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Abstract

Theperformarceandpoweroptimizationof dynamic su-
perscalar microprocessas requires striking a careful bal-
ancebetweerexploiting parallelism andhardware simplifi-
cation. Hardware structueswhich are needlesslgomple
may exacerbatecritical timing paths and dissipateextra
power Onesud structue requiring careful designis the
issuequeue In a SimultareousMulti-Threadng (SMT)pro-
cessorit is particularly challergingto achieveissuequete
simplificationdueto the increasedutilization of the quele
afforded by multi-threading.

In this paper we proposenew front-endpoliciesthat re-
ducethe required integer and floating point issue quele
sizesin SMT processos. We explore both generl poli-
ciesaswell asthosedirectedtowards alleviating a partic-
ular causeof issuequeueinefficiency For the samelevel
of performance the mosteffective policies reducethe is-
suequeueoccupancy by 33% for an SMT processormwith
appmopriately-sizedssuequeueresouces.

1 Intr oduction

The last ten yeas have witnesseddramaticmicropro-
cessomperfamane gairs, in large partdueto microarchi-
tectural innovations such as out-of-order superscalaex-
ecution and speculatre execution. Simultaneoa Multi-
Threadhg (SMT) [21] is onesuchinnovationthatimproves
overall instructionthrowghpu via the simultaneos sharirg
of microprocessoresoucesamorg multiple threads. Yet,
to maximize perfamance,one must strike a carefu bal-
ancebetweenparallelismand clock frequeng in design
ing suchprocess®. Ovely compgex structues may ex-
acerbatecritical timing paths therely degradng clock fre-
querty, which may yield a net deceasein periormane.
An additicnal consideation is power dissipation,which
hasemeped as a major microprocessoesigncorstraint
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across-thésoardfrom handteld to sener applicatiors. At

the high-end, power-relatedprodemsincludehigherpack

aging costs, noise issuesassociatedvith large cycle-to

cycle current swings, room cooling expenses,and powver
delivery costs. Overly comgex hardvare structures may
impactoneor moreof thesefactors leadingto highercosts
and/a limited perfamance

One structue which has beena major focus of both
speed-ehancirg and powersaving techriquesis the issue
quete, which holds a window of dispatchednstructions
until their sourceopeandshave beenprodwcedandan ap-
profriate functional unit is available. The delay of theis-
suequeuegrows quadatically with both the window size
andthe issuewidth [14]. As theissuewidth is increased
so mustthe window sizeto effectively exploit this addel
width. Theresultingincreasdn delaymay placetheissue
quete onthecritical path[14]. As aresult,recentresearch
hasfocusedon reducimg theissuequeuedelay[9, 10].

Theissuequele may alsobe a major sourceof power
dissipation. For exampe, in the Alpha 21264 micropro-
cessor the integer issuequete is the highestpower con-
sumingfunctional block on the chip [23]. Theissuequele
may also have a high power density[2], which may lead
to hot spot prodems. Thus, a numker of issue quete
powersaving techniqees have beenintroducedto attempt
to turn off unusedor uncerutilizedissuequete entriesdur-
ing applicationexecuion. Two suchappr@chesare fine
grain clock gatirg [3] anddynamic adaptatiorof theissue
quele [4, 6, 7, 15]. Theseapprachesrely onthefactthat
becausapplicatimsdifferin their undcerlying hardvarere-
quirenents,theremaybephase®f executionduring which
theissuequeuemaybeundeutilized. Exploiting suchvari-
ability is the focus of mary of todays issuequeuepower-
saving techniques.

The useof SMT makesachie/ing the goal of afastand
power-efficient issuequeuemore challengng for two rea-
sons.First, thewindow of anSMT processomusthold in-
structiondrom severd thread in orderto achieveits higher
throughpu. This necessitategrowing the issuequete to
achieve this larger window. Secondjn an SMT processqr
theinability of asinglethreadto utilize theissuequete (for



instancedueto anlcachemiss)canbe madeup by filling
thequeuewith instructiors from otherthread. Theresultis
increaseditilization of theissuequete relative to a single-
threadtd machne, andlessopportunity for powver sazings
via dynanic issuequele adaptatioror fine-giain clock gat-
ing. Indeed Senget al. [18] have demastrateda 22%re-
ductionin the enegy per instruction in SMT processors
dueto this more efficient resourceutilization. Thus, new
technigiesareneededhatredu@ issuequele resoucere-
quirenrentsin SMT processorstherdy redwcing bothissue
quete delayandpower dissipationwithoutunduy impact-
ing perfamane.

