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Abstract

Modernsuperscalarprocessors usewide instructionis-
suewidthsandout-of-order executionin order to increase
instruction-level parallelism (ILP). Becauseinstructions
must be committedin order so as to guaranteeprecise
exceptions,increasingILP implies increasingthe sizesof
structuressuch astheregisterfile, issuequeue, andreorder
buffer. Simultaneously, cycletimeconstraintslimit thesizes
of thesestructures,resultingin conflictingdesignrequire-
ments.

In this paper, we presenta novel microarchitecture de-
signedto overcomethelimitationsof a registerfile sizedic-
tatedby cycletimeconstraints. Available registers are dy-
namically allocatedbetweenthe primary program thread
anda futurethread.Thefuturethreadexecutesinstructions
whentheprimary threadis limited by resourceavailability.
Thefuture threadis not constrainedby in-ordercommitre-
quirements.It is therefore able to examinea much larger
instructionwindowandjumpfar aheadto executereadyin-
structions. Resultsare communicatedback to the primary
threadby warming up the register file, instruction cache,
data cache, and instructionreusebuffer, and by resolving
branch mispredictsearly. Theproposedmicroarchitecture
is ableto get an overall speedupof 1.17over thebasepro-
cessorfor our benchmarkset,with speedupsof up to 1.64.

1 Introduction

Dynamicsuperscalarprocessorsperformregisterrenam-
ing and out of order issuein hardware to extract greater
instruction-level parallelism(ILP) from existing programs.
A significantperformancelimitation in suchprocessorsis
the lack of forward progressin the midst of long latency
operations(e.g., cachemisses). When this happens,it
would ideally be most beneficial to executeother inde-
pendentperformancedegradinginstructions(long-latency
�
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loads,branchmispredicts).However, to find suchindepen-
dent instructions,the processorwould have to examinea
sufficiently largeinstructionwindow.

This problemcannotbesolvedby simply increasingthe
numberof in-flight instructions,asit would requirelarger
register files and reorderbuffers that may impact critical
timing paths. The registerfile, in particular, canoften de-
terminethecycle time andseveralapproachesthatattempt
to balancelatency andIPC havebeenproposed.TheAlpha
21264implementsaclusteredregisterfile [14] in anattempt
to reduceaveragelatency. Similarly, register file caches
have also beenproposed[7] in order to accessa smaller
subsetof registersin a single cycle. Both of thesetech-
niques,however, causeIPC degradationwhencomparedto
a singlemonolithic registerfile of the samesize. A multi-
cycle registerfile hasits own problems- designcomplexity
in pipelininga RAM structure,having two levelsof bypass
(which is one of the critical factorsin determiningcycle
time [7, 21]), and reducedIPC becauseof longer branch
mispredictpenaltiesandincreasedregisterlifetimes.These
problemsareonly exacerbatedin anSMT processor, where
the register file resourceshave to be sharedby multiple
threads.Further, aswe move to smallerprocesstechnolo-
gies, the dominatingeffect of long wire delayswill make
it evenmoreprohibitive to implementlargeregisterfiles in
wide-issuemachines[12, 21].

The fundamentalreasonwhy the register file size has
sucha large impacton the sizeof the instructionwindow,
andhenceperformance,is thatinstructionscanberenamed
anddispatchedonly whentherearefreeregistersavailable.
Registersarefreedonly wheninstructionscommit,andin-
structionsarecommittedin order. A singleinstructionthat
takesa long time to completecouldstall thecommitstage,
therebyholdingup all theregistersandnot allowing subse-
quentinstructionsto dispatch.During this period,theout-
of-orderexecutioncorecanonly look at a restrictedwin-
dow of instructionsto extractILP. As theprocessor-memory
gapincreases,therewill be an increasingnumberof long-
latency loads,causingdispatchto frequentlystall asit runs
out of physicalregisters.Thus,thereis a needfor new ap-
proachesthatallow for forwardprogressto bemadewithout
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increasingthecomplexity of critical hardwarestructures.

In thispaper, wepresentanovelarchitecturethatusesthe
limited numberof physicalregistersto dynamicallytrade
nearbywith distantILP, while still maintainingpreciseex-
ceptionsandprogramcorrectness.The front-endcansup-
port fetchfrom two threads,thesecondof which is dynam-
ically spawnedby thehardwareratherthanbeingstatically
createdby the program. Initially, the only threadto run is
themain(primary) program.Thesecondary(future) thread
consistsonly of a programcounterandregisterstate. Out
of theavailablerenameregisters,we dynamicallyreservea
certainnumberfor the future thread,accordingto the pro-
gram’scurrentneedsto exploit far-flung ILP. Oncethepri-
mary threadrunsout of its allocatedregisters,it stalls,and
the future threadgetstriggeredand startsoff from where
the primary left off. This future threadcannotchangethe
programstate,i.e., it cannotwrite to memoryor updatethe
primary thread’sregisters.It usestheremainingregistersto
renameanddispatchits instructions.

In orderto allow the future threadto make progressbe-
yondtheinstructionsto which theseregistersareallocated,
we relax the constraintson whenits registersarereleased
backinto the free list. First, a register is releasedassoon
asall its consumershave readits value, i.e., we make the
optimisticassumptionthat therewill beno branchmispre-
dictsor exceptionsraised.The future threadcannotchange
the stateof the primary thread— it servesthe purposeof
potentiallywarminguptheregisterfile, dataandinstruction
caches,andresolvingmispredictedbranchesearly. Second,
in orderto avoidconsumingfuturethreadresourcesthatpre-
ventotherindependentinstructionsfrom executing,wealso
adda timeoutmechanismto remove instructionsthat wait
for operandsin the issuequeuefor too long. This freesup
registersandissuequeueslotsso thatotherproductive de-
pendencechainscanmake progress,therebyallowing the
future threadto getfaraheadof theprimary. Whenthepri-
marythreadceasesto bestalled,it dispatchesits subsequent
instructionsall over again,but makesspeedierprogressas
its loadshave beenprefetchedandits brancheshave been
correctlypredicted.Theuseof anInstructionReuseBuffer
(IRB) [29] couldspeeduptheexecutionevenmoreassome
of theseinstructionswould nothave to bere-executed.

