Dynamically Managing the Communication-Parallelism Trade-off in Future
Clustered Processors

Raje& Balasubramonidn SandhyeDwarkada$, andDavid H. Albonest
t Departmenbf ComputerScience! Departmenbf ElectricalandComputerEngineering
Universityof RochesterRochesteNY 14627

Abstract

Clusteed microarchitectues are an attractive alterna-
tive to large monolithic supescalar designsdue to their
potentialfor higher clock ratesin the face of increasingly
wire-delay-consainedprocesgecnologies.Asincreasing
transistorcountsallow an increasein the numberof clus-
ters, thereby allowing more aggressiveuseof instruction-
level parallelism (ILP), theinter-clustercommunicatiorin-
creasesas datavaluesget spreadacrossa wider area. As
a resultof the emepgenceof this trade-of betweercommu-
nicationand parallelism,a subsebf thetotal on-chip clus-
ters is optimal for performance To matd the hardware to
the application’s needs,we usea robust algorithm to dy-
namically tune the clusteed architectue. The algorithm,
which is basedon programmetricsgatheedat periodicin-
tervals,achievesan 11% performancémprovemenion av-
erage over the beststatically definedarchitectue. e also
showthat the use of additional hardware and reconfigu-
ration at basic block boundariescan achieve average im-
provement®f 15%. Our resultsdemonstate that reconfig-
uration providesan effectivesolutionto thecommunication
and parallelism trade-of inherent in the communication-
boundprocessos of the future.

1. Intr oduction

The extractionof large amountof instruction-level par
allelism (ILP) from commonapplicationson modernpro-
cessorsrequires the use of mary functional units and
large on-chipstructuressuchasissuequeuesregisterfiles,
caches,and branchpredictors. As CMOS processtech-
nologiescontinueto shrink, wire delaysbecomedominant
(comparedto logic delays)[1, 27, 29]. This, combined
with the continuingtrend towardsfasterclock speedsjn-
creaseghetime in cyclesto accesgegular on-chip struc-
tures(cachesregisterfiles, etc.). Not only doesthisdegrade
instructionsper cycle (IPC) performancejt also presents
variousdesignproblemsn breakingup theaccessnto mul-
tiple pipeline stages. In spite of the growing numbersof
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transistorsavailable to architects,it is becomingincreas-
ingly difficult to designlarge monolithic structureghataid
ILP extractionwithout increasingdesigncomplexity, com-
promising clock speed,and limiting scalability in future
procesgechnologies.

A potentialsolutionto thesedesignchallengess a clus-
teredmicroarchitecture [17, 29] in which thekey processor
resourcesre distributed acrossmultiple clusters,eachof
which containsa subsetof the issuequeuesregisterfiles,
andthe functionalunits. In sucha design,atthetime of in-
structionrenamegachinstructionis steerednto oneof the
clusters. As a resultof decreasinghe size andbandwidth
requirement®f the issuequeuesandregisterfiles, the ac-
cesgtimesof thesecycle-timecritical structuresaregreatly
reducedtherebypermittinga fasterclock. The simplifica-
tion of thesestructureslsoreducegheirdesigncomplexity.

An attractive featureof a clusteredmicroarchitecturés
the reduceddesigneffort in producingsuccessie genera-
tionsof a processarNot only is the designof a singleclus-
tergreatlysimplified,but onceasingleclustercorehasbeen
designedmoreof thesecorescanbe putinto the processor
for alow designcost(includingincreasingront-endband-
width) asthetransistotbudgetincreasesAddingmoreclus-
ters could potentially improve IPC performancebecause
eachprogramhasmore resourcego work with. Thereis
little effectif any onclock speedrom doingthis astheim-
plementatiorof eachindividual clusterdoesnot changeln
addition,evenif theresourcesn alargeclusterecprocessor
cannotbe effectively usedby a singlethread,the schedul-
ing of multiple threadson a clusteredprocessocansignif-
icantly increasahe overallinstructionthroughput.Therel-
atively low designcomplexity andthe potentialto exploit
thread-leel parallelismmalke a highly-clusteredprocessor
in thebillion transistoreraanextremelyattractive option.

The primary disadwantageof clusteredmicroarchitec-
turesis their reducedPC comparedo a monolithicdesign
with identical resources.Although dependentinstructions
within a singleclustercanissuein successie cycles,extra
inter-clusterbypassdelaysprevent dependentnstructions
thatlie in differentclustersfrom issuingin successie cy-
cles. While monolithic processorsnight usea potentially
muchslower clockto allow asingle-g/cle bypassamongall
functionalunits,a clusteredprocessoallows afasterclock,
therebyintroducingadditionallatenciesin cyclesbetween
someof the functionalunits. The clustereddesignis a vi-



ableoptiononly if the IPC degradationdoesnot offsetthe
clock speedmprovement.

Modern processorsdik e the Alpha 21264[24] at 0.35u
technology already employ a limited clustered design,
whereinthe integer domain,for example,is split into two
clusters. A numberof recentstudies[2, 8, 11, 12, 17]
have exploredthe designof heuristicsto steerinstructions
to clusters. Despitetheseadvancesthe resultsfrom these
studieswill likely needto bereconsidereéh thenearfuture
for thefollowing reasons:

e Dueto thegrowing dominanceof wire delays[27, 29]
andthetrendof increasingclock speedstheresources
in eachclustercore will needto be significantly re-
ducedrelative to thoseassumedi prior studies.

e Therewill be more clusterson the die thanassumed
in prior studiesdueto largertransistobudgetsandthe
potentialfor exploiting thread-leel parallelism[36].

e The numberof cyclesto communicatedatabetween
the furthesttwo clusterswill increasedueto the wire
delay problem[1]. Furthermore communicationde-
lays will be heterogeneousjarying accordingto the
positionof the producerandconsumenodes.

e Thedatacachewill needto bedistributedamongclus-
ters, unlike the centralizedcacheassumedoy most
prior studies,dueto increasednterconnectostsand
the desireto scalethe cache commensuratelywith
otherclusterresources.

While the useof alargenumberof clusterscouldgreatly
boostoverall throughputfor a multi-threadedwvorkload, its
impacton the performancef a single-threadegrogramis
notasevident. The cumulative effect of the above trendsis
thatclusteredprocessorsvill bemuchmorecommunication
boundthanassumedh prior models.

Asthenumberof clustersonthechipincreaseshenum-
ber of resourceswvailableto the threadalsoincreasessup-
portingalargerwindow of in-flight instructionsandthereby
allowing moredistantinstruction-level parallelism(ILP) to
beexploited. At the sametime, thevariousinstructionsand
dataof the programget distributed over a larger on-chip
space. If datahasto be communicatedacrossthe various
clustersfrequently the performancepenalty from this in-
creaseccommunicatiorcanoffsetary benefitderivedfrom
the parallelismexploited by additionalresources.

