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Abstract

Clustered microarchitecturesare an attractive alterna-
tive to large monolithic superscalar designsdue to their
potential for higher clock ratesin the faceof increasingly
wire-delay-constrainedprocesstechnologies.Asincreasing
transistorcountsallow an increasein the numberof clus-
ters, therebyallowing more aggressiveuseof instruction-
levelparallelism(ILP), theinter-clustercommunicationin-
creasesasdatavaluesget spreadacrossa wider area. As
a resultof theemergenceof this trade-off betweencommu-
nicationandparallelism,a subsetof thetotal on-chip clus-
ters is optimal for performance. To match thehardware to
the application’s needs,we usea robust algorithm to dy-
namically tune the clustered architecture. The algorithm,
which is basedon programmetricsgatheredat periodicin-
tervals,achievesan 11%performanceimprovementon av-
erage over thebeststaticallydefinedarchitecture. We also
showthat the useof additional hardware and reconfigu-
ration at basicblock boundariescan achieve average im-
provementsof 15%. Our resultsdemonstratethat reconfig-
urationprovidesaneffectivesolutionto thecommunication
and parallelism trade-off inherent in the communication-
boundprocessorsof thefuture.

1. Intr oduction

Theextractionof largeamountsof instruction-level par-
allelism (ILP) from commonapplicationson modernpro-
cessorsrequires the use of many functional units and
largeon-chipstructuressuchasissuequeues,registerfiles,
caches,and branchpredictors. As CMOS processtech-
nologiescontinueto shrink,wire delaysbecomedominant
(comparedto logic delays)[1, 27, 29]. This, combined
with the continuingtrend towardsfasterclock speeds,in-
creasesthe time in cyclesto accessregular on-chipstruc-
tures(caches,registerfiles,etc.).Not only doesthisdegrade
instructionsper cycle (IPC) performance,it also presents
variousdesignproblemsin breakinguptheaccessinto mul-
tiple pipeline stages. In spite of the growing numbersof
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transistorsavailable to architects,it is becomingincreas-
ingly difficult to designlargemonolithicstructuresthataid
ILP extractionwithout increasingdesigncomplexity, com-
promising clock speed,and limiting scalability in future
processtechnologies.

A potentialsolutionto thesedesignchallengesis a clus-
teredmicroarchitecture [17, 29] in which thekey processor
resourcesare distributed acrossmultiple clusters,eachof
which containsa subsetof the issuequeues,registerfiles,
andthefunctionalunits. In sucha design,at thetime of in-
structionrename,eachinstructionis steeredinto oneof the
clusters.As a resultof decreasingthe sizeandbandwidth
requirementsof the issuequeuesandregisterfiles, the ac-
cesstimesof thesecycle-timecritical structuresaregreatly
reduced,therebypermittinga fasterclock. Thesimplifica-
tion of thesestructuresalsoreducestheirdesigncomplexity.

An attractive featureof a clusteredmicroarchitectureis
the reduceddesigneffort in producingsuccessive genera-
tionsof a processor. Not only is thedesignof a singleclus-
tergreatlysimplified,but onceasingleclustercorehasbeen
designed,moreof thesecorescanbeput into theprocessor
for a low designcost(includingincreasingfront-endband-
width) asthetransistorbudgetincreases.Addingmoreclus-
ters could potentially improve IPC performancebecause
eachprogramhasmore resourcesto work with. Thereis
little effect if any on clock speedfrom doingthis astheim-
plementationof eachindividual clusterdoesnot change.In
addition,evenif theresourcesin a largeclusteredprocessor
cannotbe effectively usedby a singlethread,the schedul-
ing of multiple threadson a clusteredprocessorcansignif-
icantly increasetheoverall instructionthroughput.Therel-
atively low designcomplexity and the potentialto exploit
thread-level parallelismmake a highly-clusteredprocessor
in thebillion transistoreraanextremelyattractiveoption.

The primary disadvantageof clusteredmicroarchitec-
turesis their reducedIPC comparedto a monolithicdesign
with identical resources.Although dependentinstructions
within a singleclustercanissuein successive cycles,extra
inter-clusterbypassdelaysprevent dependentinstructions
that lie in differentclustersfrom issuingin successive cy-
cles. While monolithic processorsmight usea potentially
muchslowerclockto allow asingle-cyclebypassamongall
functionalunits,aclusteredprocessorallowsa fasterclock,
therebyintroducingadditionallatenciesin cyclesbetween
someof the functionalunits. The clustereddesignis a vi-



ableoptiononly if the IPC degradationdoesnot offset the
clockspeedimprovement.

Modernprocessorslike the Alpha 21264[24] at ��� �
	��
technology already employ a limited clustered design,
whereinthe integer domain,for example,is split into two
clusters. A numberof recentstudies[2, 8, 11, 12, 17]
have exploredthe designof heuristicsto steerinstructions
to clusters.Despitetheseadvances,the resultsfrom these
studieswill likely needto bereconsideredin thenearfuture
for thefollowing reasons:

 Dueto thegrowing dominanceof wire delays[27, 29]

andthetrendof increasingclockspeeds,theresources
in eachclustercore will needto be significantly re-
ducedrelative to thoseassumedin prior studies.


 Therewill be moreclusterson the die thanassumed
in prior studiesdueto largertransistorbudgetsandthe
potentialfor exploiting thread-level parallelism[36].


 The numberof cycles to communicatedatabetween
the furthesttwo clusterswill increasedueto the wire
delayproblem[1]. Furthermore,communicationde-
lays will be heterogeneous,varying accordingto the
positionof theproducerandconsumernodes.


 Thedatacachewill needto bedistributedamongclus-
ters, unlike the centralizedcacheassumedby most
prior studies,dueto increasedinterconnectcostsand
the desire to scale the cachecommensuratelywith
otherclusterresources.

While theuseof a largenumberof clusterscouldgreatly
boostoverall throughputfor a multi-threadedworkload,its
impacton theperformanceof a single-threadedprogramis
not asevident. Thecumulativeeffect of theabovetrendsis
thatclusteredprocessorswill bemuchmorecommunication
boundthanassumedin prior models.

As thenumberof clustersonthechipincreases,thenum-
berof resourcesavailableto thethreadalsoincreases,sup-
portingalargerwindow of in-flight instructionsandthereby
allowing moredistantinstruction-level parallelism(ILP) to
beexploited.At thesametime, thevariousinstructionsand
dataof the programget distributed over a larger on-chip
space. If datahasto be communicatedacrossthe various
clustersfrequently, the performancepenaltyfrom this in-
creasedcommunicationcanoffsetany benefitderivedfrom
theparallelismexploitedby additionalresources.