Thus, we rob the main programthreadof someof its
resourcesand allocatethem to this opportunistic‘helper’
threadthatseeksindependentinstructionsthataremoredis-
tant. Thebenefitof suchanapproachwould dependon the
natureof the program,and we presenta mechanismthat
dynamicallyperformsthis allocationof resourcesbetween
the primary and future threads. As a result, in situations
wherethe future threaddegradesperformance,the proces-
sorcanalwaysrevert backto anorganizationlike thebase
case,whereall resourcesbelongto theprimary thread.Our
simulationresultsindicate that relative to the basesimu-

latedarchitecture,performanceis improvedby an average
of 17%with thedynamichelperthread.

Therestof thispaperis organizedasfollows.Westartby
describingthe proposedarchitecturein Section2. In Sec-
tion 3,wequantitativelyevaluateits performance.Section4
discussesrelatedwork, andwe concludein Section5.

2 Proposed Microarchitecture

2.1 The Base Processor

In a typical processor(outlinedin Figure1), theproces-
sor front-endperformsbranchprediction,fetchesinstruc-
tionsfrom theinstructionor tracecache,anddepositsthem
in the instruction fetch queue(IFQ). The IFQ holds the
fetchedinstructionsuntil they get renamedanddispatched
into the issuequeue.In thedispatchstage,the logical reg-
istersaremappedto the processor’s pool of physicalreg-
isters. The renametablekeepstrack of logical to physical
registermappingsandis usedto renameinstructionsbefore
putting theminto the issuequeue.Thedestinationregister
is mappedto anew physicalregisterthatis pickedoutof the
freelist (thelist of registersnotpresentlyin use).Themap-
ping is alsoenteredinto the re-orderbuffer (ROB), which
keepstrack of register mappingsfor all instructionsthat
have beendispatched,but not committed.Theissuequeue
checksfor registerdependencesandalsohasa storequeue
thatensuresthatloadsareissuedonly whentherecanbeno
conflict from anearlierstore.As instructionsbecomeready
and issue,they free up their issuequeueentry. A branch
stackwithin the renametablecheckpointsthemappingsat
every branch,so they can be reinstatedin the event of a
branchmisprediction.The structurejust describedclosely
resemblestheR10000[35] andtheAlpha 21264[14].

Instructionsareissuedfrom the issuequeuewhentheir
registerandmemorydependencesaresatisfied,andthey are
committedfrom the ROB in programorder as they com-
plete.Considerthefollowing example:

Original code Renamed code
lr7 <- ... pr15 <- ...
... <- lr7 ... <- pr15
branch to x branch to x
lr9 <- lr3 pr31 <- pr19
lr7 <- ... pr43 <- ...
... ...
x: x:
... <- lr7 ... <- pr15

At dispatch,thefirst write to logical register7 (lr7) causes
it to getmappedto physicalregister15 (pr15). This is fol-
lowed by an instructionthat readslr7. The branchis then
predictedto benot takenandthenext instructionsto bedis-
patchedarea write to lr9 anda write to lr7. At this point,
lr7 getsmappedto pr43 and subsequentusersof lr7 will
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Figure 1. The base processor structure

now readfrom pr43. Evenif theinstructionthatreadspr15
hascompleted,pr15 cannotbe releasedbackinto the free
list unlessthe write to pr43 hascommitted.Therearetwo
reasonsfor this: (i) if thewrite to pr31raisesanexception,
to reflectanaccurateregisterfile state,lr7 shouldshow the
valueheld in pr15, (ii) if thebranchwasmispredicted,we
would needto jump to x, wherethe readfrom lr7 would
actuallyreferto pr15.Hence,pr15remainsliveuntil all in-
structionsprior to the write to pr43areknown to not raise
anexceptionandhaveall their branchesresolved.

In the exampleshown above, if the write to pr31 was
a load that missedin the L2, it could occupy the headof
theROB for potentiallya hundredcycles. If theprocessor
has24 renameregisters,only up to 23 more instructions
thatwrite to registerscanbedispatchedin this period.This
severelylimits theability of theprocessorto extractILP.

2.2 Adding the Future Thread

The goal of the proposedarchitectureis to circumvent
thein-ordercommitprocessin orderto exploit any potential
far-flung ILP in additionto nearbyILP. We begin with an
overview of theproposedmicroarchitecture,followedby a
moredetaileddescriptionof thevariousoperations.

As anillustrativeexample,we begin with abaseproces-
sor that has32 int and 32 fp logical registers,and 72 int
and 72 fp physicalregisters(i.e., thereare 40 int and 40
fp renameregisters). In the future threadarchitecture,the
front-end,comprisingthe IFQ andthe registerrenameta-
ble, is replicated(Figure2). While the primary threadis
not stalled,the future threaddoesnot dispatchinstructions,
but it updatesits renametableto reflectthenew mappings
in the primary thread. Of the 40 integer renameregisters,
12 (for example)are reserved for the future instructions.
When the primary threadruns out of registersand stalls,
the future threadcontinuesto make progress. It usesits
allocatedphysicalregistersto dispatchsubsequentinstruc-
tions. Theseregistersarethenfreedaccordingto two cri-
teria. Registersare reusedas soonas thereis no usefor
them(assumingno mispredictsandexceptions). In addi-
tion, if an instructionwaits too long in the issuequeue,it
getstimed out andits registeris reused.Instructionswait-

ing in the issuequeuefor this register are also removed.
Application of thesetwo criteria is possiblebecausethe
primary threadwill re-executetheseinstructionsin order
to ensurein-ordercommitandprogramcorrectness.Thus,
registersreservedfor the future threadcanbereusedmuch
morequickly, potentiallyallowing thethreadto executefar
aheadof theprimary, enablingprefetchingof datainto the
cache,earlybranchprediction,andvaluereuse.The future
threaddoesnot engagein any speculationapartfrom spec-
ulating acrossbranches. It respectsregister and memory
dependenceswhile issuinginstructions.

