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Abstract

Modernsupescalar processas usewide instructionis-
suewidthsand out-of-oder executionin order to increase
instruction-level parallelism (ILP). Becauseinstructions
must be committedin order so as to guarantee precise
exceptions,increasingILP impliesincreasingthe sizesof
structuessud astheregisterfile, issuequeue andreorder
buffer. Simultaneouslycycletime constaintslimit thesizes
of thesestructuies, resultingin conflicting designrequire-
ments.

In this paper we presenta novel microarchitecture de-
signedto overcomethelimitations of a registerfile sizedic-
tatedby cycletime constrints. Available registers are dy-
namically allocated betweenthe primary program thread
anda futurethread. Thefuturethreadexecutesnstructions
whenthe primarythreadis limited by resouce availability.
Thefuturethreadis not constainedby in-order commitre-
quirements.It is therefore able to examinea mud larger
instructionwindowandjumpfar aheadto executereadyin-
structions. Resultsare communicatedbad to the primary
thread by warming up the register file, instruction cache
data cache and instructionreusebuffer, and by resolving
branch mispedictsearly. The proposedmicroarchitecture
is ableto getan overall speedumf 1.17 over the basepro-
cessoifor our benchimarkset,with speedupsfupto 1.64.

1 Introduction

Dynamicsuperscalaprocessorperformregisterrenam-
ing and out of orderissuein hardware to extract greater
instruction-level parallelism(ILP) from existing programs.
A significantperformancdimitation in suchprocessorss
the lack of forward progressin the midst of long lateng
operations(e.g., cachemisses). When this happens,it
would ideally be most beneficialto execute other inde-
pendentperformancedegradinginstructions(long-lateny
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loads,branchmispredicts).However, to find suchindepen-
dentinstructions,the processomwould have to examinea
sufficiently largeinstructionwindow.

This problemcannotbe solved by simply increasinghe
numberof in-flight instructions,asit would requirelarger
register files and reorderbuffers that may impact critical
timing paths. Theregisterfile, in particulay canoften de-
terminethe cycle time andseveral approachethat attempt
to balancdateng andIPC have beenproposedThe Alpha
21264implementsa clusteredegisterfile [14] in anattempt
to reduceaveragelateng. Similarly, register file caches
have also beenproposed[7] in orderto accessa smaller
subsetof registersin a single cycle. Both of thesetech-
nigues,however, causePC degradatiorwhencomparedo
a singlemonolithic registerfile of the samesize. A multi-
cycleregisterfile hasits own problems- designcomplexity
in pipelininga RAM structure having two levels of bypass
(which is one of the critical factorsin determiningcycle
time [7, 21]), andreducedIPC becauseof longer branch
mispredictpenaltiesandincreasedegisterlifetimes. These
problemsareonly exacerbated anSMT processarwhere
the register file resourceshave to be sharedby multiple
threads.Further aswe move to smallerprocesgechnolo-
gies, the dominatingeffect of long wire delayswill make
it evenmoreprohibitive to implementlargeregisterfiles in
wide-issuemachineg12, 21].

The fundamentalreasonwhy the register file size has
sucha large impacton the size of the instructionwindow,
andhenceperformanceis thatinstructionscanberenamed
anddispatcheanly whentherearefreeregistersavailable.
Reyistersarefreedonly wheninstructionscommit,andin-
structionsarecommittedin order A singleinstructionthat
takesalong time to completecould stall the commitstage,
therebyholdingup all theregistersandnot allowing subse-
guentinstructionsto dispatch.During this period, the out-
of-order executioncore canonly look at a restrictedwin-
dow of instructiongo extractILP. As theprocessomemory
gapincreasestherewill be anincreasingnumberof long-
lateng loads,causingdispatchto frequentlystall asit runs
out of physicalregisters. Thus,thereis a needfor new ap-
proacheshatallow for forwardprogresso bemadewithout



increasinghe complexity of critical hardwarestructures.

In this paperwe presentinovel architecturghatuseshe
limited numberof physicalregistersto dynamicallytrade
nearbywith distantILP, while still maintainingpreciseex-
ceptionsand programcorrectnessThe front-endcansup-
portfetchfrom two threadsthe secondf which is dynam-
ically spavnedby the hardwareratherthanbeingstatically
createdby the program. Initially, the only threadto runis
themain (primary) program.The secondaryfuture) thread
consistsonly of a programcounterandregister state. Out
of the availablerenameregisterswe dynamicallyresere a
certainnumberfor the future thread,accordingto the pro-
gram’s currentneedso exploit far-flung ILP. Oncethe pri-
mary threadrunsout of its allocatedregisters,it stalls,and
the future threadgetstriggeredand startsoff from where
the primary left off. This future threadcannotchangethe
programstate,i.e., it cannotwrite to memoryor updatethe
primary threadsregisters.It usesheremainingregistersto
renameanddispatchits instructions.

In orderto allow the future threadto malke progresse-
yondtheinstructionsto which theseregistersareallocated,
we relax the constraintson whenits registersare released
backinto the freelist. First, a registeris releasedassoon
asall its consumerdave readits value,i.e., we make the
optimisticassumptiorthat therewill be no branchmispre-
dictsor exceptionsraised. Thefuture threadcannotchange
the stateof the primary thread— it senesthe purposeof
potentiallywarmingup theregisterfile, dataandinstruction
cachesandresolvingmispredictedbranche®arly. Second,
in orderto avoid consuminduturethreadresourceshatpre-
ventotherindependeninstructionsrom executing,we also
adda timeoutmechanismnto remove instructionsthat wait
for operandsn theissuequeuefor too long. This freesup
registersandissuequeueslotsso that otherproductie de-
pendencechainscan make progresstherebyallowing the
future threadto getfar aheadf the primary. Whenthepri-
marythreadcease$o bestalled,it dispatcheds subsequent
instructionsall over again,but makesspeedieprogressas
its loadshave beenprefetchedand its brancheshave been
correctlypredicted.The useof anInstructionReuseBuffer
(IRB) [29] couldspeeduptheexecutionevenmoreassome
of theseinstructionswould nothave to bere-executed.