In this paper, we presentand evaluatea dynamically
tunableclusteredarchitecturethatattemptsto optimizethe
communication-parallelismtrade-off for improved single-
threadedperformancein the faceof theabove trends.The
balanceis effectedby employing only a subsetof the to-
tal numberof availableclustersfor the thread.Our results
show that the performancetrendasa functionof thenum-
ber of clustersvariesacrossdifferentprogramsdepending

onthedegreeof distantILP presentin them.Thismotivates
the needfor dynamicalgorithmsthat identify the optimal
numberof clustersfor any programphaseand matchthe
hardwareto theprogram’s requirements.We presentalgo-
rithms that vary the numberof active clustersat any pro-
grampoint andshow that a simplealgorithmthat looks at
performancehistoryover thepastfew intervalsoftenyields
mostof theavailableperformanceimprovements.However,
suchanalgorithmmissesfine-grainedopportunitiesfor re-
configuration,andwepresentalternativetechniquesthatin-
vestmorehardwarein anattemptto targetthesemissedop-
portunities. The simple interval-basedalgorithmprovides
overall improvementsof 11%,while thefine-grainedtech-
niquesareableto provide15%improvementsover thebest
staticorganization.

Disabling a subsetof the clustersfor a given program
phasein orderto improvesingle-threadedperformancehas
other favorable implications. Entire clusterscan turn off
their supplyvoltage,therebygreatlysaving on leakageen-
ergy, a techniquethat would not have beenpossiblein a
monolithic processor. Alternatively, theseclusterscanbe
usedby (partitionedamong)other threads,therebysimul-
taneouslyachieving the goalsof optimal singleandmulti-
threadedthroughput.

The restof thepaperis organizedasfollows. Section2
describestheclusteredmicroarchitectureandSection3 de-
scribesour simulation infrastructure. Section4 develops
andevaluatesour algorithmsfor the run-timeallocationof
clustersto eachprogramphasefor acentralizedcache.Sec-
tion 5 summarizestheir performancefor a decentralized
cachemodel. In Section6, we evaluatethe sensitivity of
theresultsto variousprocessorparameters.Wedescribere-
latedwork in Section7 andconcludein Section8.

2. The BaseClustered ProcessorAr chitecture

We start by describinga baselineclusteredprocessor
model that has been commonly used in earlier studies
[2, 8, 11, 12, 17]. Suchamodelwith four clustersis shown
in Figure1. Thebranchpredictorandinstructioncacheare
centralizedstructures,just as in a conventionalprocessor.
At the time of registerrenaming,eachinstructiongetsas-
signedto a specificcluster. Eachclusterhasits own issue
queue,registerfile, a setof functionalunits,andits own lo-
cal bypassnetwork. Bypassingof resultswithin a cluster
doesnot take additionalcycles(in otherwords,dependent
instructionsin the sameclustercanissuein successive cy-
cles). However, if the consuminginstructionis not in the
sameclusterastheproducer, it hasto wait additionalcycles
until theresultis communicatedacrossthetwo clusters.

A conventionalclusteredprocessor[2, 8, 11,12, 17] dis-
tributesonly theregisterfile, issuequeue,andthefunctional
units amongthe clusters. The datacacheis centrally lo-
cated.An alternativeorganization[40] distributesthecache
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Figure 1. The base clustered processor (4 cluster s) with

the centraliz ed cache.

amongthe clusters,therebymakingthe designmorescal-
able, but also increasingthe implementationcomplexity.
Sinceboth organizationsareattractive designoptions,we
evaluatetheeffectof dynamictuningonbothorganizations.

2.1. The Centralized Cache
In thetraditionalclustereddesigns,onceloadsandstores

are ready, they are insertedinto a centralizedload-store
queue(LSQ) (Figure1). From here,storesaresentto the
centralizedL1 cachewhen they commit and loadsare is-
suedwhenthey areknown to notconflictwith earlierstores.
TheLSQ is centralizedbecausea loadin any clustercould
conflictwith anearlierstorefrom any of theotherclusters.

For the aggressive processormodelsthat we arestudy-
ing, the cachehas to servicea numberof requestsevery
cycle. An efficient way to implementa high bandwidth
cacheis to make it word-interleaved. For a 4-way word-
interleavedcache,thedataarrayis split into four banksand
eachbankcanserviceonerequestevery cycle. Datawith
word addressesof theform 4N arestoredin bank0, of the
form 4N+1 arestoredin bank1, andsoon. Suchanorga-
nizationsupportsa maximumbandwidthof four andhelps
minimizeconflictsto a bank.

In a processorwith a centralizedcache,theloadlatency
dependson thedistancebetweenthecentralizedcacheand
the clusterissuingthe load. In our study, we assumethat
the centralizedLSQ andcacheareco-locatedwith cluster
1. Hence,a load issuingfrom cluster1 doesnot experi-
enceany communicationcost. A load issuingfrom cluster
2 takesonecycle to sendtheaddressto theLSQ andcache
andanothercycle to get thedataback(assumingthateach
hopbetweenclusterstakesacycle). Similarly, cluster3 ex-
periencesatotalcommunicationcostof four cyclesfor each
load. This is in additionto the few cyclesrequiredto per-
form thecacheRAM look-up.

SteeringHeuristics: A clustereddesignallows a faster
clock, but incursa noticeableIPC degradationbecauseof
inter-clustercommunicationandloadimbalance.Minimiz-
ing thesepenaltieswith smartinstructionsteeringhasbeen
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Figure 2. The clustered processor (4 cluster s) with the

decentraliz ed cache.

the focusof many recentstudies[2, 8, 11, 12, 13, 17]. We
useaneffectivesteeringheuristic[11] thatsteersaninstruc-
tion (andits destinationregister)to theclusterthatproduces
most of its operands. In the event of a tie or undercir-
cumstanceswherean imbalancein issuequeueoccupancy
is seen,instructionsaresteeredto the leastloadedcluster.
By picking an appropriatethresholdto detectload imbal-
ance,suchan algorithm can also approximateother pro-
posedsteeringheuristicslike ����� � and ��������� ����� [8].
The former minimizes load imbalanceby steering � in-
structionsto onecluster, thensteeringto its neighbor. The
latter minimizescommunicationby filling up one cluster
beforesteeringinstructionsto its neighbor. We empirically
determinedthe optimal thresholdvalue for load balance.
Further, our steeringheuristic also usesa criticality pre-
dictor [18, 37] to give a higherpriority to the clusterthat
producesthe critical sourceoperand. Thus, our heuristic
representsthestate-of-the-artin steeringmechanisms.

2.2. The DecentralizedCache
In ahighly clusteredprocessor, thecentralizedcachecan

beamajorbottleneckasit hasto supportahighbandwidth,
andits averagedistanceto therequestingclustersincreases.
Hence,a distributedcachemodel[40] representsanattrac-
tivedesignoption.

For an N-clustersystem,we assumethat the L1 cache
is broken into N word-interleavedbanks.Eachbankis as-
sociatedwith its own cluster. TheLSQ is alsosplit across
the differentclusters.The examplein Figure 2 shows an
organizationwith four clusters. Becausethey are word-
interleaved,thevariousbankscachemutuallyexclusivedata
anddo not requireany cachecoherenceprotocolbetween
them.Thegoalof thesteeringmechanismis to steera load
or storeto the clusterthat cachesthe correspondingmem-
ory address.Wediscusstheadditionalsteeringcomplexities
arisingfrom thedistributednatureof thecachein Section5.

