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Abstract
Front-end instruction delivery accounts for a significant

fraction of the energy consumed in a dynamic superscalar
processor. The issue queue in these processors serves two
crucial roles: it bridges the front and back ends of the pro-
cessor and serves as the window of instructions for the out-
of-order engine. A mismatch between the front end producer
rate and back end consumer rate, and between the supplied
instruction window from the front end, and the required in-
struction window to exploit the level of application paral-
lelism, results in additional front-end energy, and increases
the issue queue utilization. While the former increases over-
all processor energy consumption, the latter aggravates the
issue queue hot spot problem.

We propose a complementary combination of fetch gat-
ing and issue queue adaptation to address both of these
issues. We introduce an issue-centric fetch gating scheme
based on issue queue utilization and application parallelism
characteristics. Our scheme attempts to provide an in-
struction window size that matches the current parallelism
characteristics of the application while maintaining enough
queue entries to avoid back-end starvation. Compared to a
conventional fetch gating scheme based on flow-rate match-
ing, we demonstrate 20% better overall energy-delay with a
44% additional reduction in issue queue energy. We identify
Icache energy savings as the largest contributor to the over-
all savings and quantify the sources of savings in this struc-
ture. We then couple this issue-driven fetch gating approach
with an issue queue adaptation scheme based on queue uti-
lization. While the fetch gating scheme provides a win-
dow of issue queue instructions appropriate to the level of
program parallelism, the issue queue adaptation approach
shuts down the remaining underutilized issue queue entries.
Used in tandem, these complementary techniques yield a
20% greater issue queue energy savings than the addition
of the savings from each technique applied in isolation. The
result of this combined approach is a 6% overall energy-
delay savings coupled with a 54% reduction in issue queue
energy.
�
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1 Introduction
Power dissipation constitutes one of the primary design

constraints in future processors, both in the embedded and
general-purpose, high performance segments [6, 13, 14].
Current generation high-end processors like the dual-core
IBM POWER4 ��� [22] are performance-driven designs
where overall power densities are reportedly [5] still below
acceptable limits, even though the net chip power is well
over 100 watts [3]. However, as reported in [5], localized
hot spots in regions like the out-of-order issue queues may
experience ungated power densities as high at 70 watts/cm � .
Depending on the affected area and relevant thermal time
constants, such a localized hot spot can have a significant
impact on the packaging/cooling cost of the chip. Sustained
periods of temperature elevation within such a hot spot can
also degrade chip reliability.

The front-end instruction delivery path – consisting of
the fetch, decode, rename, dispatch and issue stages – con-
sumes about 20% of the net chip system power and about
35% of each processor core, based on data reported in [5].
Thus, it is worthwhile to devise microarchitectural tech-
niques that can reduce power and power density in the front-
end, without sacrificing performance for high-end systems.
In the embedded processor segment, on the other hand, it is
often acceptable to implement a energy reduction scheme
that significantly improves the energy-delay product, but
with a small performance degradation.

As noted in prior work [4, 17, 18, 23], instruction deliv-
ery power is higher than necessary because of the perfor-
mance focused design strategy at the high end. In such de-
signs, the front-end fetch mechanism provides instructions
using the peak architected bandwidth, as early as possi-
ble, by making use of sophisticated branch prediction algo-
rithms. This strategy often wastes energy because instruc-
tions are frequently fetched earlier than necessary. These
instructions spend many needless cycles in the issue queue
waiting for dependencies to be resolved (or to be aborted
following a misprediction event). In particular, we observe
from wide-issue superscalar processor simulations that in
program phases where instruction level parallelism (ILP) is
limited, there is often a significant mismatch between the
front-end decode rate and the back-end completion rate,



leading to high utilization in the issue queue. Figure 1
depicts an execution profile for the SPEC2000 benchmark
gzip assuming an 8-wide superscalar machine with a 32-
entry issue queue. The vertical (Z) axis records the percent-
age of cycles during which x instructions were decoded and
y instructions were committed, where the X- and Y-axes
record the number of decoded instructions and the number
of committed instructions, respectively. We see that in 10%
of the total execution cycles, there are no instructions com-
mitted while the decoding unit is utilized to the full decode
bandwidth of eight; and the issue queue utilizations (shown
in the right side of Figure 1) are very high, indicating that
the front-end is operating faster than necessary to match the
commit rate.
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Figure 1. Simulation statistics for SPEC2000
gzip benchmark