In this paper we presentand evaluatea dynamically
tunableclusteredarchitectureghat attemptsto optimizethe
communication-parallelisntrade-of for improved single-
threadedperformancen the faceof the above trends. The
balanceis effectedby employing only a subsetof the to-
tal numberof availableclustersfor the thread. Our results
shaw thatthe performancdrendasa function of the num-
ber of clustersvariesacrossdifferentprogramsdepending

onthedegreeof distantILP presentn them. This motivates
the needfor dynamicalgorithmsthat identify the optimal
numberof clustersfor ary programphaseand matchthe
hardwareto the programs requirements We presentalgo-
rithms that vary the numberof active clustersat ary pro-

grampoint andshawv thata simple algorithmthat looks at
performancéistory overthe pastfew intervalsoftenyields
mostof theavailableperformancémprovementsHowever,

suchanalgorithmmissedine-grainedopportunitiesfor re-

configurationandwe presentlternatve techniqueshatin-

vestmorehardwarein anattemptto targetthesemissedop-
portunities. The simple interval-basedalgorithm provides
overallimprovementsof 11%, while the fine-grainedtech-
niguesareableto provide 15%improvementver the best
staticorganization.

Disabling a subsetof the clustersfor a given program
phasein orderto improve single-threadegerformancéas
other favorableimplications. Entire clusterscanturn off
their supplyvoltage,therebygreatlysavzing on leakageen-
ergy, a techniquethat would not have beenpossiblein a
monolithic processar Alternatively, theseclusterscanbe
usedby (partitionedamong)otherthreads therebysimul-
taneouslyachieving the goalsof optimal single and multi-
threadedhroughput.

The restof the paperis organizedasfollows. Section2
describeghe clusteredmicroarchitectureandSection3 de-
scribesour simulationinfrastructure. Section4 develops
andevaluatesour algorithmsfor the run-timeallocationof
clustergo eachprogramphasedor acentralizeccache . Sec-
tion 5 summarizegheir performancefor a decentralized
cachemodel. In Section6, we evaluatethe sensitvity of
theresultsto variousprocessoparametersWe describere-
latedwork in Section7 andconcluden Section8.

2. The BaseClustered ProcessorAr chitecture

We start by describinga baselineclusteredprocessor
model that has been commonly used in earlier studies
[2,8, 11, 12, 17]. Suchamodelwith four clustersis shavn
in Figurel. Thebranchpredictorandinstructioncacheare
centralizedstructuresjust asin a corventionalprocessar
At the time of registerrenaming,eachinstructiongetsas-
signedto a specificcluster Eachclusterhasits own issue
queueregisterfile, a setof functionalunits,andits own lo-
cal bypassnetwork. Bypassingof resultswithin a cluster
doesnot take additionalcycles(in otherwords,dependent
instructionsin the sameclustercanissuein successie cy-
cles). However, if the consuminginstructionis notin the
sameclusterastheproducerit hasto wait additionalcycles
until theresultis communicatedcrosghetwo clusters.

A corventionalclusteredprocessof2, 8,11,12, 17] dis-
tributesonly theregisterfile, issuequeue andthefunctional
units amongthe clusters. The datacacheis centrally lo-
cated.An alternatve organizatior{40] distributesthe cache
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Figure 1. The base clustered processor (4 cluster s) with
the centraliz ed cache.

amongthe clusters,therebymaking the designmore scal-
able, but also increasingthe implementationcomplexity.
Sinceboth organizationsare attractve designoptions,we

evaluatetheeffect of dynamictuningonbothorganizations.

2.1 The Centralized Cache

In thetraditionalclustereddesignspnceloadsandstores
are ready they are insertedinto a centralizedload-store
queue(LSQ) (Figure 1). From here,storesare sentto the
centralizedL1 cachewhenthey commit andloadsareis-
suedwhenthey areknown to notconflictwith earlierstores.
TheLSQiis centralizedbecause loadin ary clustercould
conflictwith anearlierstorefrom ary of the otherclusters.

For the aggressie processomodelsthat we are study-
ing, the cachehasto servicea numberof requestsevery
cycle. An efficient way to implementa high bandwidth
cacheis to make it word-interleaed. For a 4-way word-
interleavedcachethedataarrayis split into four banksand
eachbankcanserviceonerequestevery cycle. Datawith
word addressesf the form 4N arestoredin bankO, of the
form 4N+1 arestoredin bank1, andsoon. Suchanorga-
nizationsupportsa maximumbandwidthof four andhelps
minimize conflictsto a bank.

In aprocessowith a centralizedcache the load latengy
dependn the distancebetweenthe centralizedcacheand
the clusterissuingthe load. In our study we assumehat
the centralizedLSQ and cacheare co-locatedwith cluster
1. Hence,a load issuingfrom cluster1 doesnot experi-
enceary communicatiorcost. A loadissuingfrom cluster
2 takesonecycle to sendtheaddresgo theLSQ andcache
andanothercycle to getthe databack (assuminghateach
hopbetweerclustersakesacycle). Similarly, cluster3 ex-
periencesatotal communicatiorcostof four cyclesfor each
load. Thisis in additionto the few cyclesrequiredto per
form thecacheRAM look-up.

Steering Heuristics: A clustereddesignallows a faster
clock, but incursa noticeablelPC degradationbecauseof
inter-clustercommunicatiorandloadimbalance Minimiz-
ing thesepenaltieswith smartinstructionsteeringhasbeen
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Figure 2. The clustered processor (4 cluster s) with the
decentraliz ed cache.

thefocusof mary recentstudieg[2, 8, 11, 12, 13, 17]. We
useaneffective steeringheuristic[11] thatsteersaninstruc-
tion (andits destinatiorregister)to theclusterthatproduces
most of its operands. In the event of a tie or undercir-
cumstancesvhereanimbalancen issuequeueoccupang
is seen,instructionsare steeredo the leastloadedcluster
By picking an appropriatethresholdto detectload imbal-
ance, such an algorithm can also approximateother pro-
posedsteeringheuristicslike Mod_N and First_Fit [8].
The former minimizesload imbalanceby steeringN in-
structionsto one cluster thensteeringto its neighbor The
latter minimizes communicationby filling up one cluster
beforesteeringinstructionsto its neighbor We empirically
determinedthe optimal thresholdvalue for load balance.
Further our steeringheuristic also usesa criticality pre-
dictor [18, 37] to give a higher priority to the clusterthat
producesthe critical sourceoperand. Thus, our heuristic
representshe state-of-the-arin steeringnechanisms.

2.2 The DecentralizedCache

In ahighly clusteredprocessarthecentralizedcachecan
beamajorbottleneckasit hasto supporta high bandwidth,
andits averagedistanceo therequestinglustersincreases.
Hence,a distributedcachemodel[40] representan attrac-
tive designoption.

For an N-clustersystem,we assumehatthe L1 cache
is brokeninto N word-interleaed banks. Eachbankis as-
sociatedwith its own cluster The LSQ is alsosplit across
the differentclusters. The examplein Figure 2 shaws an
organizationwith four clusters. Becausethey are word-
interleaved,thevariousbankscachanutuallyexclusive data
anddo not requireary cachecoherencegrotocol between
them. The goalof the steeringmechanisnis to steeraload
or storeto the clusterthat cacheshe correspondingnem-
ory addressWe discusgheadditionalsteeringcomplexities
arisingfrom thedistributednatureof the cachein Sections.