The L2 cachecontinuesto be co-locatedwith cluster1
andamissin any of theL1 cachebanksotherthanthatasso-
ciatedwith this clusterincursadditionallatency depending



Fetchqueuesize 64
Branchpredictor comb. of bimodaland2-level

Bimodalpredictorsize 2048
Level 1 predictor 1024entries,history10
Level 2 predictor 4096entries

BTB size 2048sets,2-way
Branchmispredictpenalty at least12cycles

Fetchwidth 8 (acrossup to two basicblocks)
Dispatchandcommitwidth 16

Issuequeuesize 15 in eachcluster(int andfp, each)
Registerfile size 30 in eachcluster(int andfp, each)

Re-orderBuffer (ROB) size 480
IntegerALUs/mult-div 1/1 (in eachcluster)

FPALUs/mult-div 1/1 (in eachcluster)
L1 I-cache 32KB 2-way

L2 unifiedcache 2MB 8-way, 25cycles
TLB 128entries,8KB pagesize(I andD)

Memorylatency 160cyclesfor thefirst chunk

Table 1. Simplescalar sim ulator parameter s.

on thenumberof hops.

2.3. Inter connects
As processtechnologiesshrinkandthenumberof clus-

ters is increased,attentionmust be paid to the communi-
cationdelaysand interconnecttopologybetweenclusters.
Cross-clustercommunicationoccursatthefront-endaswell
aswhen communicatingregister valuesacrossclustersor
whenaccessingthecache.Sincetheformeroccursin every
cycle, we assumea separatenetwork for this purposeand
modelnon-uniformdispatchlatenciesaswell as the addi-
tional latency in communicatinga branchmispredictback
to thefront-end.Sincethelattertwo (cacheandregister-to-
registercommunication)involve datatransferto/from reg-
isters,we assumethatthesame(separate)network is used.

In our study, we focus on a ring interconnectbecause
of its low implementationcomplexity. Eachclusteris di-
rectly connectedto two otherclusters.We assumetwo uni-
directionalrings, implying thata 16-clustersystemhas32
total links (allowing 32 total transfersin a cycle), with the
maximumnumberof hopsbetweenany two nodesbeing8.

In a later section,aspart of our sensitivity analysis,we
alsoshow resultsfor agrid interconnect,whichhasahigher
implementationcostbut higherperformance.The clusters
arelaid out in a two-dimensionalarray. Eachclusteris di-
rectlyconnectedto upto four otherclusters.For 16clusters,
thereare48 total links, with themaximumnumberof hops
being6, thusreducingtheoverall communicationcost.

3. Simulation Methodology

3.1. Simulator Parameters
Our simulatoris basedon Simplescalar-3.0 [9] for the

Alpha AXP instructionset. The simulatorhasbeenmodi-
fied to representa microarchitectureresemblingthe Alpha
21264[24]. Theregisterupdateunit (RUU) is decomposed
into issuequeues,physical register files, and the reorder
buffer (ROB). Theissuequeueandthephysicalregisterfile

Parameter Centralized Decentralizedcache
cache eachcluster total

Cachesize 32KB 16KB 16NKB
Set-associativity 2-way 2-way 2-way

Line size 32bytes 8 bytes 8N bytes
Bandwidth 4 words/cycle 1 word/cycle N words/cycle

RAM look-uptime 6 cycles 4 cycles 4 cycles
LSQsize 15N 15 15N

Table 2. Cache parameter s for the centraliz ed and decen-

traliz ed caches. All the caches are word interlea ved. N

is the number of cluster s.

arefurthersplit into integerandfloating-point.Thus,each
clusterin ourstudyis itself decomposedinto anintegerand
floating-pointcluster. The memoryhierarchyis alsomod-
eled in detail (including word-interleaved access,bus and
port contention,writebackbuffers,etc).

This baseprocessorstructurewasmodifiedto modelthe
clusteredmicroarchitecture.To representa wire-delaycon-
strainedprocessorat future technologies,eachclustercore
wasassumedto have onefunctionalunit of eachtype, 30
physicalregisters(int andfp, each),and15 issuequeueen-
tries (int andfp, each). As many instructionscanissuein
a cycle asthenumberof availablefunctionalunits. We as-
sumethateachhopon theinterconnecttakesasinglecycle.
While we did not modela tracecache,we assumedthatin-
structionscouldbefetchedfrom upto two basicblocksata
time. Theimportantsimulationparametersaresummarized
in Table1.

Thenumberof resourcesin eachclusterandthelatency
for eachhop on the interconnectare critical parameters
in sucha studyas they determinethe amountandcostof
inter-clustercommunication.Theseparametersarehighly
technology, layout,anddesign-dependent,anddetermining
themis beyondthescopeof thisstudy. Ourresultsincludea
sensitivity analysisto seehow theresultschangeasour as-
sumptionson the numberof registers,issuequeueentries,
functionalunits,andcyclesperhoparevaried.

Our study focuseson wire-limited technologiesof the
future and we pick latenciesaccordingto projectionsfor
��� ����	�� . We usedCACTI-3.0 [34] to estimateaccesstimes
for the cacheorganizations.We usedthe methodologyin
[1] to estimateclock speedsandmemorylatencies,follow-
ing SIA roadmapprojections[5]. With Simplescalar, we
simulatedcacheorganizationswith differentsizeandport
parameters(andhencedifferentlatencies)to determinethe
bestbasecases.Theseparametersaresummarizedin Ta-
ble 2. The centralizedcacheyieldedbestperformancefor
a 4-way word-interleaved32KB cache.Sucha cachehasa
bandwidthof four accessespercycle andanaccesstime of
six cycles.Thebestdecentralizedcacheorganizationhasa
single-portedfour-cycle16KB bankin eachcluster.
3.2. Benchmark Set

As a benchmarkset,we usedfour SPEC2kIntegerpro-
grams,threeSPEC2kFPprograms,andtwo programsfrom



Benchmark Input Simulation Base Mispred
dataset window IPC branch

interval
cjpeg (Mediabench) testimg 150M-250M 2.06 82
crafty (SPEC2kInt) ref 2000M-2200M 1.85 118
djpeg (Mediabench) testimg 30M-180M 4.07 249
galgel(SPEC2kFP) ref 2000M-2300M 3.43 88
gzip (SPEC2kInt) ref 2000M-2100M 1.83 87

mgrid (SPEC2kFP) ref 2000M-2050M 2.28 8977
parser(SPEC2kInt) ref 2000M-2100M 1.42 88
swim(SPEC2kFP) ref 2000M-2050M 1.67 22600
vpr (SPEC2kInt) ref 2000M-2100M 1.20 171

Table 3. Benc hmark description. Baseline IPC is for a

monolithic processor with as many resour ces as the 16-

cluster system. ”Mispred branc h inter val” is the number

of instr s before a branc h mispredict is encountered.
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Figure 3. IPCs for fix ed cluster organizations with 2, 4, 8,

and 16 cluster s.

theUCLA Mediabench[25]. Thedetailsontheseprograms
arelistedin Table3. Theprogramsrepresenta mix of vari-
ousprogramtypes,includinghigh andlow IPC codes,and
thoselimited by memory, branchmispredictions,etc. Most
of theseprogramswerefastforwardedthroughthefirst two
billion instructionsandsimulatedin detailto warmthevar-
iousprocessorstructuresbeforemeasurementsweretaken.
While wearesimulatinganaggressiveprocessormodel,not
all our benchmarkprogramshave a high IPC. Note thatan
aggressiveprocessordesignis motivatedby theneedto run
highIPCcodesandby theneedto supportmultiple threads.
In both cases,the quick completionof a single low-IPC
threadis still important– hencethe needto include such
programsin thebenchmarkset.