2.2.1 Additional hardware structures

Thethreemainadditionalstructuresarethe future IFQ, the
future renametable,andthePreg StatusTable.

There are two programcounters,one for the primary
thread,andonefor the future. Theseareidenticalat first,
andfetchedinstructionsareplacedin eachIFQ. Every cy-
cle, instructionscanpotentiallyberenamedby boththreads
anddispatchedinto theissuequeue.If thesameinstruction
is beinghandledby both threads,the future threadwill not
dispatchit. Themappingcorrespondingto that instruction
in theprimary renametableis copiedinto thefuturerename
table.

Eachdynamicinstructionis assigneda sequencenum-
ber (this is a counterthat wrapsaroundwhen full and is
large enoughto ensurethat all in-flight sequencenumbers
areunique— possibly10bits long). Sequencenumbersare
rolled backon a branchmispredict. Thesesequencenum-
bersmake it possibleto relatethe primary instructionsto
their futurecounterparts.

Whentheprimary threadrunsout of physicalregisters,
it stalls. The future threadcontinues,usingthe remaining
physicalregistersto mapsubsequentinstructions.For each
instructionthat is dispatchedby the future thread,anentry
is addedto the Preg StatusTable. This is a small CAM
structure,the size of the numberof registersreserved for
the future thread(12 entries,in this example,for int andfp
each),that keepstrack of the currentphysicalregistersin
usewithin the future thread.Theotherfields in this struc-
tureare:(i) Seqnum, thesequencenumbercorrespondingto
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Figure 2. The architecture suppor ting the future thread (components belonging to the future thread are shaded).

the instructionthathasthephysicalregisterasdestination,
(ii) Users, indicatinghow many moreconsumersof thatreg-
ister still remainin the pipeline,(iii) Overwrite, indicating
that the correspondinglogical registerhasbeenremapped
by a subsequentinstruction,(iv) Timeout, setto aparticular
value(30 in our case)at the time of dispatch,anddecre-
mentedevery cycle if the instructionhasstill not beenis-
sued.TheUsers field is incrementedevery time aninstruc-
tion is dispatchedthat sourcesthat physicalregister. It is
correspondinglydecrementedwhenthatinstructionissues.

While it hasbeenlogically describedas onestructure,
the Preg StatusTablecan be broken up into a numberof
smallCAM structures.Themostcomplex of thesewouldbe
theusersfield whichwouldneedasmany as16ports(corre-
spondingto two operandsfor eachof four instructionsbeing
renamedandfour instructionsbeingissued).This structure
wouldbesmallerthanarenametablethathasasmany ports,
muchlargerfieldsperentry, andmoreentries.

2.2.2 Timeout and register reuse

To helpthefuture threaduseits registerresourcesmoreeffi-
ciently, weeagerlyfreeupregistersusingthetimeoutmech-
anismandtheregisterreusecriteria.

The rationalefor the timeoutcanbe illustratedby Fig-
ure 3. It shows a histogramof the numberof instructions
thatwait in theissuequeuefor a givenperiodof time. The
particularexampleis that of a 20 million instructionwin-
dow from the programperimeter, and is typical of most
memory-intensiveprograms.It canbeseenthatinstructions
aremadereadywithin thefirst few cyclesof their dispatch,
or after about20 cycles,or after about100 cycles. These
correspondroughly to the L1, L2, andmemorylatencies.
Thetimeoutheuristicmodelsthefactthatthenon-readiness

of aninstructionin thefirst 30 cyclesimpliesthatit is wait-
ing onamemoryaccessandis likely to notbewokenupfor
another70 cycles. Hence,we time it out andallow its reg-
isterandissuequeueentryto beusedby otherinstructions.

Registersget put backinto the free list assoonastheir
overwritebit is setandthenumberof usersbecomeszero.
Likewise,whenthetimeoutcounterbecomeszero,thereg-
ister is put backin thefreelist, its mappingsin therename
table(if still active)andthePreg StatusTableareremoved,
andtheinstructionis removedfrom theissuequeue.In or-
der to ensurethe correctexecutionof instructions,in the
next cycle, the tag of this timed out register is broadcast
throughthe issuequeueandall instructionsthat sourceit,
time themselvesout. This not only freesup theissuequeue
slotbut alsoensuresthattheinstructionsdonotwakethem-
selvesup whenthesameregistertag(correspondingto the
completionof a laterinstruction)is broadcastasready. The
processis repeatedfor thenewly timedoutinstructions.Fu-
ture instructionsdependenton this value will not be dis-
patcheddueto the invalid entry in the renametable. This
operationcould take a few cyclesdependingon the length
of thedependencechainin theissuequeue.To reducehard-
wareoverhead,we could imposethe restrictionthat future
instructionsonly occupy certainissuequeueslots,thereby
having thisassociative logic for asubsetof theissuequeue.
While dispatchinga primary instruction,if the issuequeue
is full, oneof the future instructionsis explicitly timedout
to make room for it. This ‘stealing’ of issuequeueslots
ensuresthatpriority is alwaysgivento theprimary thread.