Thus, we rob the main programthreadof someof its
resourcesand allocatethemto this opportunistic‘helper’
threadthatseeksndependeninstructionghataremoredis-
tant. The benefitof suchanapproachwould dependon the
natureof the program,and we presenta mechanisnthat
dynamicallyperformsthis allocationof resourcedetween
the primary and future threads. As a result, in situations
wherethe future threaddegradesperformancethe proces-
sor canalwaysrevert backto anorganizationlik e the base
casewhereall resourcedelongto the primary thread.Our
simulation resultsindicate that relative to the basesimu-

lated architecture performancds improved by an average
of 17%with thedynamichelperthread.

Therestof this paperis organizedasfollows. We startby
describingthe proposedarchitecturein Section2. In Sec-
tion 3, we quantitatiely evaluateits performanceSectiord
discusseselatedwork, andwe concludein Section5.

2 Proposed Microarchitecture
2.1 TheBase Processor

In atypical processofoutlinedin Figurel), the proces-
sor front-end performsbranchprediction, fetchesinstruc-
tionsfrom theinstructionor tracecache anddepositshem
in the instruction fetch queue(IFQ). The IFQ holds the
fetchedinstructionsuntil they getrenamedand dispatched
into theissuequeue.In the dispatchstage the logical reg-
istersare mappedto the processos pool of physicalreg-
isters. The renametable keepstrack of logical to physical
registermappingsandis usedto renameanstructionshefore
putting theminto the issuequeue. The destinatiorregister
is mappedo anew physicalregisterthatis pickedoutof the
freelist (thelist of registersnot presentlyin use). Themap-
ping is alsoenterednto the re-orderbuffer (ROB), which
keepstrack of register mappingsfor all instructionsthat
have beendispatchedbut not committed. Theissuequeue
checksfor registerdependenceandalsohasa storequeue
thatensureghatloadsareissuedonly whentherecanbeno
conflictfrom anearlierstore.As instructionsbecomeaeady
andissue,they free up their issuequeueentry. A branch
stackwithin the renametable checkpointghe mappingsat
every branch,so they can be reinstatedin the event of a
branchmisprediction. The structurejust describedclosely
resembleshe R10000[35] andthe Alpha 21264[14].

Instructionsareissuedfrom the issuequeuewhentheir
registerandmemorydependencearesatisfiedandthey are
committedfrom the ROB in programorder asthey com-
plete.Considetthefollowing example:

Oiginal code Renaned code
lr7 <- pris5 <-
. < lr7 ... <- pri5
branch to x branch to x
[r9 <- Ir3 pr3l1 <- prl9
lr7 <- pra3 <-
X: X:

<- lr7 ... <- prl5

At dispatch thefirst write to logical register7 (Ir7) causes
it to getmappedo physicalregister15 (pr15). This is fol-
lowed by aninstructionthatreadslr7. The branchis then
predictedo benottakenandthe next instructionsto bedis-
patchedarea write to Ir9 anda write to Ir7. At this point,
Ir7 getsmappedto pr43 and subsequentisersof Ir7 will
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Figure 1. The base processor structure

now readfrom pr43. Evenif theinstructionthatreadsprl5
hascompletedprl5 cannotbe releasedackinto the free
list unlessthe write to pr43 hascommitted. Therearetwo
reasonsor this: (i) if thewrite to pr31raisesanexception,
to reflectanaccurateaegisterfile state Ir7 shouldshow the
valueheldin prl5, (ii) if the branchwasmispredictedwe
would needto jump to x, wherethe readfrom Ir7 would
actuallyreferto pr15. Hence pri5remaindive until all in-
structionsprior to the write to pr43 areknown to not raise
anexceptionandhave all their branchesesohed.

In the exampleshavn above, if the write to pr31 was
a load that missedin the L2, it could occupy the headof
the ROB for potentiallya hundredcycles. If the processor
has 24 renameregisters,only up to 23 more instructions
thatwrite to registerscanbedispatchedn this period. This
severelylimits theability of the processoto extractILP.

2.2 Addingthe Future Thread

The goal of the proposedarchitectureis to circumvent
thein-ordercommitprocessn orderto exploit any potential
farflung ILP in additionto nearbylLP. We begin with an
overview of the proposednmicroarchitecturefollowedby a
moredetaileddescriptionof the variousoperations.

As anillustrative example,we begin with abaseproces-
sor thathas 32 int and 32 fp logical registers,and 72 int
and 72 fp physicalregisters(i.e., thereare 40 int and 40
fp renameregisters). In the future threadarchitecturethe
front-end,comprisingthe IFQ andthe registerrenameta-
ble, is replicated(Figure 2). While the primary threadis
not stalled,the future threaddoesnot dispatchinstructions,
but it updatedts renametableto reflectthe new mappings
in the primary thread. Of the 40 integer renameregisters,
12 (for example) are resened for the future instructions.
When the primary threadruns out of registersand stalls,
the future threadcontinuesto malke progress. It usesits
allocatedphysicalregistersto dispatchsubsequeninstruc-
tions. Theseregistersarethenfreedaccordingto two cri-
teria. Registersare reusedas soonasthereis no usefor
them (assumingno mispredictsand exceptions). In addi-
tion, if aninstructionwaitstoo long in the issuequeue,it
getstimed out andits registeris reused.Instructionswait-

ing in the issuequeuefor this register are also removed.
Application of thesetwo criteria is possiblebecausethe
primary threadwill re-executetheseinstructionsin order
to ensuren-ordercommitand programcorrectnessThus,
registersresenedfor the future threadcanbe reusedmuch
morequickly, potentiallyallowing thethreadto executefar
aheadof the primary, enablingprefetchingof datainto the
cache garly branchprediction,andvaluereuse.The future
threaddoesnot engagen ary speculatiorapartfrom spec-
ulating acrossbranches. It respectsegisterand memory
dependenceshile issuinginstructions.