In this paper we presehnew front-endpoliciesthatre-
ducethe occumng of the issuequetes without compo-
mising perfaman@. Our goalsareto increasehe numker
of instructimmsissuedrom neaerthe headof thequeueand
tofill the queuewith instructionghataremostlikely to be-
comereadyfor issuein the nearfuture. At the sametime,
wedesirepolicieswhichaddminimalcompleity compared
to theissuequele compleity reduction achiezed. We ex-
perimen with anunberof suchpoliciesandachieve a 33%
redudion in theissuequete occiypang for a given level of
perfamancecomparedto a baselinewith modestlysized
queles.

The rest of this paperis organizedas follows. In the
next sectionwe discusghereasos for inefficient usageof
theissuequele, i.e., issuequeueclog. We thendescriben
Section3 the baselineandproposedfront-endpoliciesthat
we compaatively evaluate. In Section4, we describeour
evaluation methoalogy, while our resultsarepreseiedin
Sections. We discusgelatedwork in Section6, andfinally,
we corcludeanddiscusduturework in Section?.

2 Reasondor IssueQueueClog

Issuequete clog occurswheninstructiors residein the
quete for mary cyclesbefole they areissued. Thesein-
structionsoccupy slotsthat could be usedby instructians
which may becone readyfor issueearlier This resultsin
a larger queuebeing requiied for a given level of perfa-
manceaswell asinstructians beingissuedfrom deepetin
thequeue

Onesourceof issuequeueclog is long latencyinstruc-
tionsthatdelaytheissueof depeneéntinstructiors. In most
implemertationsof moden instructionsetarchitectues,in-
teger instructians have relatively shot latenciesas com-
paredto floatingpointinstructiors. Floatingpoint multiply
anddivide instructias are particulaty problenatic dueto
their muchlongerlatencieghanfloating point add/sulract
instructiors. However, mary microprocessahold loadin-
structionsn theintegerissuequeue.Loadsthatmissin the
L1 datacachearethegreatessour of integerissuequete
clog. They alsocontrituteto floatingpoirt issuequete clog

dueto floatingpointloaddependencs.

The secondsourceof issuequeueclog is long datade-
pencdencechains that delay the issueof instructionsfrom
deepin the chainevenif all instructionsin the queuehave
shortlatencies. Of couse, the length of the datadepen
dencechainsin the queueis impactedby the first factor
thelatengy of alreadyissuedinstructions atthe headof the
chain. For instancea chainof datadepeneéntinstructians
sourcedby a load that missesin the cachemay be longer
than one sourcedby a low-latency instruction (suchasa
loadthathits).

A third sourceof clog is contentia for functiond units
(includng the datacache) wherebyinstructiors have their
source opernds available but cannd issue due to not
enowgh functioral units of a giventypeto handleall read/
instructiors of thattype,andor the unitsarenot pipelined
This is particulaty prablematic for workloads primaiily
commsedof operdions of agiven type,e.g., all integerap-
plications.In mary implemenations,includng theonewe
modé in this pape, thepeakissuebandwidh is constraind
only by thenumkber of implementedfundional units.

We experimentwith two overall stratgjiesfor redwcing
issueguete clogthatworkin conjurctionwith thelCOUNT
fetch schemeof Tullsen[20]. In ICOUNT, priority is as-
signedto athreadaccordimg to the nunberof instructionst
hasin thedecoderenane,andissuestagegissuequete) of
the pipeline. Both of ourappro&hesfetch gatethreadsun-
der particdar circunstancestherebyremoring themfrom
consideation by the ICOUNT scheme.Thefirst appoach
usesan appoximation of the numter of unreag instruc-
tionsthatlie in theinteger and/a floatingpointissuequeues
(without incumring the prohibitive costof preciselycalcu-
lating this value) without regard for the reasonfor their
existence. The secondapprach specifically targets load
missesastheprimay sourceof issuequete clog. Ourinitial
design,called Data Gating bearssimilarity to a previous
apprach proposedby Tullsenand Brown [22] for perfa-
mancereasonshowever, we propae an extersion of this
apprach called Predictive Data Gating that usesload hit
predidion to greatlyincreasdts effectiveness.In the next
sectionwe describevariousderivativesof thesepolicies,in
additionto the baselindront-endpolicy, in more detail.