2.2.3 Redispatching an instruction in the primary

Whentheinstructionat theheadof theROB completes,the
primary threadcanstartmakingprogressagainasregisters



0 20 40 60 80 100 120 140
0

0.5

1

1.5

2

2.5

3
x 10

6

Figure 3. Histogram sho wing waiting time in the
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getput in the free list. Instructionsarefetchedagainfrom
the I-cacheinto the IFQ and thendispatched.While dis-
patchinganinstruction,thePreg StatusTableandfuture re-
nametableare looked up. The future renametablekeeps
track of the sequencenumberfor the last instructionthat
mappedthe logical registerwithin the future thread,while
thePreg StatusTableincludesthesequencenumberof the
instructionwriting the physical register. The current in-
struction’ssequencenumberis usedto associatively look up
thePregStatusTable.If aphysicalregistermappingstill ex-
istsfor thatinstructionin thefuture thread,thesamephysi-
cal registeris usedto mapthe instructionin theprimary as
well. Thecorrespondingphysicalregisterentry is removed
from thePreg StatusTable,astheregisteris no longersub-
ject to therulesof the future thread.The future instructions
thatsourcethis registerneednot updatetheir operandtags.
Also, the instructionneednot be dispatchedagaininto the
issuequeue,asthe earlierdispatchwill suffice to produce
a result in that physicalregister. If a resultalreadyexists
in thephysicalregister, the future threadhelpsspeedup the
primary threadeven more. This phenomenonis referred
to asnatural reuse. If a physicalregistermappingfor that
instructiondoesnot exist in thePreg StatusTable(thereg-
isterhasalreadybeentimedout or reused)andif thereis a
matchwith thesequencenumberassociatedwith the future
renametable’s logical registerentry, thefuture renametable
is updatedto reflectthemappingin theprimary table.

2.2.4 Recovery after a branch mispredict

Oncetriggered,only the future threadaccessesthe branch
predictor. It conveys its predictionsto the primary thread

througha FIFO queue.Thesepredictionsin the queueare
updatedwhenresolvedby the future thread,sothatthepri-
marythreadneednot go alongthemispredictedpath.

When the future threaddetectsa mispredict,it check-
pointsbackto the stateat the mispredict. However, some
valuesmaybelost (astheregistermighthavebeenreused),
therebydisallowing dispatchof instructionsalongsomede-
pendencechains.

As mentioned,the future renametable tracks the se-
quencenumbercorrespondingto the logical registermap-
ping. A conventionalrenametablecheckpointsits mapping
at every branch. For the future thread,the mappingsthat
might have beentrueat thetime of checkpointingneednot
betruewhenthecheckpointis reinstated– instructionsprior
to thebranchmayhavetimedout,hadtheirregistersreused,
or beenre-dispatchedaspartof theprimary thread.Hence,
insteadof checkpointingthe mapping,we checkpointthe
sequencenumberfor the mapping. In addition, the Preg
StatusTablealsocheckpointsits overwritebit. While rein-
statingthecheckpoint,thesequencenumberis inspectedto
figure out wherethe correctmappingcanbe found. If the
sequencenumberis lessthanthelastsequencenumberen-
counteredby theprimary thread,thenit meansthatthepri-
maryrenametablehasthecorrectmappingfor thatregister.
If thesequencenumberis greater, it meansthattheregister,
if still valid, shouldbepartof the future threadandhave a
mappingin thePreg StatusTable.In thesubsequentcycles,
thesemappingsarecopiedbackinto thefuture renametable
so that it reflectsan accuratestate,andthe overwritebit is
recovered. If the primary threaddetectsa mispredict,the
future threadstartsfrom scratchaftercopying thecontents
of theprimary renametable.

A conventional renametable checkpoints7-bit values
(the physical register tag), while the future renametable
checkpointsthesequencenumber(a 9-10bit value).While
this implies a longeraccesstime for the renametable,the
resultsin [21] indicatethat the renametable is not on the
critical pathfor thetechnologyparametersexamined.

Given that the renametableshave a limited numberof
read and write ports, copying as many as 64 mappings
could take a numberof cycles. To reducethesecopies,
we couldcheckpointthe actualmappinginsteadof the se-
quencenumberwhenit is known that the mappingcannot
change1. Hence,in this case,by checkpointingthe map-
ping, a copy neednot be madeat the time of mispredict
recovery. Evenwith this change,it is still possiblethat the
recovery could adda few cyclesto the mispredictpenalty
for the future thread. We simulatedthe effect of an extra
four cyclepenaltyandnoticedonly marginalslowdownsfor

1For example, if the sequencenumberindicatesthat the instruction
that set this mappinghasbeendispatchedin the primary thread,then it
is known thatthis mappingwill still betruewhenthebranchmispredictis
discovered.



theprogramswith high mispredictrates.Given theoppor-
tunistic natureof the future thread,its mispredictpenalty
doesnotplay a majorrole in affectingperformance.

2.2.5 Exploiting the IRB

In themicroarchitecturedescribedthusfar, instructionsmay
get executedby both the primary and future threads. An
instructionreusebuffer (IRB) could be usedto minimize
this redundancy2. An implementationschemelike ��� or
�����
	 [29] couldbeeasilyusedwith minimal modification.
In our simulations,we usethe ��� schemebecauseof its
simplicity. In this scheme,the reusebuffer keepstrack of
theprogramcounter, theoperandnames(registeraddresses)
for an instruction,andthe resultvalueit producedwhenit
was last invoked. During dispatch,if a programcounter
matchis found in the IRB andthe resultvalueis valid, an
instructioncanbypassthe issueandexecutestagesof the
pipeline.Eachinstructioncreatesanentryin theIRB at the
time of dispatch,andupdatestheresultvalueat thetime of
completion.Whenaninstructiondispatches,it alsoinvali-
datesall theentriesin theIRB thatsourcethesamelogical
registerasits destination.Similarly, a storeinvalidatesall
loadsin theIRB thathavethesamesourceaddress.

To supportthe future thread,two modificationsneedto
bemadeto theIRB. Primary instructionscannotcreateIRB
entriesoncethefuture threadis triggered(theseentriesmay
be invalid becausethe future threadmay have dispatched
instructionsthathavemodifiedtheoperands,which thepri-
mary hasno way of knowing). In addition, the entriesin
theIRB alsokeeptrackof thesequencenumberfor the fu-
ture instructionthatproducedthem.Theprimary threadcan
reusevalid resultsin the IRB aslong astheseresultswere
producedby instructionswith sequencenumberslessthan
or equalto that of the instructionbeingdispatched.This
ensuresthatthecontentsof thelogical registersthatarethe
operandsis thesameasthatusedto generatetheresult.

