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Abstract—Heating ventilation and air-conditioning (HVAC)
systems consume a significant portion of the energy within build-
ings. Current HVAC control systems use simple fixed occupant
schedules, while proposed energy optimization schemes do not
consider past discomfort in making future energy optimization
decisions.

We propose a Model-based predictive control (MPC) algo-
rithm that adaptively balances energy and comfort while the
system is in operation. The algorithm combines occupancy predic-
tion with the history of occupant discomfort to constrain expected
discomfort to an allowed budget. Our approach saves energy by
dynamically shifting discomfort over time based on its real time
performance. The system adapts its behavior according to the past
discomfort and thus plays the dual role of saving energy when
discomfort is smaller than the target budget, and maintaining
comfort when the discomfort margin is small. Simulation results
using synthetic benchmarks and occupancy traces demonstrate
considerable energy savings over a smart reactive approach while
meeting occupant comfort objectives.

Keywords—Smart Buildings; Energy-Comfort Optimization;
Occupancy Prediction

I. INTRODUCTION

Indoor environmental quality systems, such as heating
ventilation and air-conditioning (HVAC) and lighting, consume
a majority of the energy within buildings [1]. In contrast to
replacing systems, better control algorithms present the most
practical means of reducing energy consumption and enhanc-
ing Indoor Environmental Quality (IEQ). In current practice,
algorithms react to changes in the occupancy while using
simple fixed schedules to forecast occupancy. More advanced
energy optimization schemes do not consider past discomfort
in making future energy optimization decisions. This paper
presents an approach that optimizes energy with respect to past
and future discomfort while meeting a cumulative discomfort
goal.

Although many predictive occupancy models have been
proposed [2], [3], [4], [5], [6], the ramifications of prediction
inaccuracy on future control decisions are not well addressed,
especially for systems operating in real time. Furthermore,
Model Predictive Control (MPC) has been used to constrain
instantaneous discomfort while minimizing energy [7], [8], [9],
[10], [11], [12], [13], [14], [15], [16], [17]. Since discomfort
is felt over time, constraining instantaneous discomfort does
not include occupants’ memory of discomfort, which reduces
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energy savings and perceived occupancy satisfaction. Such
systems also fail to dynamically adapt their future energy
optimal decisions based on its past discomfort performance. To
the best of our knowledge, adaptive energy optimization using
memory of past discomfort has not been published before.

In this paper, we propose an MPC-based algorithm that
adaptively balances energy and comfort while the system is in
operation. Our method is novel because it uses the history of
occupant discomfort in combination with occupancy prediction
to constrain the expected discomfort to an allowed budget. In
principle, our method saves energy by dynamically shifting
discomfort over time based on its real time performance
in a similar spirit to MPC that shifts loads for economical
energy consumption [18], [19]. The system adapts its behavior
according to the past discomfort and thus plays the dual
role of saving energy when discomfort is smaller than the
target budget, and maintaining comfort when the discomfort
margin is small. If the accumulated past discomfort exceeds the
allowed limit due to occupancy mispredictions, the algorithm
automatically corrects the situation in real time while still
attempting to optimize for energy.

We evaluate our approach using several synthetic occu-
pancy benchmarks and real occupancy datasets in comparison
to three baselines: 1) an energy-efficient reactive scheme that
heats up the room whenever the room becomes occupied, 2) a
smart reactive algorithm that reacts to the occupancy changes
while using a simple fixed schedule to forecast occupancy,
and 3) an oracle scheme with perfect knowledge of future
occupancy. For predictable occupancy patterns, our algorithm
operates close to the perfect prediction scheme with 4-10%
energy savings over the smart reactive policy while meeting
the allowed discomfort budget. For the irregular occupancy
patterns, our method meets the discomfort goal while con-
suming only 2% more energy than the smart reactive policy.