3 SMT Front-End Policies
3.1 BaselinePolicy

Tullsen [20] explored a variety of SMT fetch policies
that assignfetch priority to threadsaccordng to various
criteria. The bestperfaming policy wasdeterninedto be
ICOUNT, in whichpriority is assignedo athreadaccoding
to the nunber of instructionsit hasin the decale, renane,
andissuestages(issuequeues)f the pipdine. Threads



with the fewestsuchinstructins are giventhe highestpri-

ority for fetch, the ratiorale beingthat suchthreadsmay
be making more forward proessthan othes, to prevent
one thread from clogging the issue queue,and to pro-

vide a mix of thread in the issuequeueto increasepar

allelism. Two paraneters, numthreads and numinsts
characteze an ICOUNT scheme(with the designatio
ICOU NT.numthreads.numinsts). Thefirst paraméer
dictateghe maximum numker of threadgo fetchfrom each
cycle, while the seconddendes the maximum nurber of

instructiors perthreadto fetch.

We alsoexamiredthe [QPOSNschemdrom [20] which
attemptso minimize issuequete clog by favoring threads
with instructiors distributed more towardsthe tail of the
guele. However, we found that IQPOSNprovided no sig-
nificantadvartagein eitherperformarce or issuequete oc-
cuparey over ICOUNT to justify the addedcompexity of
trackinginstructions within theissuequete. (ICOUNT, by
contrast, only requres perthread cowntersthat are incre-
mentedon fetchanddecrenentedonissue.)Therefore,we
choase ICOUNT asthe baselinepolicy againstwhich we
bencimarkourpropsedschemes.

We ran a variety of experimentsfor differert ICOUNT
configuations(varying numthreads andnuminsts) and
found ICOUNT2.8to be the bestbaselinepolicy bothin
termsof perfaomanceandissuequele occummng for our
simulationparametes (describedn Sectiord).

3.2 Proposel Fetch Policies

3.2.1 UnreadyCount Gating

The first two sourcesof issue quaue clog resultin Not
Readyinstructiongthosewith oneor moresourceoperails
notavailable)occipying the queuefor anexcessie numter
of cycles. UnreadyCountGating (UCG) attemptsto limit
the numker of Not Readyinstructiors in the queuefor a
giventhread The preciseimplemenation of sucha pol-
icy would court the nunber of Not Readyinstructiors in
the quete for eachthread but like IQPOSN,this would be
prohibitive in termsof hardvare comgexity. Our simpli-
fied UCG implenentationopeatesas shavn in Figure 1.
A particularthreads UnreadylnstructionCounteris incre-
mentedor eachinstructionfrom thatthreaddispatchednto
eitherissuequeuein a Not Readycondtion. This informa-
tion is usuallyobtainedfrom alookup table(e.g., the Busy
Bit Tablesin the Mips R10M0[24]) atdispatchtime. Each
suchinstructiondispatcled is alsotaggedin the appraori-
ate quete by the settingof the Unreadyon Dispatchbit,
which remairs setthroughou thelifetime of theinstructian
in thequeue Oninstructionissue the Unread Instructian
Counteris decrematedfor eachissuednstructionwith the
Unread onDispatchbit set. Any threadwhoseUnread In-
structionCounterexceed a particularthreshdd is blocked

from furthe fetchirg.

Onepotentialdravbad with oursimplifiedimplemena-
tionis thatit failsto account for Not Readyinstructiors that
becone Readyin aqueuebut do notissueright away dueto
theaforementiordthird sourcgfunctionalunit conterion)
of issuequeueclog. In actuality excessve cortentionfor
functionalunitseventually causeslatadepenéntconsuner
instructiors to be dispatchedn a Not Readystate. Thus,
UCG addessesll threesour@sof issuequete clog, albeit
indirectly in orderto simplify theimplemenation.

