
Front-End Policiesfor Impr oved Issue Efficiency in SMT Processors
�

Ali El-MoursyandDavid H. Albonesi

Departmentof ElectricalandComputerEngineering
Universityof Rochester�

elmours,albonesi� @ece.rochester.edu

Abstract

Theperformanceandpoweroptimizationof dynamicsu-
perscalar microprocessors requiresstriking a careful bal-
ancebetweenexploitingparallelismandhardwaresimplifi-
cation. Hardware structureswhich are needlesslycomplex
may exacerbatecritical timing paths and dissipateextra
power. Onesuch structure requiring careful designis the
issuequeue. In aSimultaneousMulti-Threading(SMT)pro-
cessor, it is particularly challenging to achieveissuequeue
simplificationdueto the increasedutilization of thequeue
affordedbymulti-threading.

In this paper, weproposenew front-endpoliciesthat re-
duce the required integer and floating point issuequeue
sizesin SMT processors. We explore both general poli-
ciesaswell as thosedirectedtowardsalleviating a partic-
ular causeof issuequeueinefficiency. For the samelevel
of performance, the mosteffectivepolicies reducethe is-
suequeueoccupancy by 33% for an SMT processorwith
appropriately-sizedissuequeueresources.

1 Intr oduction

The last ten years have witnesseddramaticmicropro-
cessorperformance gains, in largepartdueto microarchi-
tectural innovations such as out-of-order superscalarex-
ecution and speculative execution. Simultaneous Multi-
Threading (SMT) [21] is onesuchinnovationthatimproves
overall instructionthroughput via thesimultaneous sharing
of microprocessorresourcesamong multiple threads.Yet,
to maximizeperformance,one must strike a careful bal-
ancebetweenparallelismand clock frequency in design-
ing suchprocessors. Overly complex structures may ex-
acerbatecritical timing paths,thereby degrading clock fre-
quency, which may yield a net decreasein performance.
An additional consideration is power dissipation,which
hasemerged as a major microprocessordesignconstraint�

This work was supported in part by NSF grants CCR–9701915,
CCR–9811929,andINT–0117667;by DARPA/ITO underAFRL contract
F29601-00-K-0182;by an IBM Faculty PartnershipAward; andby exter-
nal research grantsfrom Intel andDEC/Compaq.

across-the-boardfrom handheld to server applications. At
thehigh-end,power-relatedproblemsincludehigherpack-
aging costs, noise issuesassociatedwith large cycle-to-
cycle current swings, room cooling expenses,and power
delivery costs. Overly complex hardware structures may
impactoneor moreof thesefactors,leadingto highercosts
and/or limited performance.

One structure which has beena major focus of both
speed-enhancing andpower-saving techniquesis the issue
queue, which holds a window of dispatchedinstructions
until their sourceoperandshave beenproducedandanap-
propriate functional unit is available. The delayof the is-
suequeuegrows quadratically with both the window size
andthe issuewidth [14]. As the issuewidth is increased,
so must the window size to effectively exploit this added
width. Theresultingincreasein delaymayplacethe issue
queue on thecritical path[14]. As a result,recentresearch
hasfocusedonreducing theissuequeuedelay[9, 10].

The issuequeue may alsobe a major sourceof power
dissipation. For example, in the Alpha 21264 micropro-
cessor, the integer issuequeue is the highestpower con-
sumingfunctionalblock on thechip [23]. Theissuequeue
may alsohave a high power density[2], which may lead
to hot spot problems. Thus, a number of issue queue
power-saving techniques have beenintroducedto attempt
to turn off unusedor underutilizedissuequeue entriesdur-
ing applicationexecution. Two suchapproachesare fine
grainclock gating [3] anddynamicadaptationof the issue
queue [4, 6, 7, 15]. Theseapproachesrely on the fact that
becauseapplicationsdiffer in theirunderlyinghardwarere-
quirements,theremaybephasesof executionduring which
theissuequeuemaybeunderutilized. Exploiting suchvari-
ability is the focus of many of today’s issuequeuepower-
saving techniques.

