surrogate surface model and on-
line sampling. The total number of points for each
plot is the number of configurations (27, some of
which may be predicted) times the number of bench-
marks.

tion algorithm? is implemented that determines the steady
phase configuration by: (1) Using the true 100 ms power and
throughput responses to eliminate sampling error; (2) Using
the Full Factorial design to eliminate errors due to response
surface approximation; and (3) Running the Genetic Algo-
rithm offline to reduce the error from limiting the runtime
of the online algorithm.

As shown in Figure 8, Flicker’s online algorithm closely

matches the results of the near-oracle offline algorithm. Across

all power caps, the worst case degradation is 6%.
Interestingly, Flicker’s accuracy improves with increas-
ingly stringent power constraints. At relaxed power caps,
there are many possible solutions with a wide range of “good-
ness.” Thus, the errors from sampling and surface fitting are
more pronounced, because the Genetic Algorithm is free to
pick any configurations as parents for the next generation.
At more stringent power caps, there are fewer viable solu-
tions. Therefore, the space from which to choose individuals
to reproduce (parents) is reduced, which affords several ad-
vantages: (1) The algorithm is more likely to choose the
“fit” parents; (2) Sampling error is mitigated as some of the
configurations with high sampling error may be filtered out
for being over budget; and (3) Fewer iterations are required
for convergence, which mitigates the effect of limiting the

2An exhaustive search oracle algorithm requires decades of
computation time for 16 or more cores.
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Figure 8: Comparison of Flicker’s online optimiza-
tion algorithm to the near-oracle offline algorithm
at different power allocations, each of which is aver-
aged over all workloads.

number of iterations. For these reasons, Flicker’s accuracy
improves as allocated power diminishes.

6.4 Comparison with Core-level Gating

A quantitative comparison with core-level gating is chal-
lenging since fewer threads are operational compared to Flick-
er, where all cores are active. To make a fair comparison,
for a given workload and power budget, the geometric mean
throughput of the 32 applications on baseline fully provi-
sioned cores is scaled by the fraction of cores that can be
enabled under the specified power budget.

The performance of Flicker normalized to core-level gat-
ing for different power allocations, from 90% to 55% of the
nominal power, is shown in Figure 9. At 90% power al-
location, core-level gating is highly effective, and slightly
outperforms Flicker overall. At higher power allocations, it
may be sufficient to gate 1-2 cores, or perhaps none if the
workload has a number of memory bound applications. The
overheads associated with sampling and approximation, in
terms of estimation error and the time spent in suboptimal
configurations during sampling, makes Flicker less effective,
and core-level gating preferable, at high power allocations.

As the power constraint increases, core-level gating blindly
treats all applications the same in terms of hardware alloca-
tion, while Flicker’s lane-level configuration more precisely
matches the hardware to individual application characteris-
tics. Moreover, as shown earlier, Flicker’s accuracy increases
as the power constraint becomes more stringent. At a 55%
power cap, Flicker outperforms core-level gating by an av-
erage of 27%.

6.4.1 Adapting to Parallel Workloads

For a parallel application in which identical homogeneous
threads are operating in parallel, global optimization is sim-
plified, since core configurations for the threads should be
identical. Thus, an optimization algorithm with knowledge
of the application structure need only consider one thread of
the application during these periods of homogeneous paral-
lel execution. For example, a 32 core Flicker system running
four applications, each with eight homogeneous threads, makes
similar decisions as a four core system running four single-
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Figure 10: Performance of Flicker relative to core-
level gating at 55% power allocation for each of the
20 workloads that approximate a multiprogrammed
environment of parallel applications.

threaded applications. Once the configuration is determined
for one of the application’s threads, the cores for the remain-
ing threads are identically configured. The decision space for
a multiprogrammed system of parallel workloads is simpli-
fied, making the search more efficient compared to workloads
of single-threaded applications.

To approximate a multiprogrammed workload consisting
of parallel applications, four benchmarks are randomly se-
lected and each replicated eight times. Twenty such work-
loads are created, for which the optimization algorithm sam-
ples and builds response surfaces for only the four unique
benchmarks at one-eighth of the global power constraint,
which simplifies the search. The performance of each of the
20 workloads at a 55% power budget relative to core-level
gating is shown in Figure 10. The average performance im-
provement at this power cap is 30%, which is an improve-
ment over the sequential application workloads.