4. The Dynamically TunableClustered Design

For brevity, we focus our initial analysison the 16-
clustermodel with the centralizedcacheand the ring in-
terconnect. Figure 3 shows the effect of statically us-
ing a fixed subsetof clustersfor a program. Increasing
the numberof clustersincreasesthe averagedistanceof a
load/storeinstruction from the centralizedcacheand the
worst-caseinter-clusterbypassdelay, therebygreatlyaffect-
ing the overall communicationcost. Assumingzerointer-
clustercommunicationcost for loadsandstoresimproved

performanceby 31%,while assumingzerocostfor register-
to-registercommunicationimprovedperformanceby 11%,
indicating that increasedload/storelatency dominatesthe
communicationoverhead.This latency couldbereducedby
steeringload/storeinstructionsto the clusterclosestto the
cache,but this would increaseload imbalanceandregister
communication.The averagelatency for inter-clusterreg-
ister communicationin the 16-clustersystemwas 4.1 cy-
cles. At the sametime, usingmoreclustersalsoprovides
the programwith more functional units, registers,and is-
suequeueentries,thusallowing it to dispatcha largerwin-
dow of in-flight instructions.Dependingon which of these
two conflicting forcesdominates,performanceeither im-
provesor worsensas the numberof clustersis increased.
Programswith distantILP, likedjpeg (JPEGdecodingfrom
Mediabench),swim, mgrid, andgalgel (loop-basedfloating-
pointprogramsfrom SPEC2K)benefitfrom usingmany re-
sources.Ontheotherhand,mostintegerprogramswith low
branchpredictionaccuraciescannotexploit a largewindow
of in-flight instructions. Hence,increasingthe resources
only degradesperformancebecauseof theadditionalcom-
municationcost.Thisis aphenomenonhithertounobserved
in a clusteredprocessor(partly becausevery few studies
have looked at more thanfour clustersandpartly because
earlierstudiesassumedno communicationcost in access-
ing acentralizedcache).

Our goal is to tune the hardware to the program’s re-
quirementsby dynamicallyallocatingclustersto the pro-
gram.This canbevery trivially achievedby modifying the
steeringheuristicto disallow instructiondispatchto thedis-
abledclusters. In other words, disablingis equivalent to
not assigningany new instructionsto the cluster. Instruc-
tions alreadyassignedto the disabledclustersareallowed
to complete,resultingin anaturaldrainingof thecluster.

4.1. Consistencyof Behavior AcrossInter vals
Variousrecentworks[4, 6, 7, 10, 16, 19, 20, 22, 31, 38]

have proposedrun-time algorithmsfor the dynamic tun-
ing of hardwareto a programphase’s requirements.Most
of thesetechniquesusean interval-basedalgorithm,where
measurementsover the last few intervalsdictatethechoice
of configurationover subsequentintervals,wherean inter-
val is a pre-specifiednumberof committed instructions.
Our dynamicconfigurationselectionmechanismis based
on earlierproposals[7, 16]. At the startof eachprogram
phase,we run eachconfigurationoptionfor aninterval and
recordthe IPCs. We thenpick the configurationwith the
highestIPC and useit until the next phasechangeis de-
tected. Sucha mechanismis heavily reliant on the pro-
gram’s ability to sustainuniform performanceover a num-
berof intervals.Wefoundthatfloating-pointprogramsgen-
erally show this behavior, while theintegerprogramsshow
a lot morevariability. While earlierstudieshave assumed
fixed interval lengths,we found that this would result in



Benchmark Minimum acceptableinterval Instability factor
lengthandits for a10K instruction

instability factor interval
gzip 10K / 4% 4%
vpr 320K / 5% 14%

crafty 320K / 4% 30%
parser 40M / 5% 12%
swim 10K / 0% 0%
mgrid 10K / 0% 0%
galgel 10K / 1% 1%
cjpeg 40K / 4% 9%
djpeg 1280K/ 1% 31%

Table 4. Instability factors for diff erent inter val lengths.

very poor performancefor a numberof programs.Hence,
picking anappropriateinterval lengthis fundamentalto the
successof a configurationselectionalgorithm(andcanbe
universallyappliedto theconfigurationof otheraspectsof
theprocessorin additionto thenumberof clusters).

To studythevariability of programbehavior overdiffer-
entintervals,weraneachof theprogramsfor billions of in-
structionsto generatea traceof variousstatisticsat regular
10K instructionintervals. We usedthreemetricsto define
a programphase- IPC, branchfrequency, and frequency
of memoryreferences.At thestartof eachprogramphase,
thestatisticscollectedduringthefirst interval wereusedas
reference. For eachensuinginterval, if the threemetrics
for thatinterval weresimilar to thereferencepoints,thein-
terval wastermed‘stable’. If any of the threemetricswas
significantlydifferent,wedeclaredtheintervalas‘unstable’
andbegananew programphase.Thisanalysiswasdonefor
many interval lengths.The instability factor for aninterval
length is the percentageof intervals that were considered
‘unstable’,i.e., the frequency of the occurrenceof a phase
change.In ourstudy, we foundthatit wassufficient to only
explore a limited subsetof the possibleconfigurations(2,
4, 8, and16 clusters)asthey coveredmostof the interest-
ing cases.An instability factorof 5% ensuresthatlessthan
15%of theintervalsarein sub-optimalconfigurations.

Table4 showsthesmallestinterval lengththataffordsan
acceptableinstability factor of lessthan5% for eachof our
programs.As canbeseen,the interval lengthsthatemerge
asthebestvary from 10K to 40M. We alsoshow the insta-
bility factor for a fixed interval lengthof 10K instructions.
Clearly, this interval lengthworks poorly for a numberof
programsand would result in quite unacceptableperfor-
mance. Most programsusually show consistentbehavior
acrossintervalsfor acoarseenoughinterval length,making
interval-basedschemesvery robust and universallyappli-
cable. Even a programlike parser, whosebehavior varies
dramaticallybasedon the input data,hasa low instability
factor for a large40M instructioninterval.