Much of the idle energy waste in the front-end (includ-
ing the issue queue) is attributable to incorrect control flow
speculations. This can be reduced by using more accurate
branch prediction schemes or by using confidence estima-
tion to control fetch-gating [18]. However, reducing mis-
speculated fetches alone would not necessarily reduce the
large component of idle energy that results from earlier-
than-needed fetch of instructions in the correct path.

Other methods of fetch gating [4, 17] attempt to reduce
idle energy by making the fetch mechanism more demand-
driven; that is, instruction fetch is gated when the down-
stream utilization is high or the flow rate mismatch (be-
tween decode and commit) is high. In this context of flow
rate matching, the issue queue plays a central role for two
reasons. First, it bridges the front and back ends of the pro-
cessor and second, it serves as the window of instructions
for the out-of-order engine. A mismatch between the front-
end producer rate and back-end consumer rate, and between
the supplied instruction window and the required instruc-
tion window to exploit the level of application parallelism,
results in additional front-end energy, and in addition, un-
necessarily increases the issue queue utilization. While the
former increases overall processor energy consumption, the

latter exacerbates the issue queue power-density problem
[5]. The goal of any fetch gating mechanism should there-
fore be to maintain just the right number of instructions in
the issue queue that matches the window size requirement
in a given phase of the application. However, the gating al-
gorithm must avoid a situation where the queue utilization
becomes so dangerously low that back-end starvation re-
sults. For these reasons, information regarding the level of
application parallelism and the utilization of the issue queue
should drive the fetch gating control mechanism.

Even with such a mechanism in place, the full potential
of energy savings within the issue queue cannot be realized
without additional techniques. While fetch gating may pro-
vide a level of issue queue utilization appropriate for the
application, unused entries will still consume energy. Dy-
namic adaptation of the issue queue [9, 10, 11, 12, 20], is
one technique for saving energy in an underutilized issue
queue. In this approach, the issue queue is sized to match
its level of utilization or the necessary instruction window
demanded by the application. Thus, unnecessary entries are
shut down, saving considerable energy. The combination of
issue-aware fetch gating and dynamic issue queue adapta-
tion, in which the queue is appropriately utilized and unused
entries consume negligible energy, has the potential for both
good overall chip and issue queue energy savings.

In this paper, we explore such issue-centric fetch gating
and investigate the coupling of fetch gating and issue queue
adaptation. As such, we make the following contributions:

� We present a new issue-centric fetch gating algorithm
that is readily implementable with modest hardware
overhead. We demonstrate that issue-centric fetch
gating in comparison to a conventional fetch gating
scheme based on flow-rate matching achieves 20%
better overall energy-delay and 44% additional issue
queue energy savings.

� We provide a detailed breakdown and analysis of the
savings due to fetch gating and issue queue adaptation.
In doing so, we identify L1 Icache energy savings as a
major contributor to the overall energy gains of fetch
gating. We quantify the degree to which reduced mis-
speculation and clustered access (fetches of larger in-
struction groups) contribute to this savings, and iden-
tify the latter as the larger effect.

� We show how the combination of fetch gating and
issue queue adaptation produces an issue queue en-
ergy savings that is 20% greater than the combined
savings of each technique in isolation. We quanti-
tatively attribute this to the aforementioned way that
these techniques synergistically combine to adjust the
issue queue utilization to the appropriate level, and to
virtually eliminate the energy cost of underutilized en-
tries.



The rest of this paper is organized as follows. In the
next section, we present PAUTI, an issue-centric fetch gat-
ing algorithm and discuss its implementation complexity.
For comparison purposes, we also present a flow-rate-based
fetch gating algorithm that performs well yet can be reason-
ably implemented. In Section 3, we discuss the selection
of an appropriate issue queue adaptation algorithm to work
in conjunction with these fetch gating schemes. Our eval-
uation methodology is presented in Section 4 followed by
our results in Section 5. Finally, we present related work in
Section 6, and conclude in Section 7.