We also examinea variation called Floating Point Un-
readyCountGating(FP.UCG) in which only thoseinstruc-
tions dispatchd into the floating point issuequete incre-
mentthe Unread Instruction Counter The advartage of
FP_UCG s thatit canbe comtinedwith otherschemesar-
getedtowards the integer quaue, suchasthosewe describe
in the next two subsections.

3.2.2 DataMiss Gating

DataMiss Gating(DG) directly attacksthe primary source
of integerissuequete clog: thatdueto instructicmswaiting
in thequete for aloadmissto beresohed. In this scheme,
shavn in Figure2, nofetchingis perfamedfor ary threa
thathasmorethann L1 datacachemissesoutstanthg. A
perthreadcounteris incrementedon aloaddatacachemiss
anddecremetedwhentheloadcommits.A threadis fetch
gatedwheneserits cownt is greatetthann.

3.2.3 Predictive Data Miss Gating

Onepotentialissuewith the DG policy is thatthereis ade-
lay betweendetectim of a fetch gating event (datacache
miss) in the Executestageof the pipeline and the actual
fetch gatirg of the thread This delay may resultin in-
structionsthataredepemnienton theloadbeingfetchedand
placedn thequeuebefaethethreadis fetchgated therely
cloggng thequete. In Predictve DataMiss Gating(PDG),
shawvn in Figure 3, we attemptto redice this time dilation
by predictinga datacachemisswhenaloadis fetched. The
sameperthread courter as DG is implemerted, but this
is incremened eitherwhena load is predictedto miss, or
whenpredictedo hit but actuallymisses.Thelattercanbe
easilydeternined usingthe Load Miss Predictionbit (car
riedthrowghthepipelinewith theload)andthehit/missout-
come. As in DG, the counte decrenentswhenthe load
commits.A threadwhosecountexcesdsn is fetchgated.
Some recent microprocessors, such as the Alpha
21264 [11], incorporatea load misspredctor to determire
whetherto speculatrdly issueconsunersof theload. The
load misspredicta in the 21264 is conprisedof a tableof
four bit saturatingcourterswhosemostsignificantbit pro-
videsthe predction (missif thebit is zero). The courters
are increnentedby oneon a hit and decrenentedby two
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onamiss. By moving the predctor earlierin the pipeline,
we canachiese both functions by carnjing the Load Miss
Predictionbit alongwith theloadasdescribedbove.

We explored a variety of predicta optionsand deter
minedthata 2K-ertry table of two bit saturatingcourters
(indexedby the PCof theload)whichareclearedonamiss
andincrerrentedon a hit, and whaose most significan bit
determiresthe predction, providesanoverall hit/misspre-
dictionaccuray of 95%.

3.2.4 PDG Combinedwith UCG or FP_.UCG

Combindions of PDG and UCG or FP_UCG can poten
tially addessmultiple causef both integer and floating
point clog. BecausePDG is moreeffective at redicing in-
teger queueclog thanUCG, andFP_UCG addessesaddi-
tional cause®f floatingpoirt clog over PDG,the combira-
tion of thesetwo policiesachieses the bestresultsin terms
of both perfomanceandissuequele occupacy reductian
for amixedintegerandfloating pointworkload of all tech-
nigues thatwe evaluated

4  Simulation Methodology

We modfied the SMT simulator(SMTSIM) developed
by Tullsen[19] to implemen the new fetch schemesand
to gatrer detailedstatisticson the issuequeus. The major
simulatorparaméersaregiven in Tablel. Theissuewidth
is equalto the total numker of functional units, andissue
prionty is by instruction age,with older instructions hav-
ing priority over newerones.Thisis essentiallynodeledn
SMTSIM asa compmactingissuequele with positionbased
selection. With fine-gmain clock gatirg appliedto sucha
designareduwctionin issuequete occupacy rougHy trans-
latesinto anequialentreductionin switchingpower[3].

For our baseline we were carefulto selectappopriate
quele sizessoasnotto overstateary gainsfrom our tech-
nigues. We simulatedyjuete sizesin 8-entryincremers us-
ing an all-integer workload (describedbelow) to size the
integer quele (as this workload is the most perfomance
sensitve in termsof integerquete size)andanall-floating
pointworkloadto sizethe floating point queue(for similar
reasons)We increasedeachquele sizeuntil lessthana 5%
overall perfaomancegain was achiezed with an additioral
incremant. Usingthis apprach,we chose40-ernry integer
and40-entryfloating point quauesfor the baseline.