The rest of this paper is organized as follows. Section II
presents a list of variables used in this paper to describe our
energy-comfort optimization framework. The overall optimiza-
tion approach is introduced in Section III followed by the
problem formulation in Section IV, and the system architecture
of the predictive algorithm in Section V. The experiment setup
is described in Section VI and the results in Section VII.
Lastly, we present related work in Section VIII and conclude
in Section IX.



II. NOMENCLATURE

E instantaneous energy
Occ occupancy
d discomfort density
Ts set temperature
Tr room temperature
To outdoor temperature
Tg ground temperature
Tupper Upper set temperature
Tlower Lower set temperature
Tint Intermediate set temperature
Th |Tupper − Tr| at which d = 1, when

occupied
Tl Smallest |Tupper−Tr| when occupied,

below which d = 0
MADD Moving Average Discomfort Density
ΦMD Maximum allowed average discomfort

density

, equal by definition

III. OVERALL APPROACH

The overall objective of our proposed approach is to
minimize cumulative energy consumption (E) while meeting
a maximum discomfort goal over a sliding window of fixed
length timesteps. Throughout the paper, we consider the heat-
ing season and assume that the controller must set the set
temperature, Ts, to a specified comfortable value, Tupper, for
every timestep that the room is occupied. To save energy, the
controller may use a lower specified set temperature, Tlower,
when the room is unoccupied1. The room temperature (Tr)
dynamics are a function of the current Tr, ground temperature
(Tg), outdoor temperature (To) and the current set temperature
(Ts). The discomfort at any given timestep is calculated
according to the difference Tupper−Tr using the model defined
in the next section.

At each timestep, the system calculates a Moving Average
Discomfort Density (MADD) over the last M occupied
timesteps. It tries to maximize energy savings while ensuring
that the MADD does not exceed a maximum discomfort goal
(ΦMD). Intuitively, at any given timestep, the aggressiveness
by which the system attempts to save energy in future timesteps
depends on recent discomfort as well as future occupancy
probabilities. If past discomfort is low and future occupancy
is projected to also be low, then the system may try to
aggressively reduce energy consumption. If discomfort has
been high and future occupancy is also expected to be high,
then the system will operate conservatively.

IV. PROBLEM FORMULATION

Our objective is to minimize cumulative energy while meet-
ing the maximum discomfort constraint at every timestep i.
The objective function and constraints are given by Equation 1.

1One of our baseline schemes also uses an intermediate temperature, Tint.
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Fig. 1: Discomfort density

min
−→
Ts

N
∑

i=1

E(Tr,i, To,i, Tg,i, Ts,i)

subject to
∑

j∈J (i)

d(Tr,j) ≤ ΦMD ×
∑

j∈J (i)

Occj

Tr,i+1 = f(Tr,i, To,i, Tg,i, Ts,i)

Tlower ≤ Ts,i ≤ Tupper

Ts,i = Tlower if Occi = 1

∀1 ≤ i ≤ N
(1)

J is the set of occupied periods, and J (i) is the set of
occupied indices containing M occupied periods prior to index
i. Occi at timestep i has a value of 1 when occupied for any
time during the timestep and 0 when unoccupied2.

The discomfort density, d(Tr,j), is a function of the differ-
ence in the expected room temperature (Tupper) and actual
room temperature (Tr) when the room is occupied3. Our
discomfort model is inspired from the work of Putta et al.
[20], and from similar violation-based discomfort models used
in the past [13], [14], [15], [16], [17]. This is shown in Figure 1
and given by Equation 2. Whenever the temperature difference
is less than Tl, the discomfort density is zero, else it scales
linearly. At the temperature difference of Th, the discomfort
density is one.

d(Tr,i) ,

{

0, if |Tupper − Tr,i| ≤ Tl
(|Tupper−Tr,i|−Tl)

(Th−Tl)
, otherwise

(2)

V. SYSTEM ARCHITECTURE

Figure 2 shows the overall system architecture, which
consists of our supervisory Predictive Control coupled to con-
ventional HVAC Control. The Predictive Control attempts to

2As discussed later, our system optimizes over a horizon of past timesteps
of known occupancies (for which Occi is 1 or 0) and future timesteps of
unknown occupancies. For these future timesteps, we use expected occupancy
values for Occi instead of 1 or 0 values.