2 PAUTI: An Issue-Centric Fetch-Gating Al-
gorithm

Unlike previously published fetch gating approaches
[4, 17], our approach is to drive instruction fetch based
on issue queue information1. Our approach, called PAUTI
(Parallelism and Utilization Based Fetch-Gating), detects
mismatches between the size of the instruction window
(group of instructions being examined for possible execu-
tion) in the queue and the size necessary to match the par-
allelism characteristics of the program. The former is ob-
tained by tracking the occupancy of the queue, while for the
latter, we monitor how deep in the Reorder Buffer (ROB) in-
structions are being issued from. A general depiction of the
scheme as well as possible scenarios is shown in Figure 2.
The parallelism in the program can be close to the head
of the ROB (close parallelism), or it could be towards the
tail (distant parallelism). Fetching is stopped when there is
close parallelism and the issue queue utilization is high.
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Figure 2. Overall view of PAUTI fetch gating
scheme

In our particular implementation of PAUTI, fetch gating
occurs in a given cycle if over half of the instructions that
issue are located in the lower half of the ROB (nearest the
head) and the issue queue is at least half full. The ratio-

1We focus only on fetch gating based on the integer issue queue for our
integer application suite. In general, information from both the integer and
floating point issue queues could be used.

nale for the last restriction (queue being at least half full) is
as follows. Many dynamic superscalar processors aggres-
sively release issue queue resources upon instruction issue
in order to keep queue sizes modest for timing and power
reasons. For instance, the integer issue queue in the Alpha
21264 has only 20 entries despite the processor’s aggressive
microarchitecture. (The SimpleScalar-based microarchitec-
ture that our simulations are based on requires a 32-entry
queue, but this is still fairly modest for an 8-way issue ma-
chine.) A queue with such a small number of entries must
be managed carefully. For instance, fetch-gating to the point
where the queue is much less than half full runs the risk
of back-end starvation and produces an extremely small in-
struction window, especially in the presence of data cache
misses. Thus, we do not attempt to fetch-gate if the queue is
less than half full. An issue queue that is more than half full
should only be gated if distant parallelism is lacking; other-
wise, a significant reduction in performance may result.

Our implementation, shown in Figure 3, leverages the in-
dex number of the ROB entry assigned to instructions each
time they are dispatched into the circular ROB. Every cycle,
the index numbers of each of the issued instructions (up to
eight in our design) are subtracted from the index number of
the instruction that is at the head of the ROB and the most
significant bit of each result is extracted. Then a Ones-count
is performed on the eight bit result, yielding the number of
instructions issued from the half closer to the head of the
ROB. Next, the bits are shifted to the left by one and sub-
tracted from the total number issued. If the final result is
negative, it means that more than 50% of the issued instruc-
tions came from the half closer to the head of the ROB.
In parallel, the issue queue utilization is checked using the
scheme described in Figure 3 and a bit is set if the queue is
at least half full. An AND of these two outcomes produces
the fetch-gate condition for the next cycle.

The above hardware can easily operate within the cycle
time of a machine with a 64-bit integer add operation (as-
sumed to have a delay of 16 FO4 – based on a represen-
tative current generation superscalar microprocessor [15]).
The eight 7-bit subtractors operate in parallel with a delay
of about 1/8 that of the 64-bit adder, or 2 FO4. The Ones-
count is a 3-to-2 compression widely used in Wallace trees.
Compressing from 8 to 4 bits requires 2 levels of 3-to-2 el-
ements, each of which is 2 FO4 (based on communications
received from high-end processor designers), producing a
total Ones-count delay of 4 FO4. The shift operation sim-
ply requires tapping of the wire a bit to the left, or 0 FO4.
Finally, the last 4-bit subtractor has a single FO4 gate delay
which makes the total for this path 7 FO4. For the other
parallel path that checks issue queue utilization, the Ones-
count is a 32 to 6 bit compression which requires 5 levels of
3-to-2 elements, producing a total Ones-count delay of 10
FO4. The ORing of the two most significant bits from the 6



bit number (output of Ones-count block) results in a signal,
which if asserted, would mean that the count is greater than
or equal to 16. This would indicate an issue queue utiliza-
tion of 50% or more. Finally, the last OR bit has a single
FO4 gate delay which makes the total delay of this path 11
FO4. Thus, the logic to produce the fetch gate signal with
the final AND gate has approximately 12 FO4 delay.