2.2.6 Dynamic partitioning of registers

The allocationof physical registersbetweenthe primary
andfuture threadsneednot besetat designtime. In fact,a
numberof programsthatdo not have distantILP would be
betteroff usingtheir registersto exploit nearbyILP rather
thanhave the future threadthrow thoseresultsaway to ad-
vancefurther. We includea mechanismthat dynamically
accomplishesthis partitioning on the fly. The numberof
registersallocatedto eachthreadis controlledby stalling
thethread’sdispatchassoonasit hasconsumedits allotted
registers.A counterkeepstrackof the registersallottedto
andfreedby eachthread.A register, setat run-time,speci-
fiesthemaximumallowedcountervalue.

Weuseasimpleinterval-basedmechanism[2] thatmon-
itors theprogramoverregularintervalsto decidewhatcon-

2An IRB in aconventionalmicroarchitectureexploits valuelocality by
not re-executinginstructionsif they have thesameoperandvalues.

Fetchqueuesize 16
Branchpredictor comb. of bimodaland2-level gshare;

bimodalsize2048;
Level1 1024entries,history10;

Level2 4096entries(global);
Combiningpredictorsize1024;

RAS size32;BTB 2048sets,2-way
Branchmispredictpenalty 9 cycles

Fetch,dispatch,issue, 4
andcommitwidth
Issuequeuesize 20 (int), 15 (fp)
L1 I andD-cache 64KB 2-way, 2 cycles
L2 unifiedcache 1.5MB 6-way, 15cycles

TLB 128entries,8KB pagesize
Memorylatency 70cyclesfor thefirst chunk
Memoryports 2 (interleaved)

IntegerALUs/mult-div 4/2
FPALUs/mult-div 2/1

Table 1. Simplescalar sim ulator parameter s

figurationto usein thenext interval. After every 100K in-
structioninterval, we examinea setof hardwarecounters
that track the numberof branchesand the numberof L1
cachemisses. If thereis a significantchangein eitherof
thesecomparedto thosein the last interval, we assumea
changein programphase.Every new programphaseis ac-
companiedby an explorationprocess.For the subsequent
intervals,theprogramis runwith variousregisterpartitions,
andtheIPC for eachinterval is recorded.At theendof this
shortexplorationprocess,the partition thatworked bestis
useduntil the next phasechangeis detected.This process
of recordingIPCsandpicking thebestconfigurationis eas-
ily donein hardwarewith simple logic, or in softwareby
low-overheadinterrupthandlers(like thatusedfor software
TLB refill). Someprogramsdo not show consistentbehav-
ior across100Kinstructionintervalsandspendmostof their
timein theexplorationphase.If suchascenariois detected,
weshutoff theexplorationprocessandresortto theregister
partitioningthatwaspickedmostfrequently. More details
abouttheinterval-basedmechanismcanbefoundin [3].

3 Results

3.1 Methodology

WeusedSimplescalar-3.0[4] for theAlphaAXP instruc-
tion setto simulatea dynamicallyscheduled4-widesuper-
scalar. Thesimulationparametersarelistedin Table1.

The simulatorhasbeenmodifiedto modelthe memory
hierarchyin greatdetail (including interleavedaccess,bus
andport contention,writebackbuffers). We alsomodela
physicalregisterfile andanissuequeuethatis smallerthan
the ROB size. (In Simplescalar, the issuequeuesand the
ROB constituteonesingleunifiedstructurecalledtheReg-
ister UpdateUnit (RUU).) Theseare further divided into
separateintegerandfloating-pointstructures.

OurbaseprocessorhasparametersresemblingtheAlpha



Benchmark Input Simulation IPC of the
dataset window (instrs) basecase

em3d(Olden) 20000nodes, 500M-525M 0.51
arity 20

mst(Olden) 256nodes 9M-14M 0.44
perimeter(Olden) 32Kx32K 1515-1540M 0.39

art (SPEC2k) ref 500M-550M 0.96
swim(SPEC2k) ref 1000M-1025M 0.73
lucas(SPEC2k) ref 2000M-2050M 1.03

sp(NAS) A 2500M-2550M 0.98
bt (NAS) A 3200M-3250M 0.71

go (SPEC95) ref 1000M-1025M 1.29
compress(SPEC95) ref 2000M-2025M 1.53

Table 2. Benc hmark description

21264[14]. We use72 integer3 (int) and72 floating-point
(fp) physicalregisters(correspondingto 40 renameregis-
ters, int and fp, each)and integer and fp issuequeuesof
20 and15 entries,respectively. We usea sufficiently large
ROB asit is arelatively simplestructureandis likely to not
beon thecritical path. Dispatchgetsstalledassoonasei-
ther the registersor the issuequeueentriesgetusedup, so
theROB occupancy rarelyexceeds80 entries,which is the
ROB sizein the21264.Ourgoalis to demonstratepotential
improvementson anexisting processormodel. In addition,
we presentresultswith andwithout a small16-entryfully-
associative IRB with the � � implementationscheme.

Weranoursimulationson10programsfrom SPEC2000,
SPEC95,the NAS Parallel Benchmark[8], andthe Olden
suite[23]. Eight of thesearememory-intensive andsuffer
themostfrom theproblemof a singlelong latency instruc-
tion holding up the commit stage. We have also included
two non-memory-intensive programs(go, compress) from
SPEC95INT, to illustratetheeffect of the future threadon
this classof applications. To reducesimulationtime, we
studiedcachemiss rate tracesto identify programwarm-
up phasesandsmallerinstructionwindows that wererep-
resentative of the programbehavior4. The programswere
alsorun for 1M instructionsin detail to warm up the var-
ious structuresbeforemeasuringperformance.Detailson
the benchmarkare listed in Table 2. The programswere
compiledwith Compaq’scc, f77, andf90 compilersfor the
Alpha21164at thehighestoptimizationlevel.

3.2 Analysis

Wefirst show theperformancewith a future threadwhen
thereis a fixedallocationof registersbetweentheprimary
andfuture threads.This motivatestheuseof dynamicallo-
cation,which we thenusethroughouttherestof thepaper.
Theimprovementis attributedto thevariousfeaturesof the
future threadandwe thenlook at the effect of variouspa-
rameterslike theIRB, issuequeue,andregisterfile size.