4.2. Variable-Inter val Mechanismwith Exploration
In order to arrive at the optimal instruction interval

lengthatrun-time,weuseasimplealgorithm.Westartwith
theminimuminstructioninterval. If the instability factor is

Initializations and definitions:
interval_length = 10K;   (number of committed instrs before invoking the algo)
discontinue_algorithm = FALSE;  (if this is set, no more reconfigurations are
                                                attempted until the next macrophase)
have_reference_point = FALSE;  (the first interval in a new phase provides a
                                                reference point to compare future intervals)
significant_change_in_ipc;  (this is set if the IPC in the current interval differs
                                        from that in the reference point by more than 10%)
significant_change_in_memrefs;  (this is set if the memory references in the
                                               current interval differs from the reference
                                               point by more than interval_length/100)
significant_change_in_branches;  (similar to significant_change_in_memrefs)
num_ipc_variations = 0;  (this indicates the number of times there was a
                                    significant_change_in_ipc)
stable_state = FALSE;  (this is set only after all configs are explored)
num_clusters;   (the number of active clusters)
instability = 0;  (number indicating phase change frequency)

THRESH1 = THRESH2 = 5; THRESH3 = 1 billion instructions;

Inspect statistics every 100 billion instructions.
If (new macrophase)
    Initialize all variables;

If (not discontinue_algorithm)
    Execute the following after every interval_length instructions;
If (have_reference_point)
    If (significant_change_in_memrefs or significant_change_in_branches or
        (significant_change_in_ipc and num_ipc_variations > THRESH1))
        have_reference_point = stable_state = FALSE;
        num_ipc_variations = 0;
        num_clusters = 4;
        instability = instability + 2;
        if (instability > THRESH2)
            interval_length = interval_length * 2;
            instability = 0;
            if (interval_length > THRESH3)
                Pick most popular configuration; discontinue_algorithm = TRUE;
    else

        else
            num_ipc_variations = MAX(−2,num_ipc_variations−0.125);
        instability = instability − 0.125;
else
    have_reference_point = TRUE;
    Record branches and memrefs.

If (have_reference_point and not stable_state)
    record IPC;
    num_clusters = num_clusters * 2;
    if (num_clusters > 16)
        pick the best performing configuration;
        make its IPC the IPC_reference_point;
        stable_state = TRUE;

         if (significant_change_in_ipc)
            if (stable_state)  num_ipc_variations = num_ipc_variations + 2;

Figure 4. Run-time algorithm for dynamic selection of the

number of cluster s. The constant increment/decrements

for num ipc variations and instability were chosen to al-

low about 5% instability . The thresholds were pic ked to

be reasonab le round number s.

too high, we doublethe sizeof the interval andrepeatthis
until weeitherexperiencealow instabilityfactororuntil we
reachapre-specifiedlimit (say, abillion instructions).If we
reachthelimit, we ceaseto employ theselectionalgorithm
andpick theconfigurationthatwaspickedmostoften.

Oncewe pick an interval length,we neednot remainat
that interval lengthforever. Theprogrammight move from
one large macrophaseto anotherthat might have a com-
pletely differentoptimal instructioninterval. To dealwith
this,wecancontinueto hierarchicallybuild phasedetection
algorithms.An algorithmthatinspectsstatisticsat a coarse
granularity(say, every 100 billion instructions)could trig-
ger thedetectionof a new macrophase, at which point, we
would restartthe selectionalgorithm with a 10K interval
lengthandfind theoptimalinterval lengthall overagain.

For completeness,in Figure4,wedescribeouralgorithm
that selectsthe interval length,detectsphases,andselects
the bestconfigurationat run-time. At the startof a phase,
the statisticscollectedin the first interval serve asa refer-
encepoint againstwhich to comparefuture statisticsand



detecta phasechange.The branchandmemoryreference
frequenciesare microarchitecture-independent parameters
and can be usedto detectphasechangeseven during the
exploration process. After exploration, the bestperform-
ing configurationis picked and its IPC is also usedas a
reference. A phasechangeis signaledif either the num-
ber of branches,the numberof memoryreferences,or the
IPC differs significantly from the referencepoint. Occa-
sionally, thereis a slight changein IPC characteristicsdur-
ing aninterval (perhapscausedby aburstof branchmispre-
dictsor cachemisses),afterwhich,behavior returnsto that
of thepreviousphase.To discourageneedlessexplorations
in thisscenario,wetoleratesomenoisein theIPCmeasure-
ments(with thenum ipc variationsparameter).In addition,
if phasechangesarefrequent,the instability variableis in-
crementedandeventually, theinterval lengthis doubled.

This entire processof run-time reconfigurationcan be
implementedin softwarewith supportfrom hardwareevent
counters.A low-overheadsoftwareroutine(like that used
for softwareTLB misshandling)thatinspectsvarioushard-
warecountersbeforemakinga decisionon thesubsequent
configurationis invoked at every interval. The algorithm
amountsto about100 assemblyinstructions,only a small
fraction of which are executedat eachinvocation. Even
for the minimum interval length of 10K instructions,this
amountsto anoverheadof muchlessthan1%. Implement-
ing the selectionalgorithmin softwareallows greaterflex-
ibility andopensup the possibility for application-specific
algorithms.Algorithmsat higherlevelsthatdetectchanges
in macrophaseshave an even lower overhead. Sincethe
algorithmrunsentirely in software,mostprogram-specific
stateresidesin memoryasopposedto hardwareregisters.
Hence,apart from the event counters,no additionalstate
hasto besavedandrestoredon a context switch.

Results. In Figure5, the third bar illustratesthe impact
of using the interval-basedselectionmechanismwith ex-
plorationat the startof eachprogramphase.As reference
points,thefirst two barsshow thestaticorganizationswith
four and16 clusters. We seethat in almostall cases,the
dynamicschemedoesaverygoodjob in approximatingthe
performanceof the beststatic organization. For floating-
point programswith little instability (galgel, mgrid, swim),
thedynamicschemeeasilymatchesthehardwareto thepro-
gram’s requirements. For the integer programs,in most
cases,thereis an initial unstableperiodwhenthe interval
sizeis inappropriate.Consistentwith our earlieranalysis,
theinterval sizeis increaseduntil it settlesatonethatallows
an instability factor of lessthan5%. In parser, the simu-
lation interval wasnot long enoughto allow the dynamic
schemeto settleat therequired40M instructioninterval.

In djpeg, it takesa numberof intervals for the interval
sizeto belargeenough(1.28Minstructions)to allow asmall
instability factor. Further, sincetheinterval lengthis large,
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Figure 5. IPCs for the base cases and for inter val-based

schemes. The thir d bar represents the algorithm with
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represent algorithms with no exploration.

many opportunitiesfor reconfigurationaremissed. There
aresmallphaseswithin eachinterval wheretheILP charac-
teristicsaredifferent. For thesetwo reasons,the dynamic
schemefalls shortof theperformanceof thefixedstaticor-
ganizationwith 16 clustersfor djpeg.

In the caseof gzip, there are a numberof prolonged
phases,somewith distant ILP characteristics,and others
with low amountsof distantILP. Sincethedynamicscheme
picks thebestconfigurationat any time, its performanceis
betterthaneventhebeststaticfixedorganization.