Based on an analysis of the logic structure, we computed
the energy overhead of PAUTI to be at worst, 0.075% of
the total chip power. The analysis was derived by counting
the number of adder cells and using primitive adder macro
power numbers from representative designs [3].
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Figure 3. PAUTI hardware implementation

2.1 Decode/Commit Rate (DCR) Fetch-Gating

For comparison purposes, we investigated a variety of
previously proposed fetch gating schemes [4, 17], with a
dual emphasis on performance and compactness of hard-
ware implementation. We chose a variation of one of the
best-performing schemes that could be reasonably imple-
mented. The scheme, called Decode/Commit Rate (DCR)
fetch gating, is an instruction flow-rate based approach that
attempts to match the bandwidths of the front and back-
ends. One such DCR approach by Baniasadi and Moshovos
[4] uses instruction flow information to estimate the amount
of instruction-level parallelism (ILP) currently present in
the machine. If introducing additional instructions will not
increase ILP, fetch and decode are stalled. In one of their ap-
proaches, when the number of instructions passing through
decode significantly exceeds the number of instructions that
commit, fetch and decode are disabled for 3 cycles.

Our DCR approach differs from [4] in that we do not
delay the execution of an instruction by stalling it in the de-
code stage. As shown in Figure 4, we simply observe the
number of committed instructions versus decoded instruc-
tions on a cycle-by-cycle basis and compare these to deter-
mine the fetch-gating condition. If the condition is met, no
fetching is performed in the next cycle.

We obtained the best results when we fetch-gated when-
ever the number of decoded instructions exceeded the num-

ber of committed instructions in a given cycle. The intu-
ition behind this approach is as follows. In a machine with
perfect branch prediction, the front and back-end flow rates
should be identical over the long run. A lower front-end
flow rate will compromise performance, while an excessive
front-end flow rate will needlessly waste energy as instruc-
tions reside in the issue queue for more cycles than neces-
sary. As application parallelism characteristics change, so
does the commit rate and the decode rate is compensated
appropriately. Performing comparisons at a cycle-by-cycle
granularity tends to balance out the rates over the long run,
despite the time dilation between commit and decode.

With imperfect branch prediction, more instructions are
decoded than committed. Thus, matching the instruction
decode and commit rates has the effect of throttling the
front-end with respect to instruction execution. This has
the following effects [18]:

� Fewer misspeculated instructions are executed, which
saves energy and also increases performance by re-
ducing the number of branch mispredicts (discussed in
more detail in Section 5).

� The instruction cache warmup benefits of executing
misspeculated instructions are not fully realized, de-
creasing performance.

� The fetching of correctly speculated instructions is de-
layed, also decreasing performance.

Application phases with high branch mispredict rates (and
thus many more fetched/executed than committed instruc-
tions) will experience greater fetch gating with respect to
execution. The resulting benefits of executing fewer mis-
speculated instructions greatly overrides the other effect of
fetching fewer correct-path instructions in a timely manner.
Phases with low mispredict rates will have little fetch gat-
ing, which is beneficial overall since most of the instruc-
tions are correct-path instructions. The throttling rate au-
tomatically adjusts to the mispredict rate. The net effect is
a significant reduction in energy with only a small perfor-
mance impact (performance increase in some applications)
over a range of branch mispredict rates with this simple
DCR fetch-gating mechanism.
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Figure 4. DCR hardware implementation