Theuseof SMT makesachieving thegoalof a fastand
power-efficient issuequeuemorechallenging for two rea-
sons.First, thewindow of anSMT processormusthold in-
structionsfrom several threads in orderto achieveits higher
throughput. This necessitatesgrowing the issuequeue to
achieve this larger window. Second,in anSMT processor,
theinability of asinglethreadto utilize theissuequeue(for



instance,dueto anIcachemiss)canbemadeup by filling
thequeuewith instructions fromotherthreads. Theresultis
increasedutilization of the issuequeue relative to a single-
threaded machine, andlessopportunity for power savings
via dynamic issuequeue adaptationor fine-grain clockgat-
ing. Indeed, Senget al. [18] have demonstrateda 22%re-
duction in the energy per instruction in SMT processors
dueto this moreefficient resourceutilization. Thus, new
techniquesareneededthatreduce issuequeue resourcere-
quirementsin SMT processors,thereby reducingbothissue
queue delayandpowerdissipation,withoutunduly impact-
ing performance.

In this paper, we present new front-endpoliciesthat re-
ducethe occupancy of the issuequeues without compro-
misingperformance. Our goalsareto increasethenumber
of instructionsissuedfrom nearer theheadof thequeueand
to fill thequeuewith instructionsthataremostlikely to be-
comereadyfor issuein thenearfuture. At thesametime,
wedesirepolicieswhichaddminimalcomplexity compared
to the issuequeue complexity reduction achieved. We ex-
periment with anumberof suchpoliciesandachievea33%
reduction in theissuequeue occupancy for a given level of
performancecomparedto a baselinewith modestly-sized
queues.

The rest of this paperis organizedas follows. In the
next section,we discussthereasons for inefficient usageof
theissuequeue, i.e., issuequeueclog. We thendescribein
Section3 thebaselineandproposedfront-endpoliciesthat
we comparatively evaluate. In Section4, we describeour
evaluation methodology, while our resultsarepresented in
Section5. Wediscussrelatedwork in Section6,andfinally,
we concludeanddiscussfuturework in Section7.

2 Reasonsfor IssueQueueClog

Issuequeue clog occurswheninstructions residein the
queue for many cyclesbefore they are issued. Thesein-
structionsoccupy slots that could be usedby instructions
which maybecome readyfor issueearlier. This resultsin
a larger queuebeingrequired for a given level of perfor-
manceaswell asinstructions beingissuedfrom deeperin
thequeue.

Onesourceof issuequeueclog is long latencyinstruc-
tionsthatdelaytheissueof dependentinstructions. In most
implementationsof modern instructionsetarchitectures,in-
teger instructions have relatively short latenciesas com-
paredto floatingpoint instructions. Floatingpoint multiply
anddivide instructions areparticularly problematic dueto
their muchlongerlatenciesthanfloatingpoint add/subtract
instructions. However, many microprocessors hold loadin-
structionsin theintegerissuequeue.Loadsthatmissin the
L1 datacachearethegreatestsource of integerissuequeue
clog.They alsocontributeto floatingpoint issuequeueclog

dueto floatingpoint loaddependences.
Thesecondsourceof issuequeueclog is long datade-

pendencechains that delay the issueof instructionsfrom
deepin thechainevenif all instructionsin thequeuehave
short latencies. Of course, the length of the datadepen-
dencechainsin the queueis impactedby the first factor,
thelatency of already-issuedinstructionsat theheadof the
chain. For instance,a chainof datadependent instructions
sourcedby a load that missesin the cachemay be longer
than one sourcedby a low-latency instruction (suchas a
loadthathits).

A third sourceof clog is contention for functional units
(including thedatacache),wherebyinstructions have their
source operands available but cannot issue due to not
enough functional unitsof a giventypeto handleall ready
instructions of thattype,and/or theunitsarenot pipelined.
This is particularly problematic for workloads primarily
composedof operationsof a given type,e.g., all integerap-
plications.In many implementations,including theonewe
model in thispaper, thepeakissuebandwidth is constrained
only by thenumber of implementedfunctionalunits.

We experimentwith two overall strategiesfor reducing
issuequeueclogthatwork in conjunctionwith theICOUNT
fetch schemeof Tullsen[20]. In ICOUNT, priority is as-
signedto athreadaccording to thenumberof instructionsit
hasin thedecode,rename,andissuestages(issuequeue)of
thepipeline. Both of ourapproachesfetch gatethreadsun-
derparticular circumstances,therebyremoving themfrom
considerationby the ICOUNT scheme.Thefirst approach
usesan approximation of the number of unready instruc-
tionsthatlie in theinteger and/or floatingpointissuequeues
(without incurring the prohibitive costof preciselycalcu-
lating this value) without regard for the reasonfor their
existence. The secondapproach specifically targets load
missesastheprimary sourceof issuequeueclog. Ourinitial
design,calledData Gating, bearssimilarity to a previous
approachproposedby TullsenandBrown [22] for perfor-
mancereasons;however, we proposean extension of this
approachcalledPredictiveData Gating that usesload hit
prediction to greatlyincreaseits effectiveness.In thenext
section,wedescribevariousderivativesof thesepolicies,in
additionto thebaselinefront-endpolicy, in more detail.