The L2 cachecontinuesto be co-locatedwith clusterl
andamissin ary of theL1 cachebanksotherthanthatasso-
ciatedwith this clusterincursadditionallatengy depending



Fetchqueuesize 64
Branchpredictor comb of bimodaland2-level

Bimodalpredictorsize 2048
Level 1 predictor 1024entries history 10
Level 2 predictor 4096entries

BTB size 2048sets,2-way
Branchmispredictpenalty atleastl12 cycles
Fetchwidth 8 (acrossup to two basicblocks)

Dispatchandcommitwidth 16
Issuequeuesize 15in eachcluster(int andfp, each)
Registerfile size 30in eachcluster(int andfp, each)

Re-ordeBuffer (ROB) size 480

Integer ALUs/mult-div 1/1 (in eachcluster)
FPALUs/mult-div 1/1 (in eachcluster)

L1 I-cache 32KB 2-way
L2 unifiedcache 2MB 8-way, 25 cycles
TLB 128entries,8KB pagesize(l andD)

Memorylatengy 160cyclesfor thefirst chunk

Table 1. Simplescalar simulator parameter s.

onthenumberof hops.
2.3. Inter connects

As procesgechnologieshrink andthe numberof clus-
tersis increasedattentionmust be paid to the communi-
cation delaysandinterconnectopology betweenclusters.
Cross-clustecommunicatioroccursatthefront-endaswell
aswhen communicatingregister valuesacrossclustersor
whenaccessinghecache.Sincetheformeroccursin every
cycle, we assumea separatenetwork for this purposeand
model non-uniformdispatchlatenciesaswell asthe addi-
tional latengy in communicatinga branchmispredictback
to thefront-end.Sincethelattertwo (cacheandregisterto-
registercommunication)nvolve datatransferto/from reg-
isters,we assumehatthe same(separatehetwork is used.

In our study we focuson a ring interconnecthecause
of its low implementationcompleity. Eachclusteris di-
rectly connectedo two otherclusters.We assumewo uni-
directionalrings, implying thata 16-clustersystemhas32
total links (allowing 32 total transfersin a cycle), with the
maximumnumberof hopsbetweenrany two nodesheing8.

In a later section,aspartof our sensitvity analysiswe
alsoshow resultsfor agrid interconnectwhich hasa higher
implementatiorcostbut higher performance.The clusters
arelaid out in atwo-dimensionahrray Eachclusteris di-
rectlyconnectedo upto four otherclusters.For 16 clusters,
thereare48 total links, with the maximumnumberof hops
being6, thusreducingthe overall communicatiorcost.

3. Simulation Methodology

3.1 Simulator Parameters

Our simulatoris basedon Simplescalai3.0 [9] for the
Alpha AXP instructionset. The simulatorhasbeenmodi-
fied to represent microarchitecturgesemblingthe Alpha
21264[24]. Theregisterupdateunit (RUU) is decomposed
into issuequeues,physicalregister files, and the reorder
buffer (ROB). Theissuequeueandthe physicalregisterfile

Parameter Centralized Decentralizedache
cache eachcluster total
Cachesize 32KB 16 KB 16N KB
Set-associatity 2-way 2-way 2-way
Line size 32bytes 8 bytes 8N bytes
Bandwidth 4 words/gcle | 1word/gcle | N words/gcle
RAM look-uptime 6 cycles 4 cycles 4 cycles
LSQsize 15N 15 15N

Table 2. Cache parameter s for the centraliz ed and decen-
tralized caches. All the caches are word interlea ved. N
is the number of cluster s.

arefurther split into integer andfloating-point. Thus,each
clusterin our studyis itself decomposethto anintegerand
floating-pointcluster The memoryhierarchyis alsomod-
eledin detail (including word-interleaed accesspus and
port contentionwritebackbuffers, etc).

This baseprocessostructurewasmodifiedto modelthe
clusteredmicroarchitectureTo represena wire-delaycon-
strainedprocessoat future technologieseachclustercore
was assumedo have one functionalunit of eachtype, 30
physicalregisters(int andfp, each),and15 issuequeueen-
tries (int andfp, each). As mary instructionscanissuein
a cycle asthe numberof availablefunctionalunits. We as-
sumethateachhopontheinterconnectakesasinglecycle.
While we did not modelatracecache we assumedhatin-
structionscouldbefetchedfrom upto two basicblocksata
time. Theimportantsimulationparameteraresummarized
in Tablel.

The numberof resourcesn eachclusterandthe lateng
for eachhop on the interconnectare critical parameters
in sucha study asthey determinethe amountand cost of
inter-clustercommunication. Theseparametersre highly
technologylayout,anddesign-dependeranddetermining
themis beyondthescopeof thisstudy Ourresultsincludea
sensitvity analysisto seehow theresultschangeasour as-
sumptionson the numberof registers,issuequeueentries,
functionalunits,andcyclesperhoparevaried.

Our study focuseson wire-limited technologiesof the
future and we pick latenciesaccordingto projectionsfor
0.035u. We usedCACTI-3.0[34] to estimateaccesgimes
for the cacheorganizations.We usedthe methodologyin
[1] to estimateclock speedsandmemorylatenciesfollow-
ing SIA roadmapprojections[5]. With Simplescalarwe
simulatedcacheorganizationswith differentsize and port
parametergandhencedifferentlatencies}o determinethe
bestbasecases. Theseparametersare summarizedn Ta-
ble 2. The centralizedcacheyieldedbestperformanceor
a 4-way word-interleaed 32KB cache.Sucha cachehasa
bandwidthof four accessepercycle andanaccesgime of
six cycles. The bestdecentralizedtacheorganizatiorhasa
single-portedour-cycle 16KB bankin eachcluster
3.2 Benchmark Set

As a benchmarlset,we usedfour SPEC2kinteger pro-
grams threeSPEC2K-P programsandtwo programsrom



Benchmark Input Simulation Base | Mispred
dataset window IPC branch
intenal

150M-250M 2.06 82
2000M-2200M | 1.85 118

30M-180M 4.07 249
2000M-2300M | 3.43 88
2000M-2100M | 1.83 87
2000M-2050M | 2.28 8977
2000M-2100M | 1.42 88
2000M-2050M | 1.67 | 22600
2000M-2100M | 1.20 171

cjpeg (Mediabench) | testimg
crafty (SPEC2Knt) ref
djpeg (Mediabench)| testimg
galgel(SPEC2kFP) ref
gzip (SPEC2Knt) ref
mgrid (SPEC2kFP) ref
parsef(SPEC2Knt) ref
swim (SPEC2k-P) ref
vpr (SPEC2Knt) ref