3 Fetch Gating Combined with Dynamic Is-
sue Queue Adaptation

In combining fetch gating and issue queue adaptation,
we need to select an appropriate issue queue adaptation al-
gorithm, with the two general alternatives being to adapt
based on issue queue utilization [9, 10, 20] and based on
application ILP characteristics [9, 12]. Recall that PAUTI
adjusts the level of instruction flow in order to build the ap-
propriate window of instructions in the queue. Thus, unused
entries based on the metric of issue queue utilization, should
be shut down by the adaptive algorithm. Similarly, because
DCR adjusts the front-end flow rate to match the back-
end commit rate, the issue queue should be sized based on
the number of entries needed to accommodate those rates,
based again on utilization information.

Thus, we implemented a variation of the utilization-
driven approach of [10]. In this scheme, the issue queue
is implemented as a CAM/RAM structure and broken down
into eight-entry chunks, each of which can be disabled on-
the-fly at runtime. A hardware-based monitor measures is-
sue queue utilization over a cycle window period by count-
ing the number of valid entries in the queue, after which the
appropriate control signals disable and enable queue chunks
[9]. The approach in [10] resizes the issue queue at chunk
granularity based on the utilization of the issue. The algo-
rithm that we use for our 32-entry issue queue is a simpler
version of [10] and is as follows:

{utilization-based algorithm}
if (valid_entries <= threshold1)

issue_queue_size=8;
else if (valid_entries <= threshold2)

issue_queue_size=16;
else if (valid_entries <= threshold3)

issue_queue_size=24;
else

issue_queue_size=32;

Here, at the end of every cycle window we determine the
appropriate issue queue size for the next interval based on
the number of valid entries relative to pre-set thresholds.

4 Evaluation Methodology

For microarchitectural simulations, we use the Sim-
pleScalar toolset [8] with the Wattch power extensions [7] to
simulate an aggressive 8-way superscalar out-of-order pro-
cessor. The simulation parameters are summarized in Ta-
ble 1. The simulator has been modified to model separate
integer and floating point queues. In Wattch, we use the
activity-sensitive power model with aggressive conditional
clocking (cc3 mode). The rationale for this choice is to
compare our fetch gating plus adaptive issue queue scheme
to a baseline that is already power efficient.

Fetch unit up to 8 instr. per cycle
16 entry fetch buffer

comb of bimodal and 2-level global
Branch predictor chooser size: 1024 entries

bimodal size: 4096 entries
2 level: 4096 second level table entries

12 bit history width

Branch target buffer 8192 sets, 4-way

Branch mispredict penalty 8 cycles

Dispatch, issue, commit width 8 instructions

ROB and Ld/St queue size 128 and 32

Issue queue size 32,16 (int and fp, each)

Integer ALUs/Multipliers 4/4

Flt Pt ALUs/Multipliers 2/2

Memory Ports 4

L1 Icache, Dcache 64KB 2-way, 32-byte lines, 2 cycles

L2 unified cache 2MB 4-way, 64-byte lines, 15 cycles

TLB 128 entries, 8KB page size

Memory latency 75 cycles for the first chunk

Table 1. SimpleScalar simulator parameters

We use a number of integer benchmarks from the
SPEC95 and SPEC2000 suites with different data cache
miss rates and branch predictor accuracy. Warmup times are
determined for each benchmark, and the simulation is fast-
forwarded through these phases. Table 2 summarizes the
benchmarks and their L1 data cache miss rate, branch pre-
diction accuracy, and CPI (cycles per instruction) and EPI
(energy per instruction) values with the default simulation
parameters. We focused on the integer issue queue and con-
sequently SPECint codes, because that particular queue is a
known hot spot identified in prior published work [5]. How-
ever, for floating point codes with high branch prediction
rates, although branch-related stalls would be rarer, high
cache miss rates and dependence-related stalls also cause
non-uniform behavior that our approach can exploit.

Table 3 shows the fetch-gating, adaptive issue queue, and
combined schemes that were simulated. The adaptive queue
schemes both use an 8K cycle window but different thresh-
old values. The ADQI scheme with larger threshold values
favors smaller queue sizes (higher energy savings) while
the ADQII scheme would tend to reduce the performance
degradation. Note also that with the ADQI scheme there
will be more instruction fetch stalls compared to ADQII due
to the issue queue getting full more often.