3Our discomfort model could be extended to include other factors such as
humidity and indoor air quality (IAQ) violations.
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Fig. 2: System architecture

produce an optimum Ts for the HVAC Control. The optimum
Ts is the reference input for the HVAC Control to maintain
the thermal state of the building. We describe these modules
in detail below.

A. HVAC Control

The thermal state of the building zone is maintained by
a PI controller. Based on the difference between Ts and the
room temperature Tr, the PI controller generates a heat input
to the building plant. This is the heating power injected to the
building to meet the reference Ts requirement. The building
thermal model is a linear time-invariant state-space dynamical
system

xk+1 = Axk +Buk

yk = Cxk

(3)

Here, xk is the temperature state vector containing Tr, and
the input vector uk encompasses the outdoor and ground
temperature and the injected heating power. The output vector
yk contains the room temperature Tr. The output matrix
C appropriately selects Tr from xk. The system matrix A
contains the building thermal model, while the input matrix
B contains the building’s response to the applied heat input
and weather disturbance.

B. Predictive Control

The Predictive Control runs an optimization algorithm
to generate Ts based on the historical discomfort behavior,
current and past actual occupancies, expected occupancies
for future timesteps, and ΦMD. It comprises an Occupancy
Predictor to produce future occupancy probabilities and an
Optimizer to run the optimization.

1) Occupancy Predictor: The Occupancy Predictor uses
the past occupancy to predict the expected occupancy at each
given timestep in the horizon. The prediction is done on
a timestep-by-timestep basis, with the expectation at each
timestep computed from past occupancy data from days of
the week for which similar occupancy patterns are likely.

For offices and labs, we use two separate occupancy mod-
els: one for weekdays and the other for weekends. The sample

interval is 15 minutes. Thus, a weekday comprises 96 different
expected occupancies. Each of these is calculated as an average
of some number of past occupancies, with 1 representing an
occupied timestep and 0 an unoccupied one. A weekend day
has 96 similarly derived timestep expected occupancies. For
meeting rooms, we average data over individual weekdays,
under the assumption that occupancy patterns will differ among
days of the week. Thus, for an office or lab, the expected
occupancy for Monday at 10am is identical to Tuesday at the
same time, while these could differ for a meeting room.

2) Optimizer: The Optimizer runs the MPC algorithm for
the optimal building HVAC control over a prediction horizon
H during the system operation. The MPC algorithm generates

a sequence of set points
−→
Ts based on the current occupancy,

future expected occupancies, and previous discomfort and past
occupancies. The optimizer then selects the first element of
−→
Ts as a reference for HVAC control. The optimizer assumes
accurate outside and ground temperature prediction and uses
the building state-space model to compute energy and thermal
responses.

At the time index k with the optimizer looking over a
horizon H , Equation 1, can be written as

min
−→
Ts

k+H
∑

i=1

E(Tr,i, Tg,i, To,i, Ts,i) =
k−1
∑

i=1

E(Tr,i, Tg,i, To,i, Ts,i)

+min
−→
Ts

k+H
∑

i=k

E(Tr,i, Tg,i, To,i, Ts,i)

(4)

The optimizer cannot affect the past energy, but can attempt
to minimize the cumulative future energy over the horizon k
to k + H . When the room is occupied, the optimizer does
not invoke MPC but simply forces Ts,k = Tupper. However,
when Occk = 0, the optimizer attempts to minimize the
cumulative energy while keeping the MADD less than ΦMD

at every time index h between k and k + H . Equation 5
shows the optimization problem, where J (k+h) is the set of
occupancy indices with M total occupied periods split between
the expected occupied periods from k + 1 to k + h and the



TABLE I: Simulation parameters

Parameters Values

Tl ±2◦C

Th ±6◦C

Tupper 21◦C

Tint 19◦C

Tlower 15.6◦C

Kp 900

Ki 750

Weather Winter (January)