Table 3. Benchmark description. Baseline IPC is for a
monolithic processor with as many resour ces as the 16-
cluster system. "Mispred branc h inter val” is the number

of instr s before a branc h mispredict is encountered.
25

M 2 clusters
O4 clusters
> llO8 clusters [ =
E116 clusters

IPCs

cjpeg crafty djpeg galgel gzip mgrid parser swim vpr HM

Figure 3. IPCs for fixed cluster organizations with 2, 4, 8,
and 16 cluster s.

theUCLA MediabencH25]. Thedetailsontheseprograms
arelistedin Table3. The programsepresena mix of vari-
ousprogramtypes,including high andlow IPC codes,and
thoselimited by memory branchmispredictionsetc. Most
of theseprogramsawerefastforwardedthroughthefirst two
billion instructionsandsimulatedn detailto warmthevar
ious processostructuresbeforemeasurementaeretaken.
While we aresimulatinganaggressie processomodel,not
all our benchmarkprogramshave a high IPC. Notethatan
aggressie processodesignis motivatedby the needto run
high IPC codesandby theneedto supportmultiple threads.
In both cases,the quick completionof a single low-IPC
threadis still important— hencethe needto include such
programsn thebenchmarlset.

4. The Dynamically Tunable Clustered Design

For brevity, we focus our initial analysison the 16-
clustermodel with the centralizedcacheand the ring in-
terconnect. Figure 3 shaws the effect of statically us-
ing a fixed subsetof clustersfor a program. Increasing
the numberof clustersincreaseshe averagedistanceof a
load/storeinstruction from the centralizedcacheand the
worst-casénter-clusterbypassielay therebygreatlyaffect-
ing the overall communicationcost. Assumingzerointer
clustercommunicationcostfor loadsand storesimproved

performancédy 31%,while assumingerocostfor register
to-registercommunicatiorimproved performancedy 11%,
indicating that increasedoad/storelateny dominatesthe
communicatioroverhead Thislateng couldbereducedy
steeringload/storeinstructionsto the clusterclosestto the
cache but this would increasdoad imbalanceandregister
communication.The averagelateng for inter-clusterreg-
ister communicationin the 16-clustersystemwas4.1 cy-
cles. At the sametime, using more clustersalso provides
the programwith more functional units, registers,and is-
suequeueentries thusallowing it to dispatcha largerwin-
dow of in-flight instructions.Dependingon which of these
two conflicting forces dominates,performanceeitherim-
provesor worsensas the numberof clustersis increased.
Programswith distantlLP, like djpeg (JPEGdecodingrrom
Mediabench)swim mgrid, andgalgel (loop-basedloating-
point programsrom SPEC2K)benefitfrom usingmary re-
sourcesOntheotherhand,mostintegerprogramswith low
branchpredictionaccuraciesannotexploit alargewindow
of in-flight instructions. Hence,increasingthe resources
only degradesperformancebecausef the additionalcom-
municationcost. Thisis aphenomenohithertounobsered
in a clusteredprocessor(partly becausevery few studies
have looked at more thanfour clustersand partly because
earlier studiesassumeco communicationcostin access-
ing acentralizeccache).

Our goal is to tune the hardware to the programs re-
qguirementsby dynamically allocating clustersto the pro-
gram. This canbeverytrivially achievedby modifying the
steeringheuristicto disallow instructiondispatchto thedis-
abledclusters. In otherwords, disablingis equivalentto
not assigningary new instructionsto the cluster Instruc-
tions alreadyassignedo the disabledclustersare allowed
to completeresultingin anaturaldrainingof the cluster

4.1 Consistencyof Behavior Acrossinter vals

Variousrecentworks[4, 6, 7, 10, 16, 19, 20, 22, 31, 38]
have proposedrun-time algorithmsfor the dynamic tun-
ing of hardwareto a programphases requirements.Most
of thesetechnigquesiseaninterval-basedalgorithm,where
measurementaver the lastfew intervals dictatethe choice
of configurationover subsequenintenals, whereaninter-
val is a pre-specifiednumberof committedinstructions.
Our dynamic configurationselectionmechanisms based
on earlierproposalq7, 16]. At the startof eachprogram
phasewe run eachconfigurationoptionfor aninterval and
recordthe IPCs. We then pick the configurationwith the
highestIPC and useit until the next phasechangeis de-
tected. Sucha mechanismis heavily reliant on the pro-
gram’s ability to sustainuniform performanceover a num-
berof intervals. We foundthatfloating-pointprogramgen-
erally shaw this behavior, while the integer programsshav
a lot morevariability. While earlier studieshave assumed
fixed interval lengths,we found that this would resultin



Benchmark | Minimum acceptabléntenal Instability factor
lengthandits for a10K instruction
instability factor intenal
gzip 10K/ 4% 4%
vpr 320K/ 5% 14%
crafty 320K/ 4% 30%
parser 40M / 5% 12%
swim 10K/ 0% 0%
mgrid 10K/ 0% 0%
galgel 10K/ 1% 1%
cjpey 40K / 4% 9%
dipeg 1280K/ 1% 31%

Table 4. Instability factors for diff erent inter val lengths.

very poor performanceor a numberof programs.Hence,
picking anappropriaténterval lengthis fundamentato the
succes®f a configurationselectionalgorithm (and canbe
universallyappliedto the configurationof otheraspectof

theprocessoin additionto the numberof clusters).

To studythe variability of programbehaior over differ-
entintervals,we raneachof the programdor billions of in-
structionsto generate traceof variousstatisticsat regular
10K instructionintervals. We usedthreemetricsto define
a programphase- IPC, branchfrequeng, and frequeng
of memoryreferencesAt the startof eachprogramphase,
the statisticscollectedduring the first interval wereusedas
reference. For eachensuingintenal, if the threemetrics
for thatinterval weresimilar to thereferencepoints,thein-
tenval wastermed'stable’. If any of the threemetricswas
significantlydifferent,we declaredheinterval as‘unstable’
andbegananew programphase Thisanalysisvasdonefor
mary interval lengths. Theinstability factor for aninterval
lengthis the percentagef intervals that were considered
‘unstable’,i.e., the frequeng of the occurrenceof a phase
changeln our study we foundthatit wassufficientto only
explore a limited subsetof the possibleconfigurationg(2,
4, 8, and 16 clusters)asthey coveredmostof the interest-
ing casesAn instability factor of 5% ensureghatlessthan
15%of theintervalsarein sub-optimakonfigurations.

Table4 shavsthesmallesinterval lengththataffordsan
acceptablénstability factor of lessthan5% for eachof our
programs.As canbe seentheinterval lengthsthatemege
asthebestvary from 10K to 40M. We alsoshow theinsta-
bility factor for a fixedinterval lengthof 10K instructions.
Clearly, this interval lengthworks poorly for a numberof
programsand would resultin quite unacceptablegerfor
mance. Most programsusually shav consistentoehavior
acrossntenalsfor acoarsesnoughinterval length,making
interval-basedschemesvery robust and universally appli-
cable. Evena programlike parser, whosebehaior varies
dramaticallybasedon the input data,hasa low instability
factorfor alarge40M instructioninterval.