5 Results

Figure 5 shows the CPI degradation, overall chip energy-
delay product improvement, and the issue queue energy sav-
ings achieved by the various schemes relative to the baseline
with no fetch-gating or issue queue adaptation.

First, we observe that the CPI degradation for all of the



Benchmark Insts simulated L1D miss rate (%) Bpred accuracy (%) Base CPI Base EPI (x E-8)

compress (SPEC95int) 2000M-2100M 17.7 91.0 0.68 2.29

go (SPEC95int) 926M-1026M 0.4 81.2 0.83 2.37

li (SPEC95int) 271M-371M 0.8 91.9 0.61 2.16

bzip2 (SPEC00int) 1200M-1400M 4.1 89.5 0.55 1.89

gzip (SPEC00int) 2000M-2100M 1.9 90.4 0.54 1.86

mcf (SPEC00int) 1000M-1050M 25.3 91.5 1.87 3.64

parser (SPEC00int) 1000M-1100M 3.9 94.0 0.74 2.21

vpr (SPEC00int) 1000M-1100M 0.8 95.0 0.46 1.70

Table 2. Benchmark description, L1 D-cache miss rates, branch prediction accuracy, CPI, and EPI for
the baseline configuration (without fetch gating or dynamic adaptation of issue queue)

ADQI Adaptive issue queue - thresholds 6,13,21

ADQII Adaptive issue queue - thresholds 4,10,19

DCR Decode/Commit Rate fetch-gating

PAUTI Parallelism+Utilization fetch-gating

DCR+ADQI Decode/Commit rate based fetch gating with
adaptive issue queue scheme I

PAUTI+ADQI Parallelism+Utilization based fetch gating with
adaptive issue queue scheme I

DCR+ADQII Decode/Commit rate based fetch gating with
adaptive issue queue scheme II

PAUTI+ADQII Parallelism+Utilization based fetch gating with
adaptive issue queue scheme II

Table 3. Fetch-gating, adaptive, and com-
bined configurations

schemes is small (less than 2% in most cases). In fact,
there are several notable performance improvements with
some benchmarks with either fetch-gating or the combined
scheme. We attribute this to the reduction in number of
branch mispredicts (3.8% and 4.9% reduction on average
for DCR and PAUTI, respectively) for those benchmarks
compared to the baseline. Without fetch gating or issue
queue adaptation, for the benchmarks that have small ba-
sic block sizes, it is likely that a less fresh (old instance)
branch predictor table entry for a specific branch is accessed
for subsequent branch accesses. On the other hand, with
fetch gating, before subsequent branches access the branch
predictor table (delayed due to fetch gating), the previous
branches may have already resolved providing a more fresh
copy (newer instance). The degree to which this greater
prediction accuracy trades off with the added delay of fetch
gating or dynamic adaptation determines whether there is a
net performance benefit or degradation.

In comparing fetch gating with issue queue adaptation,
we observe that the former has a much greater overall
energy-delay impact, achieving roughly a 6% reduction ver-
sus 1% for issue queue adaptation. The breakdown of the
energy results (Figure 6) shows that fetch gating has a sig-
nificant impact on reducing the energy in many different
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Figure 5. CPI degradation, energy-delay prod-
uct improvement, and issue queue energy
savings for the various approaches

units as opposed to the isolated impact of issue queue adap-
tation. In particular, an overall 32 (36)% savings in Icache
energy, 5 (6)% savings in rename, 6 (7)% in clock, and
11 (15)% savings in issue queue energy is achieved with
DCR (PAUTI) fetch gating. Although some units experi-
ence an increase in energy (for instance, the register file
energy increases due to less operand bypassing), these in-
creases are small compared to the savings achieved in other
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power-density-sensitive areas such as the issue queue.