On average,8.3 of the 16 clustersweredisabledat any
time acrossthebenchmarkset. In theabsenceof any other
workload,this producesa greatsavings in leakageenergy,
providedthesupplyvoltageto theseunusedclusterscanbe
turnedoff. Likewise, for a multi-threadedworkload,even
afteroptimizingsingle-threadperformance,morethaneight
clustersstill remainfor useby theotherthreads.

Overall, thedynamicinterval-basedschemewith explo-
rationperformsabout11% betterthanthe beststaticfixed
organization. It is also very robust – it appliesto every
programin our benchmarksetasthereis usuallya coarse
enoughinterval lengthsuchthat behavior acrossthosein-
tervals is fairly consistent.However, the downsideis the
inability to targetrelatively shortphases.We experimented
with smallerinitial interval lengths,but found that the dy-
namicschemeencounteredgreatinstability at thesesmall
interval lengths,and hence,the interval lengthswere in-
creasedto a larger valuejust asbefore. This is causedby
the fact that measurementsbecomenoisieras the interval
sizeis reducedandit is harderto detectthesameprogram
metricsacrossintervals and accordinglyidentify the best
configurationfor any phase.

4.3. Inter val-BasedSchemewith no Exploration
To alleviatetheseproblems,we attemptedanalternative

interval-basedscheme. Insteadof exploring variouscon-
figurationsat the start of eachprogramphase,we useda



16-clusterconfigurationfor aninterval andbasedonthede-
greeof availabledistantILP, weselectedeitherafour or 16-
clusterconfigurationfor subsequentintervalsuntil thenext
phasechange(our earlierresultsindicatethat thesearethe
two mostmeaningfulconfigurationsandcovermostcases).
An instructionis marked asdistant if it is at least120 in-
structionsyoungerthanthe oldestinstructionin the ROB.
At the time of issue,the instructionsetsa bit in its ROB
entry if it is distant. At thetime of commit,this bit is used
to incrementthe‘degreeof distantILP’. Sinceeachcluster
has30physicalregisters,four clustersareenoughtosupport
about120in-flight instructions.If thenumberof distantin-
structionsissuedin an interval exceedsa certainthreshold,
it indicatesthat16 clusterswouldberequiredto exploit the
availabledistantILP. In ourexperiments,weuseathreshold
valueof 160 for an interval lengthof 1000. Becausethere
is no exploration phase,the hardware reactsquickly to a
programphasechangeandreconfigurationat a finer granu-
larity becomesmeaningful.Hence,we focusonsmallfixed
instructionintervalsanddonotattemptto increasetheinter-
val lengthat run-time.However, sincethedecisionis based
on programmetricsinsteadof exploration,someaccuracy
is compromised.Further, the smaller the interval length,
thefasterthereactionto a phasechange,but thenoisierthe
measurements,resultingin someincorrectdecisions.

Results. Figure5 alsoshows resultsfor sucha mech-
anismfor threedifferentfixed interval lengths. An inter-
val lengthof 1K instructionsprovidesthebesttrade-off be-
tweenaccuracy andfastreactionsto phasechanges.Over-
all, it showsthesame11%improvementoverthebeststatic
basecase.However, in a programlike djpeg, it doesmuch
better (21%) than the interval-basedschemewith explo-
ration becauseof its ability to target small phaseswith
different requirements. Unfortunately, it takes a perfor-
mancehit in programslike galgel and gzip becausethe
small interval-lengthandthe noisymeasurementsresult in
frequentphasechangesandinaccuratedecision-making.

Oneof the primary reasonsfor this is the fact that the
basicblocksexecutedin successive 1000instructioninter-
vals arenot always the same. As a result, frequentphase
changesaresignaledandeachnew phasechangeresultsin
an interval with 16 clusters,to help determinethe distant
ILP. To alleviate this problem,we examinea fine-grainre-
configurationschemeat basicblockboundaries.

4.4. Fine-Grain Reconfiguration
To allow reconfigurationat a fine granularity, we look

uponevery branchasa potentialphasechange. We need
to determineif a branchis followed by a high degreeof
distantILP, in which case,dispatchshouldcontinuefreely,
else,dispatchshouldbe limited to only the first four clus-
ters. Exploringvariousconfigurationsis not a feasibleop-
tion astherearelikely to bemany neighboringbranchesin
differentstagesof explorationresultingin noisy measure-

mentsfor eachbranch. Hence,until we have enoughin-
formation,we assumedispatchto 16 clustersandcompute
thedistantILP characteristicsfollowing everybranch.This
is usedto updatea reconfiguration table so that whenthe
samebranchis laterencountered,it is ableto pick theright
numberof clusters.If we encountera branchwith no entry
in thetable,weassumea16-clusterorganizationsothatwe
candetermineits degreeof distantILP.

Assumingthat four clusterscansupportroughly120in-
structions,to determineif a branchis followed by distant
ILP, we needto identify how many of the 360 committed
instructionsfollowing a branchweredistantwhenthey is-
sued.Accordingly, eitherfour or 16 clusterswould be ap-
propriate.To effect this computation,we keeptrackof the
distantILP natureof the360lastcommittedinstructions.A
singlecountercanbe updatedby the instructionsentering
andleaving this queueof 360instructionssothata running
countof thedistantILP canbemaintained.Whena branch
happensto betheoldestof these360instructions,its degree
of distantILP is indicatedby thevaluein thecounter.

Thereis likely to still besomeinterferencefrom neigh-
boringbranches.To make themechanismmorerobust,we
samplethebehavior for a numberof instancesof thesame
branchbeforecreatinganentryfor it in thereconfiguration
table.Further, we canfine-tunethegranularityof reconfig-
uration by attemptingchangesonly for specificbranches.
For example,we foundthatbestperformancewasachieved
whenweattemptedchangesfor only everyfifth branch.We
also show resultsfor a mechanismthat attemptschanges
only atsubroutinecallsandreturns.We formalizethealgo-
rithm below:
At every Nth branch, look up the reconfig table.

If entry found, change to advised configuration.
Else, use 16 clusters.

While removing a branch from the queue of 360
committed instrs,

If M samples of this branch have been seen,
Do not update table.

Else,
Record the latest sample.
If this is the Mth sample,

compute the advised configuration.
Else,

advised configuration is 16 clusters.

The downsideof the approachjust describedis the fact
that initial measurementsdictatefuture behavior. The na-
ture of the codefollowing a branchcouldchangeover the
courseof the program. It might not alwaysbe easyto de-
tectsuchachange,especiallyif only four clustersarebeing
usedandthe degreeof distantILP is not evident. To deal
with thissituation,weflushthereconfigurationtableatperi-
odicintervals.Wefoundthatre-constructingthetableevery
10M instructionsresultedin negligible overheads.