4.2 Variable-Inter val Mechanismwith Exploration

In order to arrive at the optimal instruction interval
lengthatrun-time,we usea simplealgorithm.We startwith
theminimuminstructioninterval. If theinstability factoris

Initializations and definitions:
interval_length = 10K; (number of committed instrs before invoking the algo)
discontinue_algorithm = FALSE; (if this is set, no more reconfigurations are
attempted until the next macrophase)
have_reference_point = FALSE; (the firstinterval in a new phase provides a
reference point to compare future intervals)
significant_change_in_ipc; (this is set if the IPC in the current interval differs
from that in the reference point by more than 10%)
significant_change_in_memrefs; (this is set if the memory references in the
current interval differs from the reference
point by more than interval_length/100)
significant_change_in_branches; (similar to significant_change_in_memrefs)
num_ipc_variations = O; (this indicates the number of times there was a
significant_change_in_ipc)
stable_state = FALSE; (this is set only after all configs are explored)
num_clusters; (the number of active clusters)
instability = O; (number indicating phase change frequency)

THRESH1 = THRESH2 = 5; THRESH3 = 1 billion instructions;

Inspect statistics every 100 billion instructions.
If (new macrophase)
Initialize all variables;

If (not discontinue_algorithm)
Execute the following after every interval_length instructions;
If (have_reference_point)

If (significant_change_in_memrefs or significant_change_in_branches or
(significant_change_in_ipc and num_ipc_variations > THRESH1))
have_reference_point = stable_state = FALSE;
num_ipc_variations = 0O;
num_clusters = 4;
instability = instability + 2;
if (instability > THRESH2)

interval_length = interval_length * 2;
instability = O;
if (interval_length > THRESH3)
Pick most popular configuration; discontinue_algorithm = TRUE;
else
if (significant_change_in_ipc)
if (stable_state) num_ipc_variations = num_ipc_variations + 2;
else
num_ipc_variations = MAX(—2,num_ipc_variations—0.125);
instability = instability — 0.125;
else
have_reference_point = TRUE;
Record branches and memrefs.
If (have_reference_point and not stable_state)

record IPC;

num_clusters = num_clusters * 2;

if (num_clusters > 16)
pick the best performing configuration;
make its IPC the IPC_reference_point;
stable_state = TRUE;

Figure 4. Run-time algorithm for dynamic selection of the
number of cluster s. The constant increment/decrements
for num_ipc _variations and instability were chosen to al-

low about 5% instability . The thresholds were picked to
be reasonab le round numbers.

too high, we doublethe size of theinterval andrepeatthis
until we eitherexperiencealow instability factor or until we
reacha pre-specifiedimit (say abillion instructions)If we
reachthelimit, we ceaseao employ the selectionalgorithm
andpick the configurationthatwaspicked mostoften.
Oncewe pick aninterval length,we neednot remainat
thatintenal lengthforever. The programmight move from
one large maciophaseto anotherthat might have a com-
pletely differentoptimaliinstructioninterval. To dealwith
this, we cancontinueto hierarchicallybuild phasedetection
algorithms.An algorithmthatinspectsstatisticsat a coarse
granularity(say every 100 billion instructions)could trig-
gerthe detectionof a new macophase at which point, we
would restartthe selectionalgorithm with a 10K interval
lengthandfind the optimalinterval lengthall over again.
For completenessn Figure4, we describeouralgorithm
that selectsthe intenval length, detectsphasesand selects
the bestconfigurationat run-time. At the startof a phase,
the statisticscollectedin the first interval sene asa refer
encepoint againstwhich to comparefuture statisticsand



detecta phasechange.The branchand memaoryreference
frequenciesare microarchitecture-independeparameters
and can be usedto detectphasechangeseven during the
exploration process. After exploration, the bestperform-
ing configurationis picked andits IPC is also usedasa
reference. A phasechangeis signaledif eitherthe num-
ber of branchesthe numberof memoryreferencesor the
IPC differs significantly from the referencepoint. Occa-
sionally, thereis a slight changein IPC characteristicslur-
ing anintenval (perhapgausedy aburstof branchmispre-
dictsor cachemisses)afterwhich, behaior returnsto that
of the previous phase.To discouragaeedlesexplorations
in this scenariowe toleratesomenoisein theIPC measure-
ments(with thenum.ipc_variationsparameter)ln addition,
if phasechangesarefrequenttheinstability variableis in-
crementedindeventually theinterval lengthis doubled.

This entire processof run-time reconfigurationcan be
implementedn softwarewith supportfrom hardwareevent
counters.A low-overheadsoftwareroutine (lik e that used
for softwareTLB misshandling)thatinspects/arioushard-
ware countersheforemakinga decisionon the subsequent
configurationis invoked at every interval. The algorithm
amountsto about100 assemblyinstructions,only a small
fraction of which are executedat eachinvocation. Even
for the minimum interval length of 10K instructions,this
amountgo anoverheadf muchlessthan1%. Implement-
ing the selectionalgorithmin softwareallows greaterflex-
ibility andopensup the possibility for application-specific
algorithms.Algorithmsat higherlevelsthatdetectchanges
in maciophaseshave an even lower overhead. Sincethe
algorithmrunsentirely in software, mostprogram-specific
stateresidesin memoryas opposedo hardware registers.
Hence,apartfrom the event counters,no additional state
hasto be savedandrestoredon a context switch.

Results. In Figure5, thethird barillustratestheimpact
of using the interval-basedselectionmechanismwith ex-
plorationat the startof eachprogramphase.As reference
points,thefirst two barsshav the staticorganizationawith
four and 16 clusters. We seethat in almostall casesthe
dynamicschemaloesavery goodjob in approximatinghe
performanceof the beststatic organization. For floating-
point programswith little instability (galgel, mgrid, swim,
thedynamicschemeeasilymatcheshehardwareto thepro-
gram’s requirements. For the integer programs,in most
casesthereis aninitial unstableperiod whenthe interval
sizeis inappropriate.Consistentvith our earlieranalysis,
theinterval sizeis increasedintil it settlesatonethatallows
aninstability factor of lessthan5%. In parser, the simu-
lation interval was not long enoughto allow the dynamic
schemedo settleatthe required40M instructioninterval.

In djpey, it takesa numberof intervals for the interval
sizeto belargeenough(1.28Minstructions)o allow asmall
instability factor. Further sincetheinterval lengthis large,
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Figure 5. IPCs for the base cases and for inter val-based
schemes. The third bar represents the algorithm with
exploration phases, while the four th, fifth, and sixth bars
represent algorithms with no exploration.

mary opportunitiesfor reconfigurationare missed. There
aresmallphasesvithin eachinterval wheretheILP charac-
teristicsare different. For thesetwo reasonsthe dynamic
schemdalls shortof the performanceof the fixed staticor-

ganizationwith 16 clustersfor djpeg.

In the caseof gzip, there are a numberof prolonged
phasessomewith distantILP characteristicsand others
with low amountf distantlLP. Sincethedynamicscheme
picksthe bestconfigurationat any time, its performances
betterthaneventhebeststaticfixed organization.