Location Elmira, NY

Simulation Timestep 15 minutes

Horizon Length (H) 4 timesteps

ΦMD 10%

Past Occupied Period (M ) 40 timesteps

past occupancy before time k.

min
−→
Ts

k+H
∑

i=k

E(Tr,i, To,i, Tg,i, Ts,i)

subject to
∑

j∈J (k+h)

E[d(Tr,j)] ≤ ΦMD ×
∑

j∈J (k+h)

E[Occj ]

∀1 ≤ h ≤ H
(5)

The left-hand side of Equation 5 is the sum of the expected
discomfort, which includes actual past discomfort and the
predicted future discomfort over the horizon. The right-hand
side is the product of ΦMD and the sum of the expected
occupancy, which includes the actual past occupancy and the
future expected occupancy over the horizon. If the MADD
at time index k is very close to ΦMD, the right-hand side
is tightened and the optimizer has little room to minimize
energy. However, if the gap between the current MADD and
ΦMD is large, the right-hand side is relaxed, giving more
opportunity for energy minimization. If the inequality is not
met, the optimization becomes infeasible and the optimizer
sets Ts,k = Tupper.

VI. EXPERIMENTAL SETUP

We use the simulation parameters shown in Table I and
the building model of Figure 3. We construct the building
model using Google Sketchup [21] using realistic materials:
a brick exterior, foam-insulated roofing, an insulated concrete
slab floor, and double-pane windows. The building model is
then converted directly from the CAD geometry and material
data to a resistor-capacitor (RC) network using the Sustain
framework [22].

Sustain generates a 41-state model encompassing convec-
tive and conductive transfer and assumes that the interior air
volume is well-mixed. The model does not include radiation.

����

����

������
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Fig. 3: Single-zone building model

TABLE II: Synthetic occupancy benchmarks

Benchmarks Periods of Potential Occupancy

No Occupancy None

One Hour
9:00-10:00, 13:00-14:00, 16:00-
17:00, 18:00-19:00

Two Hours
8:00-10:00, 11:00-13:00, 14:00-
16:00, 17:00-19:00

Office 8:00-12:00, 13:00-17:00

The exterior walls and floor slab are tied to ambient air and
ground temperatures which, during simulation, are obtained
from an EnergyPlus weather file.

A. Optimization Software

We use CVX [23] to solve the optimization problem
of Equation 5. The discomfort model is a piecewise-affine
function. To mimic the optimization formulation of Equation 5,
we implement a scalarized multi-objective optimization of
energy and discomfort. With discomfort numerically smaller
than energy, energy is implicitly optimized with discomfort as
a constraint. Therefore, our implementation does not require
any scalar parameter to prioritize energy versus discomfort.
Furthermore, if CVX is unable to find a feasible solution,
the optimizer conservatively sets Ts = Tupper. This occurs
less than 0.3% of the time in our simulations for regular
benchmarks and around 10% for irregular data.

B. Occupancy Benchmarks

We evaluate our approach using real occupancy data as
well as synthetic benchmarks (Table II). For the latter, we
create time periods of potential occupancy, during which
the probability of occupancy is 90% for each timestep. The
actual occupancy data includes a Graduate Student Office in
Duffield Hall at Cornell University and a lab within the Cornell
Nanofabrication Laboratory (CNF). The occupancy data for
these spaces are recorded by motion and CO2 sensors, which
we convert to 15 minute timesteps denoting whether the room
is occupied or not. We then gather this data for a three month
period and calculate a occupancy probability for each timestep
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Fig. 4: Duffield occupancy probabilities
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Fig. 5: MERL occupancy probabilities

on both weekdays and weekends. Our assumption for these
spaces is that the expected occupancy at a given time of the
day, e.g., 10am, will not significantly differ among different
weekdays, but could differ considerably between weekdays
and weekends.