2.2.1 Additional hardware structures

Thethreemainadditionalstructuresarethefuture IFQ, the
future renametable,andthe Prgy StatusTable.

There are two programcounters,one for the primary
thread,andonefor the future. Theseareidenticalat first,
andfetchedinstructionsareplacedin eachlFQ. Every cy-
cle,instructionscanpotentiallyberenamedy boththreads
anddispatchednto theissuequeue.lf the sameinstruction
is beinghandledby boththreadsthe future threadwill not
dispatchit. The mappingcorrespondindo thatinstruction
in theprimary renameableis copiedinto thefuture rename
table.

Eachdynamicinstructionis assigneda sequenceium-
ber (this is a counterthat wrapsaroundwhen full andis
large enoughto ensurethatall in-flight sequencenumbers
areunique— possibly10bitslong). Sequencaumbersare
rolled backon a branchmispredict. Thesesequence&um-
bersmalke it possibleto relatethe primary instructionsto
their future counterparts.

Whenthe primary threadrunsout of physicalregisters,
it stalls. The future threadcontinues,usingthe remaining
physicalregistersto mapsubsequennstructions.For each
instructionthatis dispatchedy the future thread,an entry
is addedto the Preg StatusTable. This is a small CAM
structure,the size of the numberof registersresened for
thefuture thread(12 entries,in this example,for int andfp
each),that keepstrack of the currentphysicalregistersin
usewithin the future thread. The otherfieldsin this struc-
tureare: (i) Seqnumthesequenca@umbercorrespondingo
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Figure 2. The architecture suppor ting the futurethread (components belonging to the futurethread are shaded).

theinstructionthat hasthe physicalregisterasdestination,
(i) Users, indicatinghow mary moreconsumersf thatreg-
ister still remainin the pipeline, (iii) Overwrite indicating
that the correspondindogical registerhasbeenremapped
by a subsequerninstruction,(iv) Timeout setto a particular
value (30 in our case)at the time of dispatch,and decre-
mentedevery cycle if the instructionhasstill not beenis-
sued.TheUsersfield is incrementedvery time aninstruc-
tion is dispatchedhat sourceghat physicalregister It is
correspondinglygecrementesvhenthatinstructionissues.
While it hasbeenlogically describedas one structure,
the Prgg StatusTable can be broken up into a numberof
smallCAM structuresThemostcomplex of thesewould be
theuserdield whichwould needasmary as16 ports(corre-
spondingo two operandg$or eachof four instructionseing
renamedandfour instructionsbeingissued).This structure
wouldbesmallerthanarenamdablethathasasmary ports,
muchlargerfieldsperentry, andmoreentries.

2.2.2 Timeout and register reuse

To helpthefuture threaduseits registerresourcesnoreeffi-
ciently, we eagerlyfreeupregistersusingthetimeoutmech-
anismandtheregisterreusecriteria.

The rationalefor the timeoutcanbe illustratedby Fig-
ure 3. It shaws a histogramof the numberof instructions
thatwait in theissuequeuefor a given periodof time. The
particularexampleis that of a 20 million instructionwin-
dow from the programperimeter and is typical of most
memory-intensieprogramslit canbeseenthatinstructions
aremadereadywithin thefirst few cyclesof their dispatch,
or after about20 cycles, or after about100 cycles. These
correspondoughlyto the L1, L2, and memorylatencies.
Thetimeoutheuristicmodelsthefactthatthenon-readiness

of aninstructionin thefirst 30 cyclesimpliesthatit is wait-
ing onamemoryaccesaandis lik ely to notbewokenup for
another70 cycles. Hence we time it out andallow its reg-
isterandissuequeueentryto be usedby otherinstructions.
Registersget put backinto the free list assoonastheir
overwrite bit is setandthe numberof usersbhecomesero.
Lik ewise,whenthetimeoutcounterbecomegero,thereg-
isteris put backin the freelist, its mappingsn therename
table(if still active) andthe Preg StatusTableareremoved,
andtheinstructionis removedfrom theissuequeue.In or-
der to ensurethe correctexecutionof instructions,in the
next cycle, the tag of this timed out registeris broadcast
throughthe issuequeueand all instructionsthat sourceit,
time themselesout. This notonly freesup theissuequeue
slotbut alsoensureshattheinstructionsdo notwake them-
selvesup whenthe sameregistertag (correspondingo the
completionof alaterinstruction)is broadcasasready The
processs repeatedor thenewly timedoutinstructions.Fu-
ture instructionsdependenbn this value will not be dis-
patcheddueto theinvalid entryin the renametable. This
operationcould take a few cyclesdependingon the length
of thedependencehainin theissuequeue.To reducehard-
ware overheadwe could imposethe restrictionthat future
instructionsonly occupy certainissuequeueslots,thereby
having this associatie logic for a subsebf theissuequeue.
While dispatchinga primary instruction,if theissuequeue
is full, oneof the future instructionsis explicitly timed out
to make room for it. This ‘stealing’ of issuequeueslots
ensureghatpriority is alwaysgivento the primary thread.

2.2.3 Redispatching an instruction in the primary

Whentheinstructionat the headof the ROB completesthe
primary threadcanstartmakingprogressagainasregisters
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Figure 3. Histogram showing waiting time in the
issue queue for a portion of the program perimeter
The X axis shows the time spent waiting in the
issue queue, and the Y axis shows the number of
instructions that waited for that period.

getputin thefreelist. Instructionsarefetchedagainfrom

the I-cacheinto the IFQ andthen dispatched.While dis-

patchinganinstruction,the Preg StatusTableandfuture re-

nametable arelooked up. The future renametable keeps
track of the sequencenumberfor the last instructionthat
mappedhe logical registerwithin the future thread,while

the Prgg StatusTableincludesthe sequenceaumberof the
instructionwriting the physicalregister The currentin-

structionssequencaeumberis usedio associatiely look up

thePreg StatusTable.If aphysicalregistermappingstill ex-

istsfor thatinstructionin the future thread the samephysi-
cal registeris usedto mapthe instructionin the primary as
well. The correspondingphysicalregisterentryis removed
from the Preg StatusTable,astheregisteris nolongersub-
jectto therulesof the future thread.Thefuture instructions
thatsourcethis registerneednot updatetheir operandags.
Also, theinstructionneednot be dispatchedagaininto the
issuequeue,asthe earlierdispatchwill suffice to produce
aresultin that physicalregister If aresultalreadyexists
in the physicalregister, the future threadhelpsspeedup the
primary threadeven more. This phenomenorns referred
to asnatural reuse If a physicalregistermappingfor that
instructiondoesnot exist in the Prey StatusTable(the reg-

isterhasalreadybeentimed out or reused)andif thereis a
matchwith the sequenc@umberassociatedvith thefuture
renameableslogical registerentry, thefuture renameable
is updatedo reflectthe mappingin the primary table.