Our workload consistsof eight progams from the
SPEC2000nteger benchmark suite and eight SPEC200
floating point programs. We compled eachprogam with
gcc with the -O4 optimizationandran eachwith the ref-
erenceinput set. From thesel6 bentimarks,we created
thefour, eightthreadworkloadsshavn in Table2, eachof

| Parameer | Value
Fetchwidth 16instrudions

Baselhefetch policy ICOUNT.2.8[20]
Pipelinedepth 8 stages
BranchTargetBuffer 256 entry, 4-way associéive
Brandh predidor 2K gshare
Branch mispredtt pendty 6 cycles
Reorcer Buffer entries/thread 512
Architectureregisters/threal 32Int, 32FP

Renaneregistes 2001Int, 200FP
Baselne issuequeueentries 40 entry Int/Ld/St, 40 entry FP
Issuequeueselecton oldest-first
Issuewidth 11

Functioral units 8 Int (4 hande loadsktores) 3 FP

ICache 64KB, 2-way, 64Bline, 8 banks
DCache 64KB, 2-way, 64Bline, 8 banks
L2 Cache 512KB, 2-way, 64B line,
8 banks,10 cycle latengy
L3 Cache 4MB, 2-way, 64B line,
20cycle latengy
ITLB size 48 entry
DTLB size 128entry
Main Memorylateng/ 100cycles
TLB misspenaty 160cycles

Table 1. Simulator parameter s.

| Workload |
all-integer

Benchmaks |
bzip2,gcc, vpr, gzip,
parser mcf, perbbmk, twolf
apply lucas, mgrid, art,
swim, equale, mesagalgd

all-floating point

mix 1 applu lucas, mgrid, art,
parser mcf, perbbmk, twolf
mix 2 bzip2,gcc,vpr, gzip,

swim, equale, mesagalgd

Table 2. Workl oad mixes.

whichconsistof 100million instructiors from eachbench
mark. We fast-fornarded eachbencimarkaccordng to the
guiddinesin [17]. As with sizingthebaselindssuequete,
we usedthe all-integer workload in analyZng techniaies
for improving integerissuequete efficieng. Similarly, the
all-floating point workloadwasusedin floating poirt issue
quetle experiments. In our summay results,we averagel
the resultsof all four workload mixes (3.2 billion instruc-
tionsin all) in order to simulatethe variety of workload
mixesencounteredin amulti-threadedmachire.

As a perfamancemetric, we chosethe harmanic mean
of the relative instructionsper cycle (IPC) ratingsof then
thread, calculatedasfollows:

n
>
This metricpenalizeschemeshatimprove overall per
formanceat the expenseof degradng the perfamanceof
particula threads therely balancimg throughpu andfair-

nessconsickrationg12).
For the DG and PDG policies, we fetch gateda threal



T
g Il AvgST
;60 || Il Baseline
2 [ ucG
g [ DG
3 40 Il PDG
3 Hl PDG+UCG
=
[9)
o
[
o

0-8 9-16 17-24 25-32 33-40
(a) distribution of the number of valid queue entries

N w B
o o o

issue location (%)

[
o

o

0-8 9-16 17-24 25-32 33-40
(b) distribution of the issued instructions

Figure 4. Integ er issue queue occup ancy and issue
distribution for single -threade d, baseline multi-
threaded, and propos ed polic ies.

wheneer it had an actual or predcted data cachemiss,
i.e, n = 0. FortheUCG andFP_.UCG schemesa threal
wasfetch gatedwhenits Unreadylnstruction Counterex-
ceededhreeandtwo, respectiely. For PDG couped with
FP.UCG, a threslold of threefor the Unread Instruction
Countemperfomedbest,while for PDGcougedwith UCG,
athresholdof five wasused. A higherthreshdd is needd
in this caseto preventover-gatingwith thetwo policiesop-
eratingsimultaneasly. We chosehesehreshdds basedn
thosethat perfomed bestfor the combindion of all four
workload mixes. Thesechoicesof threshdds arein some
casessub-gtimal for the all-integer or all-floating point
workloads. This highlights the needto adaptthe thresh-
oldsdynamicallyatruntimeto fit theworkload,whichis an
areafor future work.