Results. In Figure6, in additionto the basecasesand
the interval-basedschemewith exploration,we show IPCs
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Figure 6. IPCs for the base cases, the inter val-based al-

gorithm with exploration, and two fine-grained reconfig-

uration schemes. The fir st reconfigures at every fifth

branc h, the second at every subr outine call and return.

for two fine-grainedreconfigurationschemes. The first
attemptsreconfigurationat every 5th branchand creates
an entry in the table after collecting 10 samplesfor each
branch. To eliminateeffectsfrom aliasing,we usea large
16K-entrytable,though,in almostall cases,amuchsmaller
tableworksaswell. The secondschemeattemptschanges
at every subroutinecall andreturnandusesthreesamples.
Thefigureindicatesthattheability to quickly reactto phase
changesresultsin improvedperformancein programslike
djpeg, cjpeg, crafty, parser, andvpr. The maximumnum-
ber of changesbetweenconfigurationswas observed for
crafty (1.5 million). Unlike in the interval-basedschemes
with no exploration,instability is not causedby noisymea-
surements.However, gzip fails to matchthe performance
achieved by the interval-basedscheme. This is because
thenatureof thecodefollowing a branchchangesover the
courseof the program. Hence,our policy of using initial
measurementsto pick a configurationfor the future is not
alwaysaccurate.Thesamebehavior is observedto a lesser
extent in galgel. Overall, the fine-grainedschemesyield
a 15% improvementover the basecases,comparedto the
11%improvementsseenwith theinterval-basedschemes.

From these results, we conclude that interval-based
schemeswith exploration are easyto implement,robust,
andprovidemostof thespeedupspossible.Becauseof their
tendency to pick a coarseinterval length,a numberof re-
configurationopportunitiesaremissed. Choosinga small
interval length is not the solution to this becauseof noisy
measurementsacrosssuccessive small intervals. To allow
fine-grainedreconfigurations,we pick basicblock bound-
ariesasreconfigurationpointsanduseinitial measurements
to predict future behavior. Except for gzip, suchan ap-
proachdoesnot tradeoff muchaccuracy andthehardware
is ableto quickly adaptto theprogram’sneeds.However, to
getthisadditional4%improvement,wehaveto investsome

non-trivial amountof hardware– atableto keeptrackof the
predictionsandlogic to maintainthedistantILP metric.

5. The DecentralizedCacheModel

Clustered LSQ implementation. In the decentralized
cachemodel,if aneffectiveaddressis known whenamem-
ory instructionis renamed,then it can be directedto the
cluster that cachesthe correspondingdata. However, the
effectiveaddressis generallynotknown at renametime,re-
quiring thatwepredictthebankthatthismemoryoperation
is goingto access.Basedon this prediction,theinstruction
is sentto oneof theclusters.Oncetheeffective addressis
computed,appropriaterecoveryactionhasto betakenin the
caseof a bankmisprediction.

If the operationis a load, recovery is simple - the ef-
fectiveaddressis sentto thecorrectcluster, wherememory
conflictsareresolved in the LSQ, datais fetchedfrom the
cachebank,and returnedto the requestingcluster. If the
memoryoperationis a store,themis-directioncouldresult
in correctnessproblems.A loadin a differentclustercould
have proceededwhile beingunawareof the existenceof a
mis-directedstoreto the sameaddress.To dealwith this
problem,we adopta policy similar to that in [40]. While
renaming,a storewhoseeffective addressis unknown is
assignedto a particularcluster(whereits effective address
is computed),but at the sametime, a dummy slot is also
createdin the otherclusters.Subsequentloadsbehindthe
dummyslot in otherclustersarepreventedfrom proceeding
becausethereis anearlierstorewith anunresolvedaddress
that could potentially causeconflicts. Oncethe effective
addressis computed,theinformationis broadcastto all the
clustersandthedummyslotsin all theLSQsexceptoneare
removed. The broadcastincreasesthe traffic on the inter-
connectfor registerandcachedata(which wemodel).

Bank prediction. Earlier work by Yoazet al. [39] had
proposedthe useof branch-predictor-like tablesto predict
thebankaccessedby a loador store.In oursimulations,we
usea two-level bankpredictorwith 1024entriesin thefirst
level and4096entriesin thesecond.

Steeringheuristics. In a processorwith a decentralized
cache,the steeringheuristichas to handlethreedatade-
pendencesfor eachloador store– thetwo sourceoperands
and the bank that cachesthe data. Since the transferof
cachedatainvolvestwo communications(the addressand
the data),performanceis maximizedwhena load or store
is steeredto the clusterthat is predictedto cachethe cor-
respondingdata(note that unlike in the centralizedcache
model, doing so doesnot increaseload imbalanceas the
cacheis not at a single location). Even so, frequentbank
mispredictionsandthe increasedtraffic from storeaddress
broadcastsseriouslyimpact performance. Ignoring these
effectsimprovedperformanceby 29%. At the sametime,
favoring thedependencefrom thecachebankresultsin in-
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Figure 7. IPCs for dynamic inter val-based mechanisms

for the processor model with the decentraliz ed cache.

creasedregister communication. Assumingfree register
communicationimprovedperformanceby 27%. Thus,reg-
isterandcachetraffic contributeequallyto thecommunica-
tion bottleneckin sucha system.

Disabling clusters. So far, our resultshave assumeda
clusteredprocessorwith acentralizedcache.Hence,recon-
figurationis only a matterof allowing thesteeringheuristic
to dispatchto asubsetof thetotalclusters.With adecentral-
izedcache,eachclusterhasacachebankassociatedwith it.
Datais allocatedto thesecachebanksin aword-interleaved
manner. In going from 16 to four clusters,the numberof
cachebanksand hence,the mappingof data to physical
cachelineschanges.To fix this problem,theleastcomplex
solutionis to stall theprocessorwhile theL1 datacacheis
flushedto L2. Fortunately, the bankpredictorneednot be
flushed.With 16 clusters,thebankpredictorproducesa 4-
bit prediction. Whenfour clustersareused,the two lower
orderbitsof thepredictionindicatethecorrectbank.

Results.Becausetheindexing of datato physicalcache
locationschanges,reconfigurationis not asseamlessasin
thecentralizedcachemodel.Everyreconfigurationrequires
a stall of the processoranda cacheflush. Hence,thefine-
grainedreconfigurationschemesfrom theearliersectiondo
not apply. Figure7 shows IPCsfor the basecasesandthe
interval-basedmechanisms.Thethirdbarshowsthescheme
with explorationanda minimuminterval lengthof 10K in-
structions. The fourth and fifth barsshow interval-based
schemeswith noexplorationandtheuseof distantILP met-
rics to pick thebestconfiguration.Thesimulationparame-
tersfor thedecentralizedcachearesummarizedin Table2.
We find that the resultstrendis similar to that seenbefore
for thecentralizedcachemodel.Exceptin thecaseof djpeg,
thereis no benefitfrom reconfiguringusing shorterinter-
vals. Overall, the interval-basedschemewith exploration
yieldeda10%speedupover thebasecases.

Sincethe dynamicschemeattemptsto minimize recon-
figurations, cacheflushesare kept to a minimum. Vpr
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nism for the processor model with the grid inter connect.

encounteredthe maximum numberof writebacksdue to
flushes(400K), which resultedin a 1% IPC slowdown.
Overall, theseflushesresultedin a0.3%IPC degradation.