In summary, Flicker’s adaptive lane-based core microar-

chitecture and efficient “black box” global optimization algo-
rithm significantly outperform core-level gating under strict
power caps.

7. CONCLUSIONS

As microprocessors become increasingly heterogeneous and
power constrained, the general-purpose cores must efficiently
adapt to changes in power allocation in a way that max-
imizes overall performance. The Flicker general-purpose
multicore architecture dynamically adapts to varying and
potentially stringent limits on allocated power. The lane-
based core microarchitecture permits tailoring an individual
core to the running application without the high overheads
of microarchitecture adaptation, but with greater flexibility
than core-level power gating.

Exploiting the full potential of Flicker’s flexible microar-
chitecture is challenging. The global controller must deter-
mine within a reasonably small fraction of a time slice the
combination of powered lanes within the different cores that
maximizes performance given the current power budget. To
address this problem, a new online optimization approach
is proposed that combines reduced sampling techniques, ap-
plication of response surface models to online optimization,
and heuristic online search. The algorithm efficiently finds a
near-global-optimum configuration of lanes without requir-
ing offline training, microarchitecture state, or foreknowl-
edge of the workload. Flicker significantly outperforms core-
level gating under the stringent power constraints expected
in future systems.
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APPENDIX

A Radial Basis Function has form ¢(||z—c||) whose value de-
pends only on the Euclidian distance from the center c. As-
suming that there are n samples, there are x,,x,,...,X,, € R4
centers, each with its corresponding Radial Basis Function,

where x, are the sampled points in a d-dimensional real
space, and d is the dimension of the independent variables
(i.e., d=3 because there are three factors in the Flicker
pipeline). Each point x,, is the n" sampled core configu-
ration of the three factor levels (z1,,, 2, ,3,). The inter-
polating RBF response surface is of the form:

= Ne(lx—xl) +p) (3)
i=1
where \; are the coefficients of the response function, ||-|| is

the Euclidean distance between two d-dimensional points,
and p(x) = bTx + a is a polynomial tail. Without the
polynomial tail, the n by n matrix ® with elements ®;; =
@(|lx; — x,l|) described below in Equation 4 might become
singular [20]. A surface is built for each of the two responses
(throughput and power).

Flicker uses a cubic RBF ¢(x,;) = (||x; — x;] |)3 that needs
a linear polynomial tail: p(x) = bo + biz1 + baza + bszs.
Characterizing an application requires obtaining the set of
coeflicients A = (A1, ..., \n) and b = (bo, b1, b2, b3), which is
accomplished by solving the linear system of equations in 3.

7= (y1(x1), ---, Yn(x,,) is the value of the system responses
sampled at the points (21, ...,Zn). yn(x,,) is either the mea-
sured throughput or the measured power of the core con-
figured with pipeline regions x,, = [z1,, %2, %3,]. A surro-
gate RBF surface is built for the throughput response and
a second RBF for the power response. The methodology to
obtain both of them is identical, the only difference being
the yn(x,,) values. If

(I)u @12 e q>1n
@21 11)22 . q)gn

&= . . . (4)
Bpr Ppo ... Do

where ®;; = ¢(||x; — Xj”) and

Y1 x; 1 A1 by

Y2 X, 1 A2 by
Y=1.|P=|. JA=]. |ec= b3 (5)

Yn x, 1 An bo

then the system of equations can be rewritten in contracted
form and solved for the coefficients A and c:
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offline computation

By adopting RBFs in this manner, the majority of the
computation to obtain the coefficients can be performed of-
fline (as noted in Equation 7), resulting in fast surface fitting
(in < 1 ms for Flicker), which makes this a viable approach
for online optimization. Equation 7 applies if the location
of the sample points z1,...,x, stays the same so that the
matrix involving P does not change, even though the vec-
tor Y will change in each sampling interval due to dynamic
changes in the behavior of the running applications.