On average 8.3 of the 16 clustersweredisabledat arny
time acrosghe benchmarlset. In the absencef ary other
workload, this producesa greatsavings in leakageeneny,
providedthe supplyvoltageto theseunusedclusterscanbe
turnedoff. Likewise, for a multi-threadedwvorkload, even
afteroptimizingsingle-threagberformancemorethaneight
clustersstill remainfor useby the otherthreads.

Overall, the dynamicinterval-basedschemewith explo-
ration performsabout11% betterthanthe beststaticfixed
organization. It is also very robust — it appliesto every
programin our benchmarksetasthereis usually a coarse
enoughinterval length suchthat behaior acrossthosein-
tenals is fairly consistent. However, the downsideis the
inability to targetrelatively shortphasesWe experimented
with smallerinitial interval lengths,but found thatthe dy-
namic schemeencounteredjreatinstability at thesesmall
interval lengths,and hence,the intenval lengthswere in-
creasedo a largervaluejust asbefore. This is causedoy
the fact that measurementbecomenoisier asthe interval
sizeis reducedandit is harderto detectthe sameprogram
metrics acrossintervals and accordinglyidentify the best
configuratiorfor ary phase.

4.3 Inter val-BasedSchemewith no Exploration

To alleviate theseproblemswe attemptedan alternatie
interval-basedscheme. Insteadof exploring variouscon-
figurationsat the start of eachprogramphase,we useda



16-clusterconfiguratiorfor aninterval andbasecnthede-
greeof availabledistantlLP, we selecteckitherafour or 16-
clusterconfigurationfor subsequenintervalsuntil the next
phasechange(our earlierresultsindicatethatthesearethe
two mostmeaningfulconfigurationsandcover mostcases).
An instructionis marked as distantif it is at least120in-
structionsyoungerthanthe oldestinstructionin the ROB.
At the time of issue,the instructionsetsa bit in its ROB
entryif it is distant At thetime of commit, this bit is used
to incrementhe ‘degreeof distantILP’. Sinceeachcluster
has30physicalregistersfour clustersareenoughto support
about120in-flight instructions.If thenumberof distantin-
structionsissuedin aninterval exceedsa certainthreshold,
it indicatesthat16 clusterswould berequiredto exploit the
availabledistantlLP. In ourexperimentswe useathreshold
valueof 160for aninterval lengthof 1000. Becauséghere
is no exploration phase,the hardware reactsquickly to a
programphasechangeandreconfiguratiorat afiner granu-
larity becomesneaningful. Hence we focuson smallfixed
instructionintervalsanddo notattempto increaseheinter-
val lengthatrun-time.However, sincethedecisionis based
on programmetricsinsteadof exploration,someaccurag
is compromised. Further the smallerthe interval length,
thefasterthereactionto a phasechangehut the noisierthe
measurementsesultingin someincorrectdecisions.
Results. Figure5 also shaws resultsfor sucha mech-
anismfor threedifferentfixed interval lengths. An inter-
val lengthof 1K instructionsprovidesthe besttrade-of be-
tweenaccuray andfastreactiongo phasechanges.Over-
all, it shavsthe samel1%improvementoverthe beststatic
basecase.However, in a programlik e djpey, it doesmuch
better (21%) than the interval-basedschemewith explo-
ration becauseof its ability to target small phaseswith
different requirements. Unfortunately it takes a perfor
mancehit in programslike galgel and gzip becausethe
smallinterval-lengthandthe noisy measurementesultin
frequentphasechangesndinaccuratalecision-making.
One of the primary reasondor this is the fact that the
basicblocksexecutedin successie 1000instructioninter-
vals are not alwaysthe same. As a result, frequentphase
changesresignaledandeachnew phasechangeresultsin
an interval with 16 clusters,to help determinethe distant
ILP. To alleviate this problem,we examinea fine-grainre-
configurationrschemeat basicblock boundaries.

4.4. Fine-Grain Reconfiguration

To allow reconfigurationat a fine granularity we look
uponevery branchas a potentialphasechange. We need
to determineif a branchis followed by a high degree of
distantILP, in which casedispatchshouldcontinuefreely,
else,dispatchshouldbe limited to only the first four clus-
ters. Exploring variousconfigurationds not a feasibleop-
tion astherearelik ely to be mary neighboringbranchesn
differentstagesof explorationresultingin noisy measure-

mentsfor eachbranch. Hence,until we have enoughin-

formation,we assumedispatchto 16 clustersandcompute
thedistantILP characteristicfollowing every branch.This

is usedto updatea reconfiguation table so that whenthe
samebranchis laterencounteredt is ableto pick theright

numberof clusters.If we encountea branchwith no entry
in thetable,we assume 16-clusterorganizatiorsothatwe

candetermindts degreeof distantILP.

Assumingthatfour clusterscansupportroughly 120in-
structions,to determineif a branchis followed by distant
ILP, we needto identify how mary of the 360 committed
instructionsfollowing a branchweredistantwhenthey is-
sued. Accordingly, eitherfour or 16 clusterswould be ap-
propriate. To effect this computationwe keeptrack of the
distantlLP natureof the 360lastcommittedinstructions. A
single countercanbe updatedby the instructionsentering
andleaving this queueof 360instructionssothatarunning
countof thedistantILP canbe maintained Whenabranch
happenso betheoldestof these360instructionsijts degree
of distantlLP is indicatedby thevaluein the counter

Thereis likely to still be someinterferenceérom neigh-
boring branchesTo make the mechanismmorerobust, we
samplethe behavior for a numberof instanceof the same
branchbeforecreatinganentryfor it in thereconfiguration
table. Further we canfine-tunethe granularityof reconfig-
uration by attemptingchangesonly for specificbranches.
For example we foundthatbestperformancevasachieved
whenwe attemptedthangedor only everyfifth branch.We
also shav resultsfor a mechanisnthat attemptschanges
only atsubroutinecallsandreturns.We formalizethe algo-
rithm below:

At every Nth branch, |ook up the reconfig table

If entry found, change to advi sed configuration

El se, use 16 clusters
Wil e renoving a branch fromthe queue of 360
committed instrs

If Msanples of this branch have been seen

Do not update table.
El se,
Record the | atest sanple
If this is the Mh sanple
conpute the advi sed configuration

El se,
advi sed configuration is 16 clusters.

The downsideof the approachust describeds the fact
thatinitial measurementdictatefuture behaior. The na-
ture of the codefollowing a branchcould changeover the
courseof the program. It might not alwaysbe easyto de-
tectsuchachangegspeciallyif only four clustersarebeing
usedandthe degreeof distantILP is not evident. To deal
with thissituation we flushthereconfigurationableatperi-
odicintervals. We foundthatre-constructinghetableevery
10M instructionsresultedn negligible overheads.