2.24 Recovery after abranch mispredict

Oncetriggered,only the future threadaccesse¢he branch
predictor It corveys its predictionsto the primary thread

througha FIFO queue.Thesepredictionsin the queueare
updatedvhenresoledby thefuture thread,sothatthe pri-
marythreadneednot go alongthe mispredictecpath.

When the future threaddetectsa mispredict,it check-
pointsbackto the stateat the mispredict. However, some
valuesmaybelost (astheregistermight have beenreused),
therebydisallowving dispatchof instructionsalongsomede-
pendencehains.

As mentioned,the future renametable tracks the se-
guencenumbercorrespondindo the logical register map-
ping. A corventionalrenameablecheckpointsts mapping
at every branch. For the future thread,the mappingsthat
might have beentrue at the time of checkpointingheednot
betruewhenthecheckpoinis reinstated- instructionsprior
tothebranchmayhavetimedout, hadtheirregistersreused,
or beenre-dispatcheaspartof the primary thread.Hence,
insteadof checkpointingthe mapping,we checkpointthe
sequencaenumberfor the mapping. In addition, the Preg
StatusTablealsocheckpointsts overwrite bit. While rein-
statingthe checkpointthe sequenc@umberis inspectedo
figure out wherethe correctmappingcanbe found. If the
sequencaumberis lessthanthelastsequencaumberen-
counteredy the primary thread thenit meanghatthe pri-
maryrenameablehasthe correctmappingfor thatregister
If thesequenc@umberis greaterit meanghattheregister,
if still valid, shouldbe partof the future threadandhave a
mappingin the Preg StatusTable. In the subsequentycles,
thesemappingsarecopiedbackinto thefuture renameable
sothatit reflectsan accuratestate,andthe overwrite bit is
recovered. If the primary threaddetectsa mispredict,the
future threadstartsfrom scratchafter copying the contents
of theprimary renameable.

A corventional renametable checkpoints7-bit values
(the physical register tag), while the future renametable
checkpointghe sequenc@umber(a 9-10bit value). While
this implies a longeraccesdime for the renametable, the
resultsin [21] indicatethat the renametableis not on the
critical pathfor thetechnologyparametergxamined.

Given that the renametableshave a limited numberof
read and write ports, copying as mary as 64 mappings
could take a numberof cycles. To reducethesecopies,
we could checkpointthe actualmappinginsteadof the se-
guencenumberwhenit is known thatthe mappingcannot
changé. Hence,in this case,by checkpointingthe map-
ping, a copy neednot be madeat the time of mispredict
recovery. Evenwith this changeijt is still possiblethatthe
recovery could add a few cyclesto the mispredictpenalty
for the future thread. We simulatedthe effect of an extra
four cycle penaltyandnoticedonly mamginal slovdownsfor

1For example, if the sequencenumberindicatesthat the instruction
that setthis mappinghasbeendispatchedn the primary thread,thenit
is known thatthis mappingwill still betruewhenthe branchmispredictis
discorered.



the programswith high mispredictrates. Giventhe oppor
tunistic natureof the future thread,its mispredictpenalty
doesnot play amajorrole in affectingperformance.

2.25 ExploitingtheRB

In themicroarchitecturelescribedhusfar, instructionsamay
get executedby both the primary and future threads. An
instructionreusebuffer (IRB) could be usedto minimize
this redundang?. An implementationschemelike S,, or
Sn+a [29] could be easilyusedwith minimal modification.
In our simulations,we usethe S,, schemebecauseof its
simplicity. In this schemethe reusebuffer keepstrack of
theprogramcountertheoperanchamegregisteraddresses)
for aninstruction,andthe resultvalueit producedwhenit
was last invoked. During dispatch,if a programcounter
matchis foundin the IRB andtheresultvalueis valid, an
instructioncan bypassthe issueand executestagesof the
pipeline.Eachinstructioncreatesanentryin the IRB atthe
time of dispatchandupdategheresultvalueat thetime of
completion.Whenaninstructiondispatchesit alsoinvali-
datesall the entriesin the IRB thatsourcethe samelogical
registerasits destination.Similarly, a storeinvalidatesall
loadsin theIRB thathave the samesourceaddress.

To supportthe future thread,two modificationsneedto
bemadeto theIRB. Primaryinstructionscannotcreated RB
entriesoncethefuture threadis triggered(theseentriesmay
be invalid becausehe future threadmay have dispatched
instructionsthathave modifiedthe operandswhich the pri-
mary hasno way of knowing). In addition,the entriesin
the IRB alsokeeptrack of the sequencaumberfor the fu-
tureinstructionthatproducedhem. Theprimarythreadcan
reusevalid resultsin the IRB aslong astheseresultswere
producedby instructionswith sequenc&umberdessthan
or equalto that of the instructionbeing dispatched. This
ensureshatthe contentsof thelogical registersthatarethe
operandss the sameasthatusedto generateheresult.