3 SMT Front-End Policies

3.1 BaselinePolicy

Tullsen [20] explored a variety of SMT fetch policies
that assignfetch priority to threadsaccording to various
criteria. Thebestperforming policy wasdetermined to be
ICOUNT, in whichpriority isassignedtoathreadaccording
to thenumberof instructionsit hasin thedecode,rename,
and issuestages(issuequeues)of the pipeline. Threads



with the fewestsuchinstructionsaregiventhehighestpri-
ority for fetch, the rationale being that suchthreadsmay
be making more forward processthan others, to prevent
one thread from clogging the issue queue,and to pro-
vide a mix of threads in the issuequeueto increasepar-
allelism. Two parameters, �����
	���
�������� and �����
������	��
characterize an ICOUNT scheme(with the designation�������! #"%$ �����
	���
�������� $ �����&�'����	�� ). The first parameter
dictatesthemaximum numberof threadsto fetchfrom each
cycle, while the seconddenotes the maximum number of
instructions perthreadto fetch.

WealsoexaminedtheIQPOSNschemefrom [20] which
attemptsto minimize issuequeue clog by favoring threads
with instructions distributed more towardsthe tail of the
queue. However, we found that IQPOSNprovidedno sig-
nificantadvantagein eitherperformanceor issuequeue oc-
cupancy over ICOUNT to justify the addedcomplexity of
trackinginstructionswithin theissuequeue. (ICOUNT, by
contrast, only requires per-threadcountersthat are incre-
mentedon fetchanddecrementedon issue.)Therefore,we
choose ICOUNT as the baselinepolicy againstwhich we
benchmarkourproposedschemes.

We ran a varietyof experimentsfor different ICOUNT
configurations(varying �����
	���
�������� and �����
�'���(	�� ) and
found ICOUNT2.8 to be the bestbaselinepolicy both in
termsof performanceand issuequeue occupancy for our
simulationparameters (describedin Section4).

3.2 Proposed FetchPolicies

3.2.1 UnreadyCount Gating

The first two sourcesof issuequeue clog result in Not
Readyinstructions(thosewith oneormoresourceoperands
notavailable)occupying thequeuefor anexcessivenumber
of cycles. UnreadyCountGating(UCG) attemptsto limit
the number of Not Readyinstructions in the queuefor a
given thread. The preciseimplementation of sucha pol-
icy would count the number of Not Readyinstructions in
thequeue for eachthread,but like IQPOSN,this would be
prohibitive in termsof hardwarecomplexity. Our simpli-
fied UCG implementationoperatesasshown in Figure1.
A particularthread’s UnreadyInstructionCounteris incre-
mentedfor eachinstructionfromthatthreaddispatchedinto
eitherissuequeuein a Not Readycondition. This informa-
tion is usuallyobtainedfrom a lookup table(e.g., theBusy
Bit Tablesin theMips R10000 [24]) at dispatchtime. Each
suchinstructiondispatched is alsotaggedin the appropri-
ate queue by the settingof the Unreadyon Dispatchbit,
whichremainssetthroughout thelifetime of theinstruction
in thequeue. On instructionissue,theUnready Instruction
Counteris decrementedfor eachissuedinstructionwith the
Unready onDispatchbit set.Any threadwhoseUnready In-
structionCounterexceeds a particularthreshold is blocked

from further fetching.
Onepotentialdrawback with oursimplifiedimplementa-

tion is thatit fails to account for Not Readyinstructionsthat
becomeReadyin aqueuebut donot issueright awaydueto
theaforementionedthirdsource(functionalunit contention)
of issuequeueclog. In actuality, excessive contentionfor
functionalunitseventually causesdatadependentconsumer
instructions to be dispatchedin a Not Readystate. Thus,
UCG addressesall threesourcesof issuequeue clog,albeit
indirectly in orderto simplify theimplementation.