5 Results

We first preseh individual resultsfor the integer and
floatingpointissuequetes.In Sections.3,we presentom-
positeresultsfor bothqueues.

5.1 Integer IssueQueue

Figure4(a)shavs the percatageof cyclesthata partic-
ular range of issuequeueentrieswerevalid, while the (b)
part of this figure shavs in whatrange of the issuequete
instructiors wereissuedrom. AvgSTis theaveragesingle-
threagkd result,i.e., averagedover individual runsof each
of the eightinteger bendcimarks. In compaing the single-
threaebd resultswith the baselineSMT ICOUNT scheme,

40

AvgST Baseline UCG DG PDG PDG+UCG
(a) average valid issue queue entries

30

AvgST Baseline UCG DG PDG PDG+UCG
(b) average issue position

AvgST Baseline UCG DG PDG PDG+UCG
(c) start issue position

15

PDG PDG+UCG

AvgST Baseline UCG DG
(d) range of issue

Figure 5. Statistics for singl e-thread ed and multi-
threaded polic ies for the integ er issue queue.

we find botha higheroverall issueoccu@ng/ anda greder
numter of instructimsissuedrom deepein thequeuewith

multi-threading. In fact, with ICOUNT, abou 75% of the
timethequeleis nearlyfully occupied33-40valid entries),
while this is the casefor only 50% of the time in single-
threadedd mode Thisreflectsthe greaterusageof quauere-
sourcesin SMT and the ability to find more instructians
to issueon averageeachcycle to achiere greatelPC. The
downside,however, is a significarn increasen quete occu

pang to achieve this higher level of perfomance.

The distributions for the PDG and PDG+UCGpolicies
closelymirror thoseof single-thheadedmode. This is pri-
marily becauseahesepolicies prevent the quete from get-
ting cloggel with instructians which are unlikely to issue
in the nearfuture. For instancewith PDG, over 75% of
theinstructiors areissuedfrom thelower 16 queaue entries
(exceading even that of single-thheadedmodk), whereas
rouchly 40% of the instructiors areissuedfrom thesepo-
sitionswith thebaselind COUNT policy.

Figure5 providesa variety of statisticsfor the different
policies as appliedto the integer issuequete. As shavn
in Figure5(a),the entancedpolicies,particdarly PDGand
PDG+UCG,utilize mudc lessof the 40-eriry integer issue
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quete thanthe baselindl COUNT policy. As shavn in the
(b) and(c) partsof thisfigure,while theaverag andstartis-
suepositionsincreasalramaticallyfor ICOUNT compared
to single-thradedmode thesetwo enhancedpoliciesre-
ducethesebackcloserto single-treadedmodelevels.

Figure5(d) shavs thattherange of issue definedasthe
numter of entriesbetweenthe first andlast instrudion in
an issuegroup, remainsfairly constantacrossthe multi-
threadtdschemesln otherswvords,thenumkberof neighbor-
ing instructions neededo beinspectecbn a cycle to cycle
basisis relatively invarient. However, the positionof these
instructiors in the queaue vaiies significantlyby policy. On
averag, theissuequaue with PDG behaes comparablyto
thatfor a single-thheadedworkload, yet performane more
thandouwbles.

A salientfeatureof theseenhagedpoliciesis a redic-
tion of the averagenumter of in-flight instructiors dueto
instructiors spendingesstime waiting in theissuequete.
Thisresultsin a25-40%reductionin thenumkber of renane
registersusedascomparedto ICOUNT.

Figure6 plotsthe overall perfamancemprovemert ob-
tainedrelative to ICOUNT with a 16 entryissuequete for
different fetch policiesandintegerissuequeaue sizes. The
lower partof this figure gives the rediction in the average
occu@ng of theinteger issuequeuerelativeto thebaseline
with the samenumlter of queueentries.

By all measuregincluding thosein Figures4 and5),
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Figure 7. Floatin g point issue queue occupancy
and issue distrib ution for single -threade d, base-
line multi-thre aded, and proposed policie s.