Figure 4 shows the occupancy probabilities of these two
spaces over a 24 hour period. The weekday probabilities of
the office are high between 7am to 8pm. Weekends are more
irregular with occupancy probabilities reaching around 50%
during that time period. The CNF occupancy data is far more
irregular, which makes optimization more challenging.

We also use occupancy data from the Mitshubishi Electric
Research Laboratory [24] 8-North Conference Room. Motion
sensors operate asynchronously; we convert these readings
to 15 minute occupancy timesteps. However, since this is a
conference room, we calculate occupancy probabilities on a
weekday basis. That is, we assume that the expected occupancy
at a given time of the day could vary significantly among
different weekdays, which is borne out by Figure 5, which
shows the probabilities generated from the MERL data over
a six month period. For instance, the meeting room has a
much higher probability of being occupied on Wednesdays
and Thursdays compared to Fridays. As expected, weekend
probabilities are low.

C. Baseline Control Schemes

We compare our predictive scheme to three baseline
control policies. All policies, including those we propose,
immediately set the set temperature to Tupper whenever the
room becomes occupied. The reactive policy sets the set
temperature to Tupper whenever the room is occupied and
to Tlower when it becomes unoccupied. As expected, this
approach saves energy but at the cost of an unacceptably high
MADD. To address this shortcoming, the smart reactive (SR)
policy sets Ts to an interim temperature Tint beginning at
6am in anticipation of impending occupancy, and shifts to



Tupper when occupancy is detected. When the room becomes
vacant for 30 minutes, it changes the set temperature back to
Tint. Beginning at 10pm, SR is like reactive. The choice
of these specific timings is motivated by a typical office and
university occupancy schedule that prioritizes comfort over
energy in contrast to the reactive scheme. The SR policy
improves MADD over reactive but at higher energy cost.
Finally, the perfect prediction (PP) policy is identical to our
scheme with the exception of using perfect knowledge of future
occupancy (actual occupancy values from our benchmarks)
instead of expected occupancies.

VII. RESULTS

In this section, we present the energy savings and discom-
fort of our predictive scheme compared to the baselines for
the real occupancy and the synthetic benchmarks. Figure 6
illustrates the energy and discomfort of the different control
schemes for a representative day within the Office bench-
mark. Beginning at 6am, SR transitions to the intermediate
set point Tint and then reacts to the first occupant two hours
later. After the latest occupancy period, it transitions to Tint

and eventually to Tlower. Reactive reacts similarly to the
first occupant at 8AM, but from the Tlower set point, thereby
impacting comfort. It reacts in a similarly ineffective manner
throughout the day, and often exceeds ΦMD. Predictive
and PP react more smoothly to occupant activities, keeping
within ΦMD by proactively conditioning the room before an
occupant arrives, and transitioning to Tlower during periods
of unoccupancy. The cumulative energy consumption over the
course of the day of predictive is 10.3% lower than SR, and
is within 0.2% of PP . The energy of predictive is only 1%
higher than the reactive scheme that frequently violates the
discomfort goal.

Figure 7(a) shows the percent energy savings over SR for
the synthetic and real occupancy benchmarks over a period of
25 days, while Figure 7(b) shows the maximum MADD. The
reactive scheme has the largest energy savings but its MADD
often exceeds ΦMD. Over all of the synthetic benchmarks with
the exception of No Occupancy, the predictive scheme
achieves 7-10% energy savings, which is almost identical to
PP . For Graduate Office, predictive saves 4.5% energy
over SR and is within 0.3% of PP .

The results for MERL and CNF illustrate the limitations
of our approach, in particular our occupancy predictor. These
benchmarks lack regularity, with MERL being less regular and
CNF highly irregular. The predictive scheme saves only 0.3%
energy over SR for MERL, and expends 2.3% more energy
than SR for CNF. PP with its perfect prediction achieves over
10% savings for both benchmarks. Our occupancy prediction
averaging scheme at times leads the controller to anticipate
occupancy during unoccupied periods, and to wrongly predict
unoccupancy, thereby violating the discomfort constraint. In
the latter situation, predictive corrects the situation by acting
more conservatively in future timesteps, which wastes energy.