The significant savings in Icache energy with fetch gat-
ing is attributable to two effects. First, fewer misspeculated
instructions are fetched. Second, as is shown in Figure 7,
with fetch gating, each Icache access fetches a larger group
of instructions on average than with the baseline. Thus, the
energy cost of an Icache fetch is amortized over this larger
instruction group. The reason for this behavior is that the
number of available entries in the fetch buffer determines
the amount of instructions that can be fetched. A fetch gat-
ing event often causes the fetch buffer to be drained, leaving
it able to accommodate a full fetch fairly often. With the
baseline, an Icache fetch occurs so long as there are avail-
able fetch buffer slots, resulting in more instances in which
a subset of the full fetch bandwidth is used. (Performance
was insensitive to increasing fetch buffer size beyond 16,
the size used in this analysis.) As is shown in Figure 8, on
average roughly 40% of the Icache energy savings is due to
reduced misspeculation, while the larger remaining portion
is due to more clustered accesses.

In comparing the two fetch-gating approaches (Figure 5),
our issue-centric approach to fetch gating yields signifi-
cant benefits. PAUTI achieves a 20% greater reduction in
energy-delay, and a 44% greater reduction in issue queue
energy, than DCR. The energy-delay gain is largely due
to the 23% greater overall energy savings achieved with
PAUTI. Much of the savings with DCR is attributable to
li, which experiences a CPI improvement over the baseline
due to the aforementioned branch prediction effects. PAUTI
provides much more consistent results, outperforming DCR
in energy-delay on most of the benchmarks.

Figure 9 shows how DCR, and to a greater degree
PAUTI, reduces the utilization of the issue queue (in terms
of four ranges of occupied entries) versus the baseline. For
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Figure 7. Breakdown of number of instruc-
tions accessed for each fetch operation (av-
eraged across all benchmarks)

instance, overall, over 50% of the time the baseline is near
full (25-32 entries) while this occurs roughly 33% of the
time for DCR and 20% of the time for PAUTI. For com-
press, go, gzip, and parser PAUTI outperforms DCR (the
top graph in Figure 5) yet uses fewer entries.

We now investigate the combination of fetch gating and
dynamic adaptation. As is shown in Figure 5, the additional
fetch stalls introduced with dynamic adaptation slightly in-
creases the performance degradation with the combined ap-
proach. However, the combined approach achieves a sig-
nificant reduction in issue queue energy yet with a slightly
better overall energy-delay than fetch-gating alone. To pro-
vide more insight on the interaction of these approaches,
Figure 10 shows the time spent in each of the four config-
urations for the adaptive issue queue scheme ADQI with
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and without the use of fetch gating for each of the bench-
marks. With the high issue queue utilization of the baseline
(Figure 9), the adaptive scheme is only able to downsize
to 24 entries in most cases, and for much of the time, not
downsize at all. The reduction in issue queue utilization
enabled by fetch gating allows for more aggressive down-
sizing, and much greater energy savings. For parser, for in-
stance, roughly 70% of the time the queue is at its full size
using ADQI alone. With DCR, this is reduced to less than
20%, and in addition, the queue can be downsized to 16 en-
tries almost 20% of the time. With PAUTI, the full queue
is almost never used. Figure 6 shows the magnitude of the
issue queue energy savings with the combined approach as
compared to either issue queue adaptation or fetch gating
alone. The issue queue energy savings achieved with the
combined approach is greater than the combined savings of
each technique in isolation. For example, ADQI achieves
a 31% reduction in issue queue energy, while the reduction
with PAUTI is 14%. Combining these approaches results in
a 54% reduction in issue queue energy, a 20% greater sav-
ings than expected from the results of each individual tech-
nique. This is due to the complementary aspects of the two
approaches as discussed above and in Section 1. Thus, the
combination of issue-centric fetch gating and dynamic issue
queue adaptation not only provides good overall energy-
delay savings, but significantly alleviates the issue queue
power density problem.

6 Related Work

Prior related work can be divided in two groups: in
the area of fetch-gating and in dynamically adaptable issue
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queue designs.

In [18], the authors save the wasted energy used for
fetching, decoding, issuing, and executing instructions
along mispredicted paths. They estimate the confidence of
every branch prediction when that branch is fetched [16].