3TheAlphahas80 integerregisters.Weuse72 for uniformity.
4Sinceeachiterationin bt is very long,weusedasmallerwindow than

wasrepresentative of thewholeprogram.However, theresultswereselec-
tively verifiedto beindicative of theperformanceover longerwindows.

3.2.1 Dynamic partitioning of registers

Figure 4 shows speedupswith the future threadfor vari-
ousfixed allocationsof registersbetweenthe primary and
future threads.For all figures,theIPCshave beennormal-
izedwith respectto anidenticalbasecasethathasno future
thread(i.e., all renameregistersareallocatedto theprimary
thread). Of thesevariousstatic organizations,the 28::12
allocationthat reserves28 registersfor the primary thread
hasthebestoverallspeedup(whencomparingtheharmonic
mean(HM) of IPCs). However, we seethatdifferentallo-
cationsdo well for different programs. This dependson
whethertheprogramhasdistantor nearbyILP andwhether
the numberof registersreserved for the future threadare
enoughto allow it to advancefarenoughto exploit thisdis-
tant ILP. The highestspeedupsfor lucasandmstareseen
by reservingonly eightregistersfor theprimary thread,but
this is the worst allocationfor a numberof programsthat
alsohavenearbyILP. Thismotivatestheneedfor adynamic
schemethatpickstheright allocationon thefly, depending
on programrequirements.The last bar in Figure4 shows
that theoverall speedupof 1.17with theinterval-baseddy-
namicschemefarexceedsthespeedupof 1.11possiblewith
thebeststaticorganization.Theonly programthatexperi-
encesa largenumberof phasechangesis art asit doesnot
have consistentbehavior across100K instructionintervals.
Hence,after a numberof initial explorationphases,it re-
mainsfixedat theorganizationthatwaspickedmostoften.
All subsequentresultsassumetheuseof thedynamicallo-
cationof registersbetweentheprimaryandfuture threads.

3.2.2 Effects of prefetch, branch resolution, and reuse

Table3 showsvariousstatisticsthathelpusexplain thebe-
havior of the future thread.In Figures5 and 6, we attempt
to isolatethecontributionsof thevariouscomponentsto the
performanceof the future thread. In Figure5, the first bar
(prefetchonly) shows a future threadimplementationthat
just runsaheadalongpredictedpathsto warm up the data
and instructioncaches,while ignoring the outcomeof all
branchinstructions.In thisscenario,branchmispredictsare
discoveredonly when the primary threadre-executesthe
branchinstruction. The secondbar shows an implementa-
tion wherethe future threadalso resolvesbranchmispre-
dictsearlyandinitiatesrecovery. Thethird barrepresentsa
modelthataddsanIRB. Weseethatasignificantportionof
theimprovementis dueto theprefetcheffect,with theover-
all speedupbeing1.12. Table3 shows that thereis a sharp
drop in the numberof long latency loadsseenby the pri-
mary thread. The numberof loadsper committedinstruc-
tion thatseealatency of morethan40cyclesfallsby almost
a factorof two andis evenreducedto zeroin thecaseof lu-
cas. For lucas, thedynamicschemeallocatesmostrename
registersto the future threadandthis enablesit to advance
as far as the next loop iteration, therebyfetching the data
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Figure 4. Performance of the future thread for various fix ed register allocations between the primary and future
thread. For example , ‘8::32’ represents an allocation where 8 rename register s are reser ved for the primary
thread and the remaining 32 are reser ved for the future. The last bar sho ws perf ormance with the inter val-based
scheme that dynamicall y pic ks the best allocation. IPCs have been normaliz ed with respect to a base case that
has no future thread and uses all 40 rename register s for the primary.

em3d mst peri art swim lucas sp bt go comp
Num timeouts 0.29 1.12 0.56 0.31 0.42 0.59 0.37 0.16 0.00 0.03
Numeagerreg 0.45 0.03 0.65 0.30 0.11 0.06 0.13 0.28 0.01 0.06

release
Num naturalreuse 0.14 0.13 0.20 0.23 0.37 0.25 0.22 0.26 0.10 0.16
Avg distbetween 71,136 25,115 51,114 63,131 67,123 31,183 75,128 47,75 19,19 39,49

oldestandyoungest
instrs(base,future)

Numloadsissuedby 0.12,0.05 0.02,0.02 0.11,0.05 0.02,0.01 0.04,0.04 0.05,0 0.03,0.02 0.05,0.04 0, 0 0, 0
primary threadthat
take morethan40

cycles(base,future)
Num future 0.7 0.2 1.4 0.8 0.8 0.6 0.6 0.9 0.2 0.4
instrsissued

Branchdirection 95% 97% 94% 98% 99% 98% 89% 98% 80% 93%
predictionrate
(roundedoff)
% of mispreds 88% 0% 59% 42% 74% 99% 73% 68% 4% 3%

detectedby
future instrs

IRB hit ratefor 20% 5% 10% 35% 8% 0% 5% 14% 22% 16%
primary thread

Table 3. Various statistics per taining to the future thread (with a dynamic allocation of register s) and the base
case with no future thread (most number s are normaliz ed to the number of committed instructions, for example ,
Num timeouts is the number of timeouts per committed instruction).
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Figure 5. Future thread perf ormance broken down
as pref etch, early branc h reco very, and reuse .

longbeforetheprimary threadstartsthatiteration.
Whenthefuture threadis allowedto initiateearlybranch

recovery, weseesignificantimprovementsfor theprograms
with high branchmispredictrates.This resultsin an addi-
tional improvementof 5%,24%,and13%in em3d,perime-
ter, andsp. On the otherhand,we seea big drop in per-
formancefor swim. Whenthe future threadinitiatesearly
branchrecovery, it triesto restorea valid registerstate.Be-
causeof theeagerreleaseof registers,somevaluesremain
lost, disallowing progressalong thosedependencechains.
This setsoff a chainreaction,wherethe future threadruns
muchfurther aheadbut is unableto executeany of the in-
structions.It canbeproductiveagainonlywhentheprimary
threadcatchesup,whichoccurswhentheprimarydiscovers
abranchmispredict(for abranchnotexecutedby thefuture)
andsquashesall subsequentinstructions. Swimis a loop-
basedfloating-pointcodeandhasa low branchmispredict
rate. As a result,the future threadmayhave to wait a very
long time beforeit hasvalid registermappings.This effect
is alsosomewhatseenfor bt. This negative effect of early
branchrecoverycanbeeasilyeliminatedby not attempting
it for programswith highbranchpredictionaccuracies.Our
simulationsdo not assumetheuseof suchascheme.