PDG and PDG+UCGare superiorto both UCG andDG.

Theuseof loadmisspredictian in PDG preventsthequete

from beingfilled with unreadyinstructiors asin DG. This

dramaically redicesthe averagestart issue position and
the averageissue position compredto DG, resultingin

a significantly greaterreductio in occu@ng.. As men-
tionedpreviously, thethrestoldsin PDG+UCGaretunad to

thelarger combired workload; for the all-integer workloed

usedfor Figure 6, thesevaluesyield higherissuequete oc-

cupary savingsbut worseperfamancethanPDG.In com-
parisonto the baseline,PDG achieses betterovenrall per

formancewith a 24-enty quele thanthe baselinewith a

40-enry quaue. Thisrepresentsa 40%reductio in there-

quiredinteger issuequeue resourcs to achieve the same
level of performane.

5.2 Floating Point Issue Queue

Figures 7, 8, and 9 give similar statisticsfor the float-
ing point issue quete using the all-floating point work-
load. With the enhamed fetch policies, floating poirt is-
sueefficiengy improvescompaably to thatof integerissue.
The PDG andcombired policiesdramaticallyincreasehe
percemage of time eight or fewer instructionsoccuyy the
quetle,andthefractionof instructionsissuedrom thesepo-
sitions,even outperforming single-theadedmodeon these
metrics. With a 40 entry issuequele, PDG achieves a 2-
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Figure 8. Statistics for singl e-thread ed and multi-
threaded polic ies for the floating point queue.

3X reductionin boththe averag andstartissuepositions
(Figures 8(b) and(c)), andover a 30%reductia in the oc-

cupary of both queus (Figure9(b) and(c)) compredto

the baselinelCOUNT policy in addition to a perfomance
improvemen (Figure9(a)) Thecomtinedpoliciesachiee

greaterredictionsin quete occypang thanPDG alonebut

with a nonfrivial performarce degradation, again,dueto

threshdds thataresub-opimal for this workload.

5.3 CombinedResults

Resultsaverayed acrossall workload mixesin Table 2
areshowvn in Figure 10 for the threepoliciesthat perform
bestunderthis workload as well asfor DG. Onceagain
we obsene how PDG significantly outpeforms DG in alll
respectsdue to its ability to perfam early and accurate
predidion of load misses. On average PDG+FRUCG
achieres a cumuative 33%redLiction in issuequeueoccu
pang while slightly increasiig perfamance PDGachieres

Hl baseline

|| Il UcG

[@ FP_ucG

[ DG

[| ] PDG

[ PDG+UCG

|| W PDG+FP_UCG

24 32

(a) Performance improvement

24 32 40

(b) Reduction in integer queue occupancy

24
(c) Reduction in floating point queue occupancy

32 40

Figure 9. Overall performance , weighte d speedup,
and floatin g point issue queue occup ancy for dif-

ferent multi-thre aded policie s with varying floating
point issue queue size.

greatemperformarce improvementbut at the costof higher
occu@ng. In geneal, the PDG+FRPUCG is morerobust
thanPDG overarangeof workloads dueto its ability to ad-
dressothersourcef issuequete clogin additionto loads.

6 RelatedWork

Several techniges for simplifying the issue quete
in single-theaded processors have been proposed.
Palacharla[13] proposesa depenlencebased microa-
chitectue using multiple smaller queuesand groying
depenmlentinstructionsin the samequeaue. Canal[5] devel-
opstwo schemedor simplifying the queudogic. Thefirst
is basedon keepirg track of theinstructionthatis thefirst
useof eachproducedregistervalue. After beingdecaled,
eachinstructionis dispatcedin a different way deperling
on the availability of its sourceoperamnls. The secondis
basedon the fact that the lateng of mostinstructiors is
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Figure 10. Overall performance improvement, and
reduction in integ er and floating point issue queue
occupancies for different multi-thre aded polici es
usin g the average of all four workloa d mixes.

known whenthey aredecoed. Theseschemesemore the
associatie look-up andcouldachieve a shortercycle time.
In [7, 8], Folegnani proposestechniqees to dynamically
resizetheissuequele basedon the parallelismin different
periods of execution. A 15%redudion in thetotal power of
the processolis achieved with the simplified issuequete.
Power redwction of theissuequealevia dynamicadaptatio
is alsoaddressetly Buyuktosunodu [3, 4] in whicha70%
redudion in issuequeuepowerdissipations achievedwith
a 3% averag performane degradation. Pononarey [15]

andDropsho[6] expandon this work by resizingmultiple
structurs including theissuequeles.