When a certain number of low confidence branches enter
the processor, the fetch unit is gated-off. Fetching resumes
when the number of low-confidence branches within the
processor falls below the gate-off threshold. Their scheme
is limited to short pipelines. Increasing the pipeline depth
increases the penalty for incorrect confidence estimation.
In particular, if a branch is estimated as a low-confidence
branch but it is predicted correctly, the execution is starved
of useful instructions. This limitation was pointed out by
authors in [18]. Furthermore, the confidence estimator it-
self consumes significant energy.

In [17], the authors dynamically change the number of
in-flight instructions. An instruction counter of the num-
ber of in-flight instructions is incremented when an instruc-
tion is fetched and decremented when an instruction is com-
mitted. Another register, MAXcount, sets the limit on the
allowable in-flight instructions. Whenever the instruction
count exceeds MAXcount, instruction fetching is stopped.
The algorithm searches for the “optimal” number of in-
flight instructions and changes the value of MAXcount at
intervals of 100K committed instructions.

In [23], the authors develop a compiler-driven static IPC
estimation scheme that is based on dependence testing in
the compiler back-end. This estimation is used to drive
fine-grained fetch-throttling energy saving heuristics. How-
ever, dynamic factors such as cache misses and branch mis-
predictions can dilute the efficiency of these static IPC-
estimation-based heuristics.

The PowerPC G3 and G4 microprocessors include a
Thermal Assist Unit (TAU) to provide dynamic thermal
management. In these systems, the TAU invokes a form
of instruction throttling, namely instruction flow reduction
to lower the temperature, based on a programmable temper-
ature threshold [21].

Dynamic adaptation of the issue queue size to match ap-
plication demands is proposed in [1, 2] in order to increase
performance and reduce power dissipation. However, it was
assumed that the best issue queue size for a given appli-
cation was known a priori; no attempt was made to adapt
within an individual application, and the circuit-level design
issues associated with an adaptive issue queue were not ad-
dressed in detail. In [12], the issue queue is designed to be a
circular queue structure with head and tail pointers, and its
effective size is also dynamically adapted to fit the ILP con-
tent of the workload during different periods of execution
using parallelism-based metrics.

In [9, 10], the authors re-size the issue queue based on
its utilization. The issue queue is monitored every cycle to
measure the utilization, and the queue is resized at 8K cycle
intervals. Similarly, Marculescu proposes a mechanism to
dynamically adapt the fetch and execution bandwidth based
on profiling at the basic-block level [19], while Ponomarev
et al. [20] and Dropsho et al. [11] propose dynamic allo-

cation of multiple resources, including the issue queue, for
low-power.

None of these prior approaches combine fetch gating
with re-sizing of the issue queue. We have shown that com-
bining an easily implementable, issue-centric fetch gating
algorithm with dynamic issue queue adaptation yields much
larger improvements than intuitively obvious.

7 Conclusions

The criticality of the issue queue in bridging front and
back end flow and in enabling out-of-order issue calls for
new fetch gating schemes that take this important resource
into account. In this paper, we propose PAUTI, a fetch
gating scheme that attempts to match the size of the in-
struction window resident in the issue queue to applica-
tion ILP characteristics, while keeping the utilization of the
queue high enough to avoid back-end starvation. In com-
paring this issue-centric scheme with a common flow-rate-
matching approach, we demonstrate that it achieves 20%
better overall energy-delay and 44% additional issue queue
energy savings.

We further identify the Icache as the greatest source of
energy savings with fetch gating. We determine that al-
though the avoidance of fetching misspeculated instructions
produces a significant portion of this savings, a greater
source is the more efficient usage of the full Icache band-
width due to increased fetch buffer slots.

Finally, we explore the combination of issue queue adap-
tation and fetch gating. We determine that the complemen-
tary aspects of these approaches yields a 20% greater reduc-
tion in issue queue energy than the sum of the individual
savings from each scheme. The result of this combination
is good overall energy-delay savings with a significant alle-
viation of the issue queue hot-spot problem.
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