Results. In Figure6, in additionto the basecasesand
theinterval-basedschemewith exploration,we shov IPCs
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Figure 6. IPCs for the base cases, the inter val-based al-
gorithm with exploration, and two fine-grained reconfig-
uration schemes. The first reconfigures at every fifth

branc h, the second at every subr outine call and return.

for two fine-grainedreconfigurationschemes. The first
attemptsreconfigurationat every 5th branchand creates
an entry in the table after collecting 10 samplesfor each
branch. To eliminateeffectsfrom aliasing,we usea large
16K-entrytable,though,in almostall casesamuchsmaller
tableworks aswell. The secondschemeattemptschanges
at every subroutinecall andreturnandusesthreesamples.
Thefigureindicateghattheability to quickly reactto phase
changegesultsin improved performanceén programdike
djpeg, cjpeg, crafty, parser andvpr. The maximumnum-
ber of changesbetweenconfigurationswas obsened for
crafty (1.5 million). Unlike in the interval-basedschemes
with no exploration,instability is not causedy noisymea-
surements.However, gzip fails to matchthe performance
achieved by the interval-basedscheme. This is because
the natureof the codefollowing a branchchangesver the
courseof the program. Hence,our policy of usinginitial
measurement® pick a configurationfor the future is not
alwaysaccurate The samebehaior is obseredto alesser
extentin galgel. Overall, the fine-grainedschemegyield
a 15% improvementover the basecasescomparedo the
11%improvementsseerwith theinterval-basedschemes.

From these results, we conclude that interval-based
schemeswith exploration are easyto implement, robust,
andprovide mostof thespeeduppossible Becaus®f their
tendeng to pick a coarseinterval length,a numberof re-
configurationopportunitiesare missed. Choosinga small
interval lengthis not the solutionto this becauseof noisy
measurementacrosssuccessie smallintervals. To allow
fine-grainedreconfigurationsye pick basicblock bound-
ariesasreconfiguratiorpointsanduseinitial measurements
to predict future behaiior. Exceptfor gzip, suchan ap-
proachdoesnot tradeoff muchaccurag andthe hardware
is ableto quickly adaptto theprogramsneeds However, to
getthisadditionald% improvementwe haveto investsome

non-trivial amountof hardware— atableto keeptrackof the
predictionsandlogic to maintainthedistantILP metric.

5. The DecentralizedCacheModel

Clustered LSQ implementation. In the decentralized
cachemodel,if aneffective addresss known whenamem-
ory instructionis renamedthenit can be directedto the
clusterthat cachesthe correspondinglata. However, the
effective addresss generallynotknown at renameime, re-
quiring thatwe predictthe bankthatthis memoryoperation
is goingto accessBasedon this prediction,theinstruction
is sentto oneof the clusters.Oncethe effective addresss
computedappropriateecoveryactionhasto betakenin the
caseof abankmisprediction.

If the operationis a load, recovery is simple - the ef-
fective addresss sentto the correctcluster wherememory
conflictsareresoledin the LSQ, datais fetchedfrom the
cachebank, andreturnedto the requestingcluster If the
memoryoperationis a store,the mis-directioncould result
in correctnesproblems.A loadin a differentclustercould
have proceededvhile beingunaware of the existenceof a
mis-directedstoreto the sameaddress. To dealwith this
problem,we adopta policy similar to thatin [40]. While
renaming,a store whoseeffective addresss unknown is
assignedo a particularcluster(whereits effective address
is computed),but at the sametime, a dummy slot is also
createdn the other clusters. Subsequenibadsbehindthe
dummyslotin otherclustersarepreventedfrom proceeding
becauséhereis anearlierstorewith anunresohedaddress
that could potentially causeconflicts. Oncethe effective
addresss computedtheinformationis broadcasto all the
clustersandthedummysilotsin all theLSQsexceptoneare
removed. The broadcasincreaseghe traffic on the inter-
connecffor registerandcachedata(whichwe model).

Bank prediction. Earlierwork by Yoazetal. [39] had
proposedhe useof branch-predictotik e tablesto predict
thebankaccessetly aloador store.In our simulationswe
useatwo-level bankpredictorwith 1024entriesin thefirst
level and4096entriesin thesecond.

Steering heuristics. In a processowith a decentralized
cache,the steeringheuristichasto handlethree datade-
pendencefor eachloador store—thetwo sourceoperands
and the bank that cachesthe data. Sincethe transferof
cachedatainvolvestwo communicationgthe addressand
the data),performanceds maximizedwhena load or store
is steeredo the clusterthatis predictedto cachethe cor-
respondingdata(note that unlike in the centralizedcache
model, doing so doesnot increaseload imbalanceas the
cacheis not at a singlelocation). Even so, frequentbank
mispredictionsandthe increasedraffic from storeaddress
broadcastseriouslyimpact performance. Ignoring these
effectsimproved performanceby 29%. At the sametime,
favoring the dependencéom the cachebankresultsin in-
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Figure 7. IPCs for dynamic inter val-based mechanisms
for the processor model with the decentraliz ed cache.

creasedregister communication. Assumingfree register
communicatiorimprovedperformanceéyy 27%. Thus,reg-

isterandcachetraffic contribute equallyto thecommunica-
tion bottleneckin sucha system.

Disabling clusters. Sofar, our resultshave assumed
clusteredprocessowith a centralizedcache.Hence recon-
figurationis only a matterof allowing the steeringheuristic
to dispatchto asubsebdf thetotal clusters With adecentral-
izedcachegachclusterhasa cachebankassociatedvith it.
Datais allocatedo thesecachebanksin aword-interleared
manner In going from 16 to four clusters,the numberof
cachebanksand hence,the mappingof datato physical
cachdineschangesTo fix this problem,the leastcomplex
solutionis to stall the processoxvhile the L1 datacacheis
flushedto L2. Fortunately the bankpredictorneednot be
flushed.With 16 clustersthe bankpredictorproducesa 4-
bit prediction. Whenfour clustersare used,the two lower
orderbits of the predictionindicatethe correctbank.

Results. Becauseheindexing of datato physicalcache
locationschangesreconfiguratioris not asseamlesssin
thecentralizedcachemodel.Everyreconfiguratiomequires
a stall of the processoanda cacheflush. Hence,the fine-
grainedreconfiguratiorscheme$rom the earliersectiondo
not apply. Figure7 shows IPCsfor the basecasesandthe
interval-basednechanismsThethird barshavsthescheme
with explorationanda minimumi interval lengthof 10K in-
structions. The fourth andfifth barsshawv interval-based
schemesvith no explorationandtheuseof distantlLP met-
rics to pick the bestconfiguration.The simulationparame-
tersfor the decentralizedachearesummarizedn Table?2.
We find thatthe resultstrendis similar to that seenbefore
for thecentralizeccachemodel. Exceptin thecaseof djpeg,
thereis no benefitfrom reconfiguringusing shorterinter-
vals. Overall, the interval-basedschemewith exploration
yieldeda 10%speedupverthe basecases.