6. Sensitivity Analysis

Our results have shown that the communication-
parallelismtrade-off greatlyaffectsthescalabilityof differ-
entprogramsasthenumberof clustersis increasedfor two
importantcacheorganizations.In this section,we confirm
theapplicabilityof ourdynamicreconfigurationalgorithms
to other meaningfulbasecases.Someof the key param-
etersthat affect the degreeof communicationand the de-
greeof distantILP arethe choiceof interconnectbetween
theclusters,thelatency of communicationacrossahop,the
numberof functionalunits in eachcluster, andthenumber
of instructionsthat can be supportedby eachcluster(the
numberof registersandissuequeueentriespercluster).

Figure 8 shows the effect of using a grid interconnect
asdescribedin Section2.3with a centralizedcachemodel.
Becauseof the betterconnectivity, the communicationis
lessof a bottleneckandthe performanceof the 16-cluster
organizationis 8% betterthanthatof the4-clustersystem.
For brevity, we only show resultswith the interval-based
schemewith exploration. The trendis asseenbefore,but
becausethe communicationpenaltyis not aspronounced,
theoverall improvementoverthebestbasecaseis only 7%.
The useof fine-grainedreconfigurationtechniquesyields
qualitatively similar resultsaswith thering interconnect.

We alsostudiedthesensitivity of theresultsto thesizes
of variousresourceswithin a cluster. We studiedthe ef-
fect of usingfewer (10 issuequeueentriesand20 registers
percluster)andmoreresources(20 issuequeueentriesand
40 registerspercluster).Whentherearefew resourcesper
cluster, more clustersare required,on average,to exploit
the availableparallelism. Hence,the 16-clustersystemis
a favorablebasecaseandthe improvementof the interval-
baseddynamicmechanismrelative to it is only 8%. When



thereare more resourcesper cluster, using a few clusters
for low-ILP phasesis highly beneficial.As a result,theim-
provementover the16-clusterbaseis 13%. By usingmore
functionalunitspercluster, our resultswerevery similar to
thosein Section4.2. Doubling the costof communication
acrosseachhop resultsin a highly communication-bound
16-clustersystem.By employing the dynamicmechanism
andusingfewer clustersfor low-ILP phases,a 23%perfor-
manceimprovementwasseen.

Theseresultsare qualitatively similar to the improve-
mentsseenwith the interval-basedschemesin the earlier
subsections,indicatingthat thedynamicallytunabledesign
canhelp improve performancesignificantlyacrossa wide
rangeof processorparameters.Thus,the communication-
parallelismtrade-off and its managementare likely to be
importantin mostprocessorsof thefuture.

7. RelatedWork

A numberof proposalsbasedon clusteredprocessors
haveemergedover thepastdecade[3, 8, 11, 12, 13, 17, 23,
26, 28, 30, 32, 33, 35]. Thesediffer in thekindsof resources
thatgetallocated,theinstructionsteeringheuristics,andthe
semanticsfor cross-clustercommunication.Thecacheis a
centralizedstructurein all thesemodels.Thesestudiesas-
sumea smallnumberof total clusterswith modestcommu-
nicationcosts.

Choetal. [14, 15] clusterthecacheandLSQ,but not the
restof the processor. Stackand framedataarecachedin
a separatebankandloadsandstoresaresteeredto oneof
two streamsearlyin thepipeline.Yoazetal. [39] anticipate
theimportanceof splittingaccessesacrossmultiplestreams
andproposepredictorsfor thesame.

Recently, ZyubanandKogge[40] incorporateda clus-
teredcachein their studyon thepowerefficiency of a clus-
teredprocessor. Our implementationof the decentralized
cachecloselyresemblestheirs.A recentstudyby Aggarwal
andFranklin[2] explorestheperformanceof varioussteer-
ing heuristicsasthenumberof clustersscaleup. Theirsis
theonly studythatlooksat asmany as12 clustersandpro-
posestheuseof a ring interconnect.They concludethatthe
beststeeringheuristicvariesdependingon the numberof
clustersandtheprocessormodel.To take this into account,
eachof ourclusteredorganizationswasoptimizedby tuning
thevariousthresholdsin our steeringheuristic.

Many recentbodiesof work [4, 6, 7, 10, 16, 19, 20, 22,
31, 38] have looked at hardwareunits with multiple con-
figurationoptionsandalgorithmsfor picking an appropri-
ateconfigurationat run-time.Many of thesealgorithmsare
interval-based,in that, they monitor variousstatisticsover
a fixed interval of instructionsor cyclesandmake config-
uration decisionsbasedon that information. Ours is the
first proposalthat identifiesthe importanceof a variable-
lengthinstructioninterval andincorporatesthis in theselec-

tion algorithm. We arealsothefirst to look at fine-grained
reconfigurationat branchboundariesand contrastit with
interval-basedschemes.Huanget al. [21] studyadaptation
at subroutineboundariesandalsodemonstratethat this can
bemoreeffective thanusingfixedinstructionintervals.

Agarwal et al. [1] show thatprocessorsin futuregener-
ationsare likely to suffer from lower IPCsbecauseof the
highcostof wire delays.Oursis thefirst studyto focusona
singleprocesstechnologyandexaminetheeffectsof adding
moreresources.The clusteredprocessormodelexposesa
cleartrade-off betweencommunicationandparallelism,and
it readilylendsitself to low-costreconfiguration.

8. Conclusion

We have presentedandevaluatedthe effectsof shrink-
ing processtechnologiesanddominatingwire delaysonthe
designof futureclusteredprocessors.While increasingthe
numberof clustersto take advantageof theincreasingchip
densitiesimprovestheprocessor’s ability to supportmulti-
ple threads,the performanceof a singlethreadcanbe ad-
verselyaffected.This is becausesuchprocessorsarebound
by cross-clustercommunicationcosts.Thesecostscantend
to dominateany increasedextraction of instruction-level
parallelismas the processoris scaledto large numbersof
clusters. We have demonstratedthat dynamicallychoos-
ing the numberof clustersusingan exploration-basedap-
proachat regular intervals is effective in optimizing the
communication-parallelismtrade-off for a singlethread.It
is applicableto almostevery programand yields average
performanceimprovementsof 11%over our basearchitec-
ture. In orderto exploit phasechangesat a fine grain,ad-
ditional hardwarehasto be invested,allowing overall im-
provementsof 15%.Since8.3clusters,on average,aredis-
abledby thereconfigurationschemes,thereis thepotential
to save a greatdeal of leakageenergy in single-threaded
mode. The throughputof a multi-threadedworkload can
alsobe improvedby avoiding cross-threadinterferenceby
dynamicallydedicatinga setof clustersto eachthread.We
have verified the validity of our resultsfor a numberof
interestingprocessormodels,thushighlighting the impor-
tanceof themanagementof thecommunication-parallelism
trade-off in futureprocessors.
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