2.2.6 Dynamic partitioning of registers

The allocation of physical registersbetweenthe primary
andfuture threadsneednot be setat designtime. In fact,a
numberof programghatdo not have distantILP would be
betteroff usingtheir registersto exploit nearbylLP rather
thanhave the future threadthrow thoseresultsaway to ad-
vancefurther. We include a mechanisnthat dynamically
accomplisheghis partitioning on the fly. The numberof
registersallocatedto eachthreadis controlledby stalling
thethreads dispatchassoonasit hasconsumedts allotted
registers. A counterkeepstrack of the registersallottedto
andfreedby eachthread.A register setat run-time,speci-
fiesthe maximumallowed countervalue.

We usea simpleinterval-basednechanisnj2] thatmon-
itors the programoverregularintervalsto decidewhatcon-

2An IRB in acorventionalmicroarchitecturexploits valuelocality by
notre-executinginstructionsf they have the sameoperandvalues.

Fetchqueuesize 16
Branchpredictor comb of bimodaland2-level gshare;
bimodalsize2048;
Levell 1024entries history 10;
Level2 4096entries(global);
Combiningpredictorsize1024;
RAS size32; BTB 2048sets 2-way
Branchmispredictpenalty 9 cycles
Fetch,dispatchjssue, 4
andcommitwidth
Issuequeuesize
L1 | andD-cache 64KB 2-way, 2 cycles
L2 unifiedcache 1.5MB 6-way, 15cycles
TLB 128entries 8KB pagesize
Memorylatengy 70 cyclesfor thefirst chunk

20(int), 15 (fp)

Memoryports 2 (interleared)
Integer ALUs/mult-div 4/2
FPALUs/mult-div 2/1

Table 1. Simplescalar simulator parameter s

figurationto usein the next interval. After every 100K in-
structioninterval, we examinea setof hardware counters
that track the numberof branchesand the numberof L1
cachemisses. If thereis a significantchangein either of
thesecomparedo thosein the last interval, we assumea
changen programphase.Every new programphases ac-
companiedby an exploration process.For the subsequent
intervals,the programis run with variousregisterpartitions,
andthe|PC for eachinterval is recorded At the endof this
shortexploration processthe partition that worked bestis
useduntil the next phasechangeis detected.This process
of recordinglPCsandpicking the bestconfigurationis eas-
ily donein hardwarewith simplelogic, or in software by
low-overheadnterrupthandlerglik e thatusedfor software
TLB refill). Someprogramsdo not shov consistenbehav-
ior acrossl 00K instructionintervalsandspendmostof their
timein theexplorationphaself suchascenarids detected,
we shutoff the explorationprocessandresortto theregister
partitioningthat was picked mostfrequently More details
abouttheinterval-basednechanisntanbefoundin [3].

3 Results
3.1 Methodology

We usedSimplescalaf3.0[4] for theAlphaAXP instruc-
tion setto simulatea dynamicallyscheduled}-wide super
scalar The simulationparameterarelistedin Tablel.

The simulatorhasbeenmodifiedto modelthe memory
hierarchyin greatdetail (including interleavred accessbus
and port contention,writebackbuffers). We alsomodela
physicalregisterfile andanissuequeuethatis smallerthan
the ROB size. (In Simplescalarthe issuequeuesandthe
ROB constituteonesingleunified structurecalledthe Reg-
ister UpdateUnit (RUU).) Theseare further divided into
separaténtegerandfloating-pointstructures.

Ourbaseprocessohasparametersesemblinghe Alpha



Benchmark Input Simulation IPC of the
dataset window (instrs) | basecase
em3d(Olden) 20000nodes,| 500M-525M 0.51
arity 20
mst(Olden) 256nodes 9M-14M 0.44
perimeter(Olden) 32Kx32K 1515-1540M 0.39
art(SPEC2k) ref 500M-550M 0.96
swim (SPEC2Kk) ref 1000M-1025M 0.73
lucas(SPEC2k) ref 2000M-2050M 1.03
sp(NAS) A 2500M-2550M 0.98
bt (NAS) A 3200M-3250M 0.71
go (SPEC95) ref 1000M-1025M 1.29
compresgSPEC95) ref 2000M-2025M 1.53

Table 2. Benc hmark description

21264[14]. We use72 integer® (int) and 72 floating-point
(fp) physicalregisters(correspondingo 40 renameregis-
ters, int andfp, each)andinteger and fp issuequeuesof
20 and15 entries,respectiely. We usea suficiently large
ROB asit is arelatively simplestructureandis lik ely to not
be on the critical path. Dispatchgetsstalledassoonasei-
therthe registersor the issuequeueentriesget usedup, so
the ROB occupany rarely exceeds80 entries,which is the
ROB sizein the21264.0ur goalis to demonstrat@otential
improvementson an existing processomodel. In addition,
we presentesultswith andwithout a small 16-entryfully-
associatie IRB with the S,, implementatiorscheme.
Weranoursimulationson 10 programsrom SPEC2000,
SPEC95the NAS Parallel Benchmarl{8], andthe Olden
suite[23]. Eight of theseare memory-intensie and suffer
themostfrom the problemof a singlelong lateng instruc-
tion holding up the commit stage. We have alsoincluded
two non-memory-intensie programs(go, compes3 from
SPEC93NT, to illustratethe effect of the future threadon
this classof applications. To reducesimulationtime, we
studiedcachemiss rate tracesto identify programwarm-
up phasesand smallerinstructionwindows that were rep-
resentatie of the programbehaior®. The programswere
alsorun for 1M instructionsin detail to warm up the var-
ious structuresheforemeasuringperformance.Details on
the benchmarkare listed in Table2. The programswere
compiledwith Compadgs cc, 77, andf90 compilersfor the
Alpha21164atthehighestoptimizationlevel.

3.2 Analysis

We first shav the performancavith afuture threadwhen
thereis afixed allocationof registersbetweerthe primary
andfuture threads.This motivatesthe useof dynamicallo-
cation,which we thenusethroughouthe restof the paper
Theimprovements attributedto the variousfeaturesof the
future threadandwe thenlook at the effect of variouspa-
rameterdik e the IRB, issuequeue andregisterfile size.

3The Alpha has80integer registers.We use72 for uniformity.