Finally, by addingthe IRB we seean additionalover-
all improvementof 5%. A numberof instructionsthathave
beendispatchedby thefuturethreadneednotbere-executed
whenseenby the primary thread.The last row in Table3
shows thatup to 35%of theseinstructionscanobtaintheir
result from the IRB. This IRB hit rate improves slightly
whenwe uselarger IRBs. Using a 128-entryIRB, we see
additionalimprovementsof 8% and7% in mstandbt, re-
sultingin anadditional1%overall improvement.

3.2.3 Breakdown of contributions

Threemajordesigncomponentsenablethe future threadto
advanceaheadof theprimary. FromTable3, it canbeseen
that the averagedistancebetweenthe oldestandyoungest
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Figure 6. Contrib utions of the features of the future
thread. The left bar has all features turned on. The
other bars sho w speedups when each is disab led.

instructionwithin the processorincreasesgreatly because
of the future thread.This numberrepresentsthesizeof the
in-flight instructionwindow. The largestwindow seenby
the baseprocessoris only 75 instructions(in the caseof
sp), but thefuture threadcanlook in amuchlargerwindow
(aslargeas183in thecaseof lucas) becauseof theeagerre-
leaseof registersandthetimeout.Bothof theseoftencome
into play asevidencedby thestatisticsin thefirst two rows
of Table 3. In addition, Table 3 demonstratesthat a sig-
nificantnumberof instructionsneednot be re-executedby
theprimary threadif theirmappingstill existsin thefuture,
which wedescribeasnaturalreuse.

Figure6 quantifiesthecontributionsof thesethreecom-
ponentsby disablingthemoneat a time. It canbeseenthat
eagerregisterreleaseaccountsfor mostof the speedupin
em3dandperimeter, while timeouthelpsgreatlyin perime-
ter andlucas. For lucas, theprimarybottleneckis theissue
queue.The useof the timeoutmakesit possibleto reduce
contentionfor theissuequeue,therebynotstallingdispatch.
Similarly, by allowing natural reuse,we prevent the re-
dispatchof instructionsinto theissuequeue,thusalleviating
thebottleneckagain.Thus,thecombinationof thetimeout
mechanismandthenaturalreuseallows thefuture threadto
advancefarenoughto doaneffectivejob prefetching.Elim-
inatingeagerregisterreleaseresultsin an improvementfor
swimbecausean early recovery from a branchmispredict
by the future threadnow resultsin no lost values,thereby
eliminatingthe problemalludedto earlier. We seealmost
no improvementsfor non-memory-intensiveprogramslike
goandcompress5 asthey rarelyrunoutof registers,thereby
not triggeringthefuture thread.

3.2.4 Effect of various processor parameters

Mst is a memory-intensive program that doesnot show
5Compresshasa high L1 miss rate,but a low L2 miss rate,and the

in-flight window in thebaseprocessoris largeenoughto hideL2 latencies.
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Figure 7. Speedups with the future thread for the
Alpha-like model (left), and a model that has iden-
tical parameter s except for a larger issue queue .

much improvementas it haslittle nearbyILP, causingin-
structionsto wait in theissuequeue,thusstallingdispatch.
For theotherprograms,by usingthe future thread,thereg-
ister file is removed asthe bottleneckto dispatch. Hence,
stallsareoftencausedby thesmallsizeof theissuequeue.
We next evaluatethe future threadfor a processormodel
that haslarger int and fp issuequeuesof 30 entrieseach.
Thelargerissuequeuesresultedin no improvementfor the
basecase,but they enabledthefuturethreadto advanceeven
further, resultingin anoverall speedupof 1.21(Figure7).

Finally, westudytheeffectof differentregisterfile sizes.
Figure8 shows speedupswith the future threadfor proces-
sormodelsthathavephysicalregisterfile sizesrangingfrom
56to 80registers(int andfp, each).Eachbarusesthecorre-
spondingbasecaseto computespeedups.Two effectscome
into play here. Using a smallerregisterfile makesit more
of a bottleneck,increasingthe potentialbenefitof the fu-
ture thread.However, with a smallerregisterfile, thefuture
threadwill alsobelimited in its ability to look ahead,reduc-
ing the prefetcheffect. Dependingon which effect domi-
nates,weseedifferentbehaviors for thedifferentprograms.
Hence,acleartrendis notseenin theoverallspeedupnum-
bers. It must be pointed out that the raw IPC for a 56-
registerbasecaseaugmentedwith the future thread(0.72
IPC) is betterthanthe raw IPC for a 72-registerbasecase
without the future thread(0.71 IPC). While the IPCs are
comparable,theformerprocessormodelis likely to have a
fasterclockspeed.

4 Related Work

DundasandMudge[10] introducedaschemefor halting
the main instructionstreamon a cachemiss,andrunning
aheadto prefetchdata. However, this wasonly applicable
to anin-ordermachinewith no ILP support.

Theideaof formingmultiple threadsthatexecutedistant
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Figure 8. Speedups with the future thread for pro-
cessor models with diff erent register file sizes.

instructionshasbeenexploitedin a numberof approaches,
suchasMultiscalar[30], Traceprocessors[25], DMT [1],
andTLDS [31]. Thesearehardwareintensive solutionsas
they assumethepresenceof a separateprocessingunit or a
SimultaneousMultithreaded(SMT [33]) baseto executethe
threads.They requiresignificanthardwareto storeresults
and to transferregister valuesbetweenthreadsto free up
dependences.They arealsohighly speculative in nature,as
thesethreadsmight lie muchfurther aheadin the program
controlflow.