Sincethe dynamicschemeattemptsto minimize recon-
figurations, cacheflushesare kept to a minimum. Vpr
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Figure 8. IPCs for the dynamic inter val-based mecha-
nism for the processor model with the grid inter connect.

encounteredhe maximum number of writebacksdue to
flushes (400K), which resultedin a 1% IPC slowdown.
Overall, theseflushesresultedn a0.3%IPC degradation.

6. Sensitvity Analysis

Our results have showvn that the communication-
parallelismtrade-of greatlyaffectsthe scalabilityof differ-
entprogramsasthe numberof clustersis increasedor two
importantcacheorganizations.In this section,we confirm
theapplicability of our dynamicreconfiguratioralgorithms
to other meaningfulbasecases. Someof the key param-
etersthat affect the degreeof communicationand the de-
greeof distantILP arethe choiceof interconnecbetween
theclustersthelateng/ of communicatioracrossahop,the
numberof functionalunitsin eachcluster andthe number
of instructionsthat can be supportedby eachcluster(the
numberof registersandissuequeueentriesper cluster).

Figure 8 shaws the effect of usinga grid interconnect
asdescribedn Section2.3with a centralizedcachemodel.
Becauseof the betterconnectvity, the communicationis
lessof a bottleneckandthe performanceof the 16-cluster
organizationis 8% betterthanthat of the 4-clustersystem.
For brevity, we only showv resultswith the interval-based
schemewith exploration. The trendis as seenbefore,but
becausdhe communicatiornpenaltyis not as pronounced,
theoverallimprovementoverthe bestbasecaseis only 7%.
The use of fine-grainedreconfigurationtechniquesyields
qualitatively similar resultsaswith thering interconnect.

We alsostudiedthe sensitvity of theresultsto thesizes
of variousresourceswithin a cluster We studiedthe ef-
fect of usingfewer (10 issuequeueentriesand20 registers
percluster)andmoreresource$20 issuequeueentriesand
40 registersper cluster). Whentherearefew resourceper
cluster more clustersare required,on average,to exploit
the available parallelism. Hence,the 16-clustersystemis
afavorablebasecaseandthe improvementof theinterval-
baseddynamicmechanisnrelative to it is only 8%. When



thereare more resourceser cluster usinga few clusters
for low-ILP phasess highly beneficial.As aresult,theim-
provementover the 16-clusterbaseis 13%. By usingmore
functionalunits percluster our resultswerevery similar to
thosein Section4.2. Doubling the costof communication
acrosseachhop resultsin a highly communication-bound
16-clustersystem.By emplgying the dynamicmechanism
andusingfewer clustersfor low-ILP phasesa 23% perfor-
mancemprovementwasseen.

Theseresultsare qualitatvely similar to the improve-
mentsseenwith the interval-basedschemesn the earlier
subsectiongndicatingthatthe dynamicallytunabledesign
canhelp improve performancesignificantly acrossa wide
rangeof processoparametersThus,the communication-
parallelismtrade-of andits managemenare likely to be
importantin mostprocessorsf thefuture.

7. Related Work

A numberof proposalsbasedon clusteredprocessors
have emegedoverthepastdecadd3, 8, 11, 12, 13, 17, 23,
26, 28, 30, 32, 33, 35]. Thesdlifferin thekindsof resources
thatgetallocatedtheinstructionsteeringheuristicsandthe
semanticdor cross-clustecommunication.The cacheis a
centralizedstructurein all thesemodels. Thesestudiesas-
sumea smallnumberof total clusterswith modestcommu-
nicationcosts.

Choetal. [14, 15] clusterthecacheandLSQ, but notthe
restof the processar Stackand frame dataare cachedin
a separatdankandloadsand storesare steeredo one of
two streamsearlyin the pipeline.Yoazetal. [39] anticipate
theimportanceof splitting accesseacrossnultiple streams
andproposepredictorsfor thesame.

Recently Zyubanand Kogge[40] incorporateda clus-
teredcachein their studyon the power efficiency of a clus-
teredprocessar Our implementationof the decentralized
cachecloselyresemblesheirs. A recentstudyby Aggarwal
andFranklin[2] exploresthe performanceof varioussteer
ing heuristicsasthe numberof clustersscaleup. Theirsis
theonly studythatlooksatasmary as12 clustersandpro-
posegheuseof aring interconnectThey concludethatthe
beststeeringheuristicvariesdependingon the numberof
clustersandthe processomodel. To take thisinto account,
eachof our clusteredrganizationsvasoptimizedby tuning
thevariousthresholdsn our steeringheuristic.

Many recentbodiesof work [4, 6, 7, 10, 16, 19, 20, 22,
31, 38] have looked at hardware units with multiple con-
figuration optionsand algorithmsfor picking an appropri-
ateconfigurationat run-time.Many of thesealgorithmsare
interval-basedjn that, they monitor variousstatisticsover
a fixed interval of instructionsor cyclesand make config-
uration decisionsbasedon that information. Oursis the
first proposalthat identifiesthe importanceof a variable-
lengthinstructioninterval andincorporateshisin theselec-

tion algorithm. We arealsothefirst to look at fine-grained
reconfigurationat branchboundariesand contrastit with
interval-basedschemesHuanget al. [21] studyadaptation
at subroutineboundariesandalsodemonstrat¢hatthis can
be moreeffective thanusingfixedinstructionintervals.

Agarwal et al. [1] shav that processorén future gener
ationsarelikely to suffer from lower IPCsbecausef the
high costof wire delays.Oursis thefirst studyto focusona
singleprocesgechnologyandexaminetheeffectsof adding
more resources.The clusteredprocessomodel exposesa
cleartrade-of betweercommunicatiorandparallelismand
it readilylendsitself to low-costreconfiguration.

8. Conclusion

We have presentedand evaluatedthe effects of shrink-
ing procesgechnologieanddominatingwire delaysonthe
designof future clusteredprocessorsWhile increasinghe
numberof clustersto take advantageof theincreasingchip
densitiesmprovesthe processos ability to supportmulti-
ple threadsthe performanceof a singlethreadcanbe ad-
verselyaffected.Thisis becaussuchprocessorarebound
by cross-clustecommunicatiorcosts.Thesecostscantend
to dominateary increasedextraction of instruction-level
parallelismasthe processoiis scaledto large numbersof
clusters. We have demonstratedhat dynamically choos-
ing the numberof clustersusing an exploration-basedp-
proachat regular intervals is effective in optimizing the
communication-parallelisrtrade-of for a singlethread. It
is applicableto almostevery programand yields average
performancemprovementsof 11% over our basearchitec-
ture. In orderto exploit phasechangest a fine grain, ad-
ditional hardware hasto be invested,allowing overall im-
provementof 15%. Since8.3 clusterson average aredis-
abledby thereconfiguratiorschemesthereis the potential
to save a greatdeal of leakageenegy in single-threaded
mode. The throughputof a multi-threadedworkload can
alsobe improved by avoiding cross-threadnterferenceby
dynamicallydedicatinga setof clustersto eachthread.We
have verified the validity of our resultsfor a number of
interestingprocessomodels,thus highlighting the impor-
tanceof themanagemenf thecommunication-parallelism
trade-of in future processors.
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