Perhap the closestwork to oursis that by Tullsenand
Brown [22] in which fetchingis blocked from thread with
anoutstandig long lateng load andinstructionsfrom that
threadareflushedfrom the issuequeue.Two meclanisms
areusedto identify long lateng loads: an L2 cachemiss
anda load residingin the load quete beyond a particuar
numter of cycles. With our DataMiss Gatingfetchpolicy,
we gate fetching simply basedon L1 datacachemisses,
andwe do not addthe compleity of flushinginstructins.
Thedifferencedetweerthe apprachesaredueto the per
formancefocusof [22] andthe simplificationof the issue
guete asthe centraltenetof our work. In addition,we in-
trodwce the Predictve DataGatingandcombired PDG and
FP_UCG policiesthatachierse a significantreductio in is-

suequetle utilization over Data Gating as well as higher
perfamance.

Frort-end throttling is proposedin [1] as a power re-
duction technque for single-threded proaessors. Three
fetch/deode thratling techniges are proposed: De-
code/Commit Rate,Dependace-basedandAdaptive. The
Decode/Comit policy compaes the numker of instruc-
tions decaled and conmitted during eachcycle to make
a throttling decision. The Depenénce-basedppoach
courts the dependncesamory the decoad instructins,
while the Adaptive policy combiresbothmethals.

Fetchpolicieswith two priority levels have beeninves-
tigatedin [12, 16]. In [16], thefirst level priority decision
distinguistes betweenthe foreground andthe backgourd
thread, with ICOUNT andRoundRobinschemesrioritiz-
ing the threadsin eachcateyory. However, overall perfa-
mancedegradesusingthis policy. In contrast[12] demon
stratecombiredpoliciesthatcreateabalancebetweerfair-
nessandthroudhput.

SMT power optimizationshave beenexamiredin [18].
The authas demastratethat an SMT processor with a
smallerexecution bandvidth canachieve compaable per
formanceto a more aggressie single-threadedproassor
while consumilg lesspower. They also propose mecta-
nismsto redwe peakpower dissipationwhile still maxi-
mizing perfamanceusingfeedtackregardingpower dissi-
pationin orderto limit processoactvity. They alsoexam
inetheeffectof thethreadselectioralgoithm on power and
perfamanceand proposefavoring lessspeculatie threads
over morespeculatie threads.

In contrastto this previouswork, oursis thefirst to our
knowledge that addressesrediction of issuequeuecom-
plexity in SMT process@ via entancedyetlow compex-
ity, front-endpolicies.

7 Conclusionsand Futur e Work

The designof aggessve out-of-order superscalapro-
cessorsequiesstriking a carefulbalancebetweerexploit-
ing parallelismandenablinghigh frequencies Overly com-
plex hardwarethreatengo decreasérequancy, increasda-
teng, and/orincreasepower dissipation. The issuequete
is one suchcritical structurewherethis balancemust be
achieved to optimize perfamanceand power efficiengy.
Unfortunately SMT processorgut pressug on increasirg
thewindow sizein orderto hold instructions from multiple
thread andto malke betteruseof that window, rencering
fine-gmin clock gatirg andadaptve technigieslesseffec-
tive thanin single-theadedlesigrs.

We presentan appioachfor redwing the occupacy of
boththeintegerandfloatingpoirt issuequeteswithoutun-
duly impactingperfamance.Theenhancd front-endpoli-
ciesthat we propseboth increasethe numter of instruc-



tionsissuedfrom nearthe headof the queue,andprevent
the fetching of instructiors which arenot likely to issuein
the nearfuture. Theresultis a 33%redudion in the occu
pang of theissuequeuedor thesamdevel of periormane.
In thefuture, we planto evaluateadaping thethreshdds
dynanmically to fit the workload andto explore the inter-
actionbetweerfetch, dispatch andscheduliig policieson
compgexity redution in otherareasof SMT processors.
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