4Sinceeachiterationin btis very long, we useda smallerwindow than
wasrepresentate of thewhole program.However, theresultswereselec-
tively verifiedto beindicative of the performancever longerwindows.

3.21 Dynamic partitioning of registers

Figure 4 shavs speedupswith the future threadfor vari-
ousfixed allocationsof registersbetweenthe primary and
future threads.For all figures,the IPCshave beennormal-
izedwith respecto anidenticalbasecasethathasno future
thread(i.e., all renameegistersareallocatedo theprimary
thread). Of thesevarious static organizationsthe 28::12
allocationthatresenes 28 registersfor the primary thread
hasthebestoverall speedugwhencomparingheharmonic
mean(HM) of IPCs). However, we seethat differentallo-
cationsdo well for different programs. This dependson
whetherthe programhasdistantor nearbylLP andwhether
the numberof registersresened for the future threadare
enoughto allow it to advancefar enoughto exploit this dis-
tant ILP. The highestspeedupg$or lucasand mstare seen
by reservingonly eightregistersfor the primary thread but
this is the worst allocationfor a numberof programsthat
alsohave nearbylLP. This motivatesthe needfor adynamic
schemehat pickstheright allocationon thefly, depending
on programrequirements.The lastbar in Figure 4 shavs
thatthe overall speedupf 1.17with theinterval-basedly-
namicschemdarexceedshespeedumpf 1.11possiblewith
the beststaticorganization. The only programthat experi-
encesa large numberof phasechangess art asit doesnot
have consistenbehavior acrossl00K instructionintervals.
Hence,after a numberof initial exploration phasesit re-
mainsfixed at the organizationthat was picked mostoften.
All subsequentesultsassumehe useof the dynamicallo-
cationof registersbetweerthe primary andfuture threads.

3.2.2 Effectsof prefetch, branch resolution, and reuse

Table3 shaws variousstatisticsthathelp us explain the be-
havior of the future thread.In Figures5 and 6, we attempt
to isolatethe contritutionsof the variouscomponentso the
performanceof the future thread. In Figure5, the first bar
(prefetchonly) shaws a future threadimplementatiorthat
just runsaheadalong predictedpathsto warm up the data
and instructioncacheswhile ignoring the outcomeof all
branchinstructions.In this scenariopranchmispredictsare
discoreredonly when the primary threadre-executesthe
branchinstruction. The secondbar shovs animplementa-
tion wherethe future threadalso resohes branchmispre-
dictsearlyandinitiatesrecovery. Thethird barrepresents
modelthataddsanIRB. We seethata significantportion of
theimprovements dueto the prefetcheffect, with theover-
all speedupbeingl.12. Table3 shawvs thatthereis a sharp
dropin the numberof long lateng loadsseenby the pri-
mary thread. The numberof loadsper committedinstruc-
tion thatseea lateng/ of morethan40 cyclesfallsby almost
afactorof two andis evenreducedo zeroin the caseof lu-
cas For lucas thedynamicschemeallocatesmostrename
registersto the future threadandthis enablest to advance
asfar asthe next loop iteration, therebyfetching the data
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Figure 4. Performance of the futurethread for various fixed register allocations between the primary and future
thread. For example, ‘8::32" represents an allocation where 8 rename register s are reserved for the primary
thread and the remaining 32 are reser ved for the future. The last bar shows performance with the inter val-based

scheme that dynamicall y picks the best allocation.
has no futurethread and uses all 40 rename register s for the primary.

IPCs have been normaliz ed with respect to a base case that

em3d mst peri art swim lucas sp bt go comp
Num timeouts 0.29 1.12 0.56 0.31 0.42 0.59 0.37 0.16 0.00 0.03
Num eagerreg 0.45 0.03 0.65 0.30 0.11 0.06 0.13 0.28 0.01 0.06
release
Num naturalreuse 0.14 0.13 0.20 0.23 0.37 0.25 0.22 0.26 0.10 0.16
Avg distbetween 71,136 25,115 51,114 63,131 67,123 | 31,183 | 75,128 47,75 19,19 | 39,49
oldestandyoungest
instrs(base future)
Numloadsissuedby | 0.12,0.05 | 0.02,0.02 | 0.11,0.05 | 0.02,0.01 | 0.04,0.04 | 0.05,0 | 0.03,0.02 | 0.05,0.04 | 0,0 0,0
primary threadthat
take morethan40
cycles(basefuture)
Num future 0.7 0.2 14 0.8 0.8 0.6 0.6 0.9 0.2 0.4
instrsissued
Branchdirection 95% 97% 94% 98% 99% 98% 89% 98% 80% 93%
predictionrate
(roundedoff)
% of mispreds 88% 0% 59% 42% 74% 99% 73% 68% 4% 3%
detectedby
future instrs
IRB hit ratefor 20% 5% 10% 35% 8% 0% 5% 14% 22% 16%
primary thread

Table 3. Various statistics pertaining to the future thread (with a dynamic allocation of register s) and the base

case with no futurethread (most number s are normaliz ed to the number of committed instructions,

Num timeouts is the number of timeouts per committed instruction).

for example,
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Figure 5. Futurethread performance broken down
as prefetch, early branc h recovery, and reuse .

long beforethe primary threadstartsthatiteration.

Whenthefuture threadis allowedto initiate earlybranch
recovery, we seesignificantimprovementdor the programs
with high branchmispredictrates. This resultsin an addi-
tionalimprovementof 5%, 24%,and13%in em3d perime-
ter, andsp. On the otherhand,we seea big dropin per
formancefor swim Whenthe future threadinitiates early
branchrecovery, it triesto restorea valid registerstate.Be-
causeof the eagermreleaseof registers,somevaluesremain
lost, disalloving progressalongthosedependencehains.
This setsoff a chainreaction,wherethe future threadruns
muchfurther aheadbut is unableto executeary of the in-
structions It canbeproductiveagainonly whentheprimary
threadcatchesip,whichoccurswhentheprimarydiscovers
abranchmispredict(for abranchnotexecutedoy thefuture)
and squashesll subsequeninstructions. Swimis a loop-
basedfloating-pointcodeandhasa low branchmispredict
rate. As aresult,the future threadmay have to wait a very
long time beforeit hasvalid registermappings.This effect
is alsosomavhatseenfor bt. This negative effect of early
branchrecovery canbe easilyeliminatedby not attempting
it for programawith high branchpredictionaccuraciesOur
simulationsdo not assumehe useof sucha scheme.