We alsoexaminea variation calledFloatingPoint Un-
readyCountGating(FP UCG) in whichonly thoseinstruc-
tions dispatched into the floating point issuequeue incre-
ment the Unready Instruction Counter. The advantageof
FP UCG is thatit canbecombinedwith otherschemestar-
getedtowards theinteger queue,suchasthosewe describe
in thenext two subsections.

3.2.2 Data Miss Gating

DataMiss Gating(DG) directly attackstheprimary source
of integerissuequeue clog: thatdueto instructionswaiting
in thequeue for a loadmissto beresolved. In this scheme,
shown in Figure2, no fetchingis performedfor any thread
thathasmorethan � L1 datacachemissesoutstanding. A
per-threadcounteris incrementedonaloaddatacachemiss
anddecrementedwhentheloadcommits.A threadis fetch
gatedwhenever its count is greaterthan � .

3.2.3 PredictiveData Miss Gating

Onepotentialissuewith theDG policy is thatthereis a de-
lay betweendetection of a fetch gating event (datacache
miss) in the Executestageof the pipeline and the actual
fetch gating of the thread. This delay may result in in-
structionsthataredependenton theloadbeingfetchedand
placedin thequeuebefore thethreadis fetchgated,thereby
clogging thequeue. In PredictiveDataMissGating(PDG),
shown in Figure3, we attemptto reduce this time dilation
by predictingadatacachemisswhenaloadis fetched.The
sameper-threadcounter as DG is implemented, but this
is incremented eitherwhena load is predictedto miss,or
whenpredictedto hit but actuallymisses.Thelattercanbe
easilydeterminedusingtheLoadMiss Predictionbit (car-
riedthroughthepipelinewith theload)andthehit/missout-
come. As in DG, the counter decrementswhen the load
commits.A threadwhosecountexceeds� is fetchgated.

Some recent microprocessors, such as the Alpha
21264 [11], incorporatea loadmisspredictor to determine
whetherto speculatively issueconsumersof the load. The
loadmisspredictor in the21264 is comprisedof a tableof
four bit saturatingcounterswhosemostsignificantbit pro-
videsthe prediction (missif thebit is zero). Thecounters
are incrementedby oneon a hit anddecrementedby two



Fetch
Unit

Instruction Cache

PC

Decode Register
Rename Int/ld−st

units

Floating Point Instruction queue

Unready on Dispatch bit

FP
Registers

FP
units

Integer
RegistersInteger Instruction queue

Unready on Dispatch bit

Data
Cache

Decrement

Fetch Gating

Increment

Unready Instruction Counter

Figure 1. Unread y Count Gating (UCG) fetch polic y (based on the pipel ine in [20]).

Increment 
when load 

misses

Floating Point Instruction queue

Integer Instruction queue

FP
Registers

Integer
Registers

FP
units

Int/ld−st
units

Data
Cache

Fetch
Unit

Instruction Cache

PC

Decode Register
Rename

Load Miss Counter

decrement when load commits

Fetch Gating

Continue Fetch Gating/ Resume fetching

Figu re 2. Data Miss Gating (DG) fetch polic y.

Increment 
when load 
misses but

predict hit

Floating Point Instruction queue

Integer Instruction queue

FP
Registers

Integer
Registers

FP
units

Int/ld−st
units

Data
Cache

Fetch
Unit

Instruction Cache

PC

Decode Register
Rename

Load Miss Counter

Load Miss 
Predictor

decrement when load commits

Fetch Gating

Continue Fetch Gating/ Resume fetching

Update predictor

Increment when predict miss

Figure 3. Predic tive Data Miss Gating (PDG) fetch polic y.



on a miss. By moving thepredictor earlierin thepipeline,
we canachieve both functions by carrying the Load Miss
Predictionbit alongwith theloadasdescribedabove.

We explored a variety of predictor optionsand deter-
minedthat a 2K-entry tableof two bit saturatingcounters
(indexedby thePCof theload)whichareclearedonamiss
and incrementedon a hit, andwhose most significant bit
determinestheprediction, providesanoverall hit/misspre-
dictionaccuracy of 95%.