This behavior is illustrated in Figure 8 for the bench-
mark MERL. When the MADD is smaller than ΦMD (on
the 11th day for instance), the predictive scheme reduces
energy consumption. However, due to the irregularity of the
benchmark, the MADD increases beyond ΦMD on the 13th
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Fig. 7: Energy and MADD for all benchmarks over 25 days

day. In this situation, the predictive scheme automatically
corrects the situation and switches its role to maintain comfort
by conservatively spending more energy to bring the MADD
below ΦMD. The maximum MADD for MERL goes upto 0.13
for the predictive scheme when simulated for 25 days.

Figure 9 shows the adaptive behavior of the predictive
scheme for the CNF benchmark. CNF is highly irregular and
the MADD rarely goes below the ΦMD limit. Thus the
predictive scheme rarely saves energy because it must keep
the MADD below the ΦMD limit, and thereby consumes
more energy than the baseline SR. For CNF, the MADD
reaches as high as 0.12 for the predictive when simulated for
25 days. These results highlight the need for more accurate
occupancy prediction, the subject of our future work.

A. Daily Performance

Figure 10 shows a histogram of the energy savings over SR
for Office and Graduate Student Office. For both
benchmarks, the daily energy profile of predictive closely re-
sembles that of PP and reactive. For Graduate Student

Office, all policies–even PP–consume more energy (neg-
ative energy savings) over SR for around 9 days. For these
days, the room is occupied from early morning to late night,
a near perfect fit to the SR schedule. However, there are few
short periods of vacancy for which all schemes try to optimize,
resulting in dropping the Ts and thus expending more energy
when the heat must be turned up again. Future work includes
exploring longer horizons and heuristic solutions to these short
vacancy periods.
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Fig. 6: Energy and discomfort of different algorithms for office occupancy data
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VIII. RELATED WORK

HVAC energy optimization using the high-accuracy predic-
tion models developed from the sensor data such as [24], [25]
have been proposed before [3], [16], [17], [26], [27], [28],
[29], [30], [31], [32], [33], [34], [35], [36], [37]. However,
none of these works consider the ramification of occupancy
mispredictions on energy and discomfort during actual system
operation. In this paper, we examine the performance of our
method for both regular and irregular occupancy captured from
commercial buildings. We demonstrate that our scheme con-
tinuously corrects itself for the irregular occupancy behavior
by automatically switching to the comfort maintenance mode
whenever the discomfort margin is small.

Several other works use instantaneous discomfort values
to balance energy and discomfort. For instance, [7], [17],
[20] use MPC algorithms to jointly optimize energy and
comfort by using a scalar parameter to prioritize energy versus
comfort, while [12], [38], [39] use heuristic algorithms. Both
approaches require operators to manually tune the parameters
at the time of synthesis and the parameters, once fixed, cannot
adapt to the dynamic behavior of the system during operation.
Our method does not rely on any parameter tuning and
dynamically adapts its behavior based on the past discomfort
performance. Furthermore, minimizing energy by constraining
the instantaneous discomfort to a certain limit is an alternative
approach considered in [10], [11], [13], [40], [41], [42].
Since discomfort is felt over time, constraining instantaneous
discomfort is not a true representation of occupant comfort.
This also presents fewer opportunities to make future energy-
efficient decisions based on the past energy-discomfort per-
formance. To the best of our knowledge, adaptive energy
optimization using memory of past discomfort has not been
published before. Our method optimizes energy based on the
history of occupant discomfort, and dynamically switches roles

between energy-saving and comfort maintenance.

IX. CONCLUSION

We present a MPC-based algorithm that uses occupancy
prediction and past occupant discomfort to meet a discomfort
objective while optimizing energy efficiency. The system dy-
namically adjusts how aggressively it attempts to save energy
in future timesteps based on recent discomfort as well as
expected future occupancy. Our results show the potential for
large energy savings over a smart reactive approach while
meeting occupant comfort goals.
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