Finally, by addingthe IRB we seean additional over
all improvementof 5%. A numberof instructionsthathave
beendispatchedby thefuturethreadneednotbere-executed
whenseenby the primary thread. The lastrow in Table 3
shaws thatup to 35% of theseinstructionscanobtaintheir
result from the IRB. This IRB hit rate improves slightly
whenwe uselarger IRBs. Using a 128-entrylRB, we see
additionalimprovementsof 8% and 7% in mstand bt, re-
sultingin anadditional1% overallimprovement.

3.2.3 Breakdown of contributions

Threemajor designcomponent&nablethe future threadto
adwanceaheacbf the primary. FromTable3, it canbeseen
thatthe averagedistancebetweenthe oldestand youngest

W dynamic

Ono eager reg-release
Ono timeout

Bino natural reuse

em3d mst peri art swim lucas sp bt go comp HM

Figure 6. Contrib utions of the features of the future
thread. The left bar has all features turned on. The
other bars show speedups when each is disab led.

instructionwithin the processoiincreasegreatly because
of the future thread.This numbermrepresentshe sizeof the
in-flight instructionwindow. The largestwindow seenby
the baseprocessoiis only 75 instructions(in the caseof
sp), but thefuture threadcanlook in amuchlargerwindow
(aslargeas183in thecaseof lucag becausef theeagerre-
leaseof registersandthe timeout. Both of theseoftencome
into play asevidencedby the statisticsin thefirst two rows
of Table 3. In addition, Table 3 demonstrateshat a sig-
nificant numberof instructionsneednot be re-executedby
theprimary threadif their mappingstill existsin thefuture,
which we describeasnaturalreuse.

Figure6 quantifiesthe contributionsof thesethreecom-
ponentshy disablingthemoneatatime. It canbe seerthat
eagerregisterreleaseaccountsfor mostof the speedugn
em3dandperimeter while timeouthelpsgreatlyin perime-
ter andlucas For lucas theprimarybottleneckis theissue
gueue. The useof thetimeoutmakesit possibleto reduce
contentiorfor theissuequeuetherebynotstallingdispatch.
Similarly, by allowing natural reuse,we prevent the re-
dispatchof instructiondnto theissuequeuethusalleviating
the bottleneckagain. Thus,the combinationof the timeout
mechanismandthenaturalreuseallows thefuture threadto
adwancefarenoughto doaneffectivejob prefetching Elim-
inating eagemegisterreleaseaesultsin animprovementfor
swimbecausean early recovery from a branchmispredict
by the future threadnow resultsin no lost values,thereby
eliminatingthe problemalludedto earlier We seealmost
no improvementsor non-memory-intensie programdlike
goandcompess asthey rarelyrunoutof registers thereby
nottriggeringthefuture thread.

3.2.4 Effect of various processor parameters
Mst is a memory-intensie programthat doesnot shav

5Compesshasa high L1 missrate, but a low L2 missrate, andthe
in-flight window in thebaseprocessors largeenoughto hideL 2 latencies.
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Figure 7. Speedups with the future thread for the
Alpha-like model (left), and a model that has iden-
tical parameter s except for a larger issue queue.

muchimprovementasit haslittle nearbylLP, causingin-
structionsto wait in the issuequeue thusstalling dispatch.
For the otherprogramsby usingthe future thread the reg-
isterfile is removed asthe bottleneckto dispatch. Hence,
stallsareoften causeddy the smallsizeof theissuequeue.
We next evaluatethe future threadfor a processomodel
that haslarger int andfp issuequeuesof 30 entrieseach.
Thelargerissuequeuegesultedin no improvementfor the
basecaseputthey enabledhefuturethreado advanceeven
further, resultingin anoverall speedumf 1.21(Figure7).

Finally, we studytheeffect of differentregisterfile sizes.
Figure8 shows speedupsvith thefuture threadfor proces-
sormodelsthathave physicalregisterfile sizesrangingfrom
56to 80registers(int andfp, each).Eachbaruseghecorre-
spondingbasecaseto computespeedupsTwo effectscome
into play here. Using a smallerregisterfile makesit more
of a bottleneck,increasingthe potentialbenefitof the fu-
ture thread.However, with a smallerregisterfile, the future
threadwill alsobelimited in its ability to look aheadreduc-
ing the prefetcheffect. Dependingon which effect domi-
nateswe seedifferentbehaiors for thedifferentprograms.
Hence acleartrendis notseenin the overall speedumum-
bers. It must be pointed out that the raw IPC for a 56-
register basecaseaugmentedvith the future thread(0.72
IPC) is betterthantheraw IPC for a 72-registerbasecase
without the future thread(0.71 IPC). While the IPCs are
comparablethe formerprocessomodelis likely to have a
fasterclock speed.

4 Related Work

DundasandMudge[10] introduceda schemdor halting
the main instructionstreamon a cachemiss, and running
aheado prefetchdata. However, this wasonly applicable
to anin-ordermachinewith no ILP support.

Theideaof forming multiple threadghatexecutedistant

18
17
16
15
1.4 1=
1.3

056 regs
164 regs
W72 regs
= | #180 regs

114 H H

0.9 1
0.8 1 —
0.7 4

Normalized IPCs
=
I

0.5 1 —
0.4 1
0.3 1 —
0.2 +

em3d mst peri

T T
art swim lucas sp bt go comp HM

Figure 8. Speedups with the future thread for pro-
cessor models with diff erent register file sizes.

instructionshasbeenexploitedin a numberof approaches,
suchasMultiscalar[30], Traceprocessor$25], DMT [1],
andTLDS [31]. Thesearehardwareintensive solutionsas
they assumehe presencef a separat@rocessinginit or a
Simultaneousultithreaded SMT [33]) baseto executethe
threads. They requiresignificanthardwareto storeresults
andto transferregister valuesbetweenthreadsto free up
dependenced hey arealsohighly speculatie in nature as
thesethreadsmight lie muchfurther aheadn the program
controlflow.