3.2.4 PDG Combined with UCG or FP UCG

Combinations of PDG and UCG or FP UCG can poten-
tially addressmultiple causesof both integer andfloating
point clog. BecausePDGis moreeffective at reducing in-
tegerqueueclog thanUCG, andFP UCG addressesaddi-
tionalcausesof floatingpoint clogoverPDG,thecombina-
tion of thesetwo policiesachieves thebestresultsin terms
of bothperformanceandissuequeue occupancy reduction
for a mixedintegerandfloatingpoint workloadof all tech-
niques thatweevaluated.

4 Simulation Methodology

We modified the SMT simulator(SMTSIM) developed
by Tullsen [19] to implement the new fetch schemesand
to gather detailedstatisticson theissuequeues. Themajor
simulatorparametersaregiven in Table1. Theissuewidth
is equalto the total number of functional units, and issue
priority is by instruction age,with older instructions hav-
ing priority overnewerones.This is essentiallymodeledin
SMTSIM asa compactingissuequeue with position-based
selection. With fine-grain clock gating appliedto sucha
design,areductionin issuequeueoccupancy roughly trans-
latesinto anequivalentreductionin switchingpower [3].

For our baseline,we werecareful to selectappropriate
queue sizessoasnot to overstateany gainsfrom our tech-
niques. We simulatedqueuesizesin 8-entryincrements us-
ing an all-integer workload (describedbelow) to size the
integer queue (as this workload is the most performance
sensitive in termsof integerqueue size)andanall-floating
point workloadto sizethefloatingpoint queue(for similar
reasons).We increasedeachqueuesizeuntil lessthana5%
overall performancegain wasachieved with an additional
increment. Usingthis approach,we chose40-entry integer
and40-entryfloatingpointqueuesfor thebaseline.

Our workload consists of eight programs from the
SPEC2000integer benchmark suite and eight SPEC2000
floating point programs. We compiled eachprogram with
gcc with the -O4 optimizationandran eachwith the ref-
erenceinput set. From these16 benchmarks,we created
thefour, eight-threadworkloadsshown in Table2, eachof

Parameter Value

Fetchwidth 16 instructions
Baselinefetchpolicy ICOUNT.2.8[20]

Pipelinedepth 8 stages
BranchTargetBuffer 256entry, 4-way associative

Branch predictor 2K gshare
Branch mispredict penalty 6 cycles

Reorder Buffer entries/thread 512
Architectureregisters/thread 32 Int, 32 FP

Renameregisters 200Int, 200FP
Baseline issuequeueentries 40 entryInt/Ld/St,40 entryFP

Issuequeueselection oldest-first
Issuewidth 11

Functional units 8 Int (4 handle loads/stores),3 FP
ICache 64KB, 2-way, 64B line,8 banks
DCache 64KB, 2-way, 64B line,8 banks

L2 Cache 512KB,2-way, 64B line,
8 banks,10 cycle latency

L3 Cache 4MB, 2-way, 64B line,
20 cycle latency

ITLB size 48 entry
DTLB size 128entry

Main Memorylatency 100cycles
TLB misspenalty 160cycles

Table 1. Simulator parameter s.

Workload Benchmarks

all-integer bzip2,gcc,vpr, gzip,
parser, mcf, perlbmk,twolf

all-floating point applu, lucas,mgrid,art,
swim,equake,mesa,galgel

mix 1 applu, lucas,mgrid,art,
parser, mcf, perlbmk,twolf

mix 2 bzip2,gcc,vpr, gzip,
swim,equake,mesa,galgel

Table 2. Workl oad mix es.

whichconsistsof 100million instructionsfromeachbench-
mark. We fast-forwardedeachbenchmarkaccording to the
guidelinesin [17]. As with sizingthebaselineissuequeue,
we usedthe all-integer workload in analyzing techniques
for improving integerissuequeue efficiency. Similarly, the
all-floatingpoint workloadwasusedin floatingpoint issue
queue experiments. In our summary results,we averaged
the resultsof all four workload mixes(3.2 billion instruc-
tions in all) in order to simulatethe variety of workload
mixesencounteredin amulti-threadedmachine.

As a performancemetric,we chosetheharmonic mean
of the relative instructionspercycle (IPC) ratingsof the �
threads,calculatedasfollows:

�)+*-,/.1032'465,/.10�7�8:9
$

This metricpenalizesschemesthat improve overall per-
formanceat the expenseof degrading the performanceof
particular threads,thereby balancing throughput and fair-
nessconsiderations[12].

For