Zilles and Sohi [36] characterizeproblem instructions
(cachemisses,branches)and the instructionsthat lead to
them. They point out thata smallersubsetof the program
codecanbepre-executedsothatthemaininstructionstream
rarelyencounterscachemissesor branchmispredicts.They
assumeanunderlyingimplementationthatcanpre-execute
theseslices. RothandSohi [28] talk aboutsuchan imple-
mentationthat canpre-executecertaindependencechains.
They useprofiling to generatetheseslicesandannotatethe
codeto trigger themat appropriatepoints. Thesethreads
usephysicalregistersto storetheir resultsandthey areinte-
gratedinto themainprogramthreadwhenit catchesup.

Therehave alsobeena coupleof attemptsat improving
branchresolutionby pre-execution[11, 27], wheretheslice
determiningthe branchis duplicatedandmadeto run in a
separatewindow. Farcy et al [11] noticeregularity in the
branchconditioncomputationsandusevaluepredictionto
acceleratethesecondthread.

SimultaneousSubordinateMicrothreading(SSMT) [5]
and AssistedExecution [9] are schemeswhere custom-
generatedthreadsareinvokedwithin the hardwareby cer-
tain events. Thesethreadsperform very simple specific
tasksandcannotbeautomaticallygenerated.

A relatedconceptis AR-SMT [24] andSRT [22], that
run two copiesof the sameprogramon an SMT proces-
sor andcompareresultsfrom both threads. Their goal is



to detecttransientfaults in a chip, ratherthan to enhance
performance.An extensionof this is theSlipstreamproces-
sor[32], wherethethreadrunningaheadis ashortenedver-
sionof theoriginalprogram(dynamicallycreatedbydetect-
ing andeliminatingineffectualpiecesof theprogram),and
thetrailing threadis thefull programthatverifiesthecorrect
working of the leadingthread.Thetwo programstogether
canrun fasterthanthesingleoriginal programbecausethe
leadingthreadcommunicatesvaluesandbranchoutcomes
to thetrailing threadas(oftencorrect)predictions.

Cruz et al [7] presenta multi-bankedregisterfile, with
thebankshaving differentspeeds.While thisdegradesIPC,
it enablesa fasterclock. Otherwork [17, 34] proposesim-
proving registerutilization by allocatingregisterswhenin-
structionscomplete. The relaxed conditionsfor releasing
registersinto thefreelist havebeenproposedbefore[18] in
thecontext of processorswith impreciseexceptions.

The primary advantage of the future thread is its
prefetchingeffect. A numberof hardware[6, 13, 26] and
softwareprefetching[16, 19] schemeshavebeenproposed.
Mostof theseschemescando a betterjob of prefetchingas
they exploit somehigher-level programinformation (reg-
ularity of accesses).This regularity canbe determinedat
compile time or as stridesor load-value dependencesin
hardware. This lack of high-level informationpreventsus
from doing a very effective job of prefetching. We, how-
ever, do a moreexact job aswe respectdependencesand
actuallycomputeloadaddresses(ratherthanuseheuristics
like most hardware prefetchschemes). We also use dy-
namicbranchpredictionto follow theprobablecontrol-flow
path,insteadof greedilyprefetching[16] alongall possible
paths.This preventsusfrom fetchinguselesslines into the
cache(unlesswe are on the wrong branchpath). Hence,
our techniquesarealso applicableto irregular codeswith
unpredictablecontrolflow andunpredictabledataaccesses.
Luk [15] addressesa similar problemin the context of an
SMT processorby usingthe compiler to help pre-execute
thesecodes.Someof theprefetchschemescanalsobecom-
binedwith the future threadto yield greaterspeedups.For
example,addingthe future threadto a basecasethathasa
strideprefetcherresultsin significantspeedups[3].

A software approachto tackling the problemof a sin-
gle cachemissholdingup theROB is describedby Pai and
Adve [20]. They presenta compileralgorithmthatrestruc-
turescodeso that cachemissesare clustered,therebyin-
creasingthememoryparallelismwhile theROB is stalled.

5 Conclusions

Wehavedesignedandevaluatedamicroarchitecturethat
dynamicallyallocatesa portionof theprocessor’s physical
resourcesto a future threadin orderto exploit distantILP
in addition to nearbyILP. Long latency instructionstend
to stall thecommitphaseof a traditionalsuperscalararchi-

tectureon reachingtheheadof the re-orderbuffer. Subse-
quentinstructionsuseuptheavailablephysicalregisters,af-
terwhichthedispatchstagestalls.In ourproposedmicroar-
chitecture,part of the physical registersare allocatedfor
the main programandoncethey areconsumed,the future
threadgetstriggeredand makes forward progress. It ea-
gerly releasesregistersandtimesout instructionsthatwait
too long in order to opportunisticallyadvancefar beyond
whattheprimary threadis capableof. It thusimprovesper-
formanceby resolvingbranchmispredictsearly, by warm-
ing up thedataandinstructioncaches,theinstructionreuse
buffer, andby reusingregistermappingsandvalues.In ad-
dition, an interval-basedschemeis usedto allocatetheop-
timal numberof registersto thefuture thread.

Our evaluationon someof the morememory-intensive
benchmarksshow very promisingspeedupsof up to 1.64.
The overall improvementon our benchmarksuite is 17%.
Thecontributionscomemainly from prefetching,with sig-
nificantcontributionsfrom earlybranchrecoveryin thepro-
gramslimited by poor branchpredictionaccuracies.The
useof a small 16-entryIRB accountsfor 5% of this im-
provement.Thedynamicallocationof registersplaysama-
jor role in tuning the hardwareto the ILP requirementsof
eachprogramphase.Theuseof a largerissuequeueallows
thefuture threadto achieveanoverall speedupof 1.21.
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