Zilles and Sohi [36] characterizeproblem instructions
(cachemisses branches)ynd the instructionsthat lead to
them. They point out that a smallersubsetof the program
codecanbepre-executedsothatthemaininstructionstream
rarelyencountergachemissesor branchmispredicts They
assumen underlyingimplementatiorthat canpre-execute
theseslices. Rothand Sohi[28] talk aboutsuchanimple-
mentationthat can pre-executecertaindependencehains.
They useprofiling to generateheseslicesandannotatehe
codeto trigger themat appropriatepoints. Thesethreads
usephysicalregistersto storetheirresultsandthey areinte-
gratedinto themainprogramthreadwhenit catchesup.

Therehave alsobeena coupleof attemptsat improving
branchresolutionby pre-execution[11, 27], wheretheslice
determiningthe branchis duplicatedandmadeto runin a
separatavindow. Farcy et al [11] noticeregularity in the
branchconditioncomputationsandusevalue predictionto
acceleratehe secondhread.

SimultaneousSubordinateMicrothreading(SSMT) [5]
and Assisted Execution [9] are schemeswhere custom-
generatedhreadsare invoked within the hardware by cer
tain events. Thesethreadsperform very simple specific
tasksandcannotbe automaticallygenerated.

A relatedconceptis AR-SMT [24] and SRT [22], that
run two copiesof the sameprogramon an SMT proces-
sor and compareresultsfrom both threads. Their goal is



to detecttransientfaultsin a chip, ratherthanto enhance
performanceAn extensionof thisis the Slipstreanproces-
sor[32], wherethethreadrunningaheads a shortenedrer-
sionof theoriginal program(dynamicallycreatedy detect-
ing andeliminatingineffectualpiecesof the program),and
thetrailing threads thefull progranthatverifiesthecorrect
working of the leadingthread. The two programstogether
canrun fasterthanthe singleoriginal programbecausehe
leadingthreadcommunicatevaluesand branchoutcomes
to thetrailing threadas(oftencorrect)predictions.

Cruzet al [7] presenta multi-banked registerfile, with
thebankshaving differentspeedsWhile this degradedPC,
it enablesa fasterclock. Otherwork [17, 34] proposesm-
proving registerutilization by allocatingregisterswhenin-
structionscomplete. The relaxed conditionsfor releasing
registersinto thefreelist have beenproposedefore[18] in
thecontext of processorsvith impreciseexceptions.

The primary advantage of the future thread is its
prefetchingeffect. A numberof hardware[6, 13, 26] and
softwareprefetching16, 19] schemesave beenproposed.
Most of theseschemegando a betterjob of prefetchingas
they exploit somehigherlevel programinformation (reg-
ularity of accesses)This regularity can be determinedat
compile time or as stridesor load-value dependence
hardware. This lack of high-level informationpreventsus
from doing a very effective job of prefetching. We, how-
ever, do a more exactjob aswe respectdependenceand
actuallycomputeload addressefratherthanuseheuristics
like most hardware prefetchschemes). We also use dy-
namicbranchpredictionto follow theprobablecontrol-flowv
path,insteadof greedilyprefetching[16] alongall possible
paths.This preventsus from fetchinguselessinesinto the
cache(unlesswe are on the wrong branchpath). Hence,
our techniquesare also applicableto irregular codeswith

unpredictableontrolflow andunpredictablelataaccesses.

Luk [15] addressesa similar problemin the context of an
SMT processoby usingthe compilerto help pre-execute
thesecodes.Someof theprefetchschemesanalsobecom-
binedwith the future threadto yield greaterspeedupsFor
example,addingthe future threadto a basecasethathasa
strideprefetcherresultsin significantspeedup$§3].

A software approachto tackling the problemof a sin-
gle cachemissholdingup the ROB is describedy Pai and
Adve [20]. They presenta compileralgorithmthatrestruc-
turescode so that cachemissesare clustered therebyin-
creasinghe memoryparallelismwhile the ROB is stalled.

5 Conclusions

We have designedandevaluateda microarchitecturghat
dynamicallyallocatesa portion of the processos physical
resourcego a future threadin orderto exploit distantILP
in additionto nearbyILP. Long lateng instructionstend
to stall the commit phaseof a traditionalsuperscalaarchi-

tectureon reachingthe headof the re-orderbuffer. Subse-
guentinstructionsuseuptheavailablephysicalregisters af-

terwhichthedispatchstagestalls.In our proposednicroar

chitecture,part of the physicalregistersare allocatedfor

the main programand oncethey are consumedthe future

threadgetstriggeredand makes forward progress. It ea-
gerly releasesegistersandtimesout instructionsthat wait

too long in orderto opportunisticallyadvancefar beyond

whatthe primary threadis capableof. It thusimprovesper

formanceby resolvingbranchmispredictsearly, by warm-
ing up thedataandinstructioncachestheinstructionreuse
buffer, andby reusingregistermappingsandvalues.In ad-
dition, aninterval-basedschemaes usedto allocatethe op-

timal numberof registersto thefuture thread.

Our evaluationon someof the more memory-intensie
benchmarkshow very promisingspeedup®f up to 1.64.
The overall improvementon our benchmarksuiteis 17%.
The contributionscomemainly from prefetching with sig-
nificantcontributionsfrom earlybranchrecoveryin thepro-
gramslimited by poor branchpredictionaccuracies.The
useof a small 16-entryIRB accountsfor 5% of this im-
provement.Thedynamicallocationof registersplaysa ma-
jor role in tuning the hardwareto the ILP requirementf
eachprogramphase The useof alargerissuequeueallows
thefuture threadto achiese anoverall speedupf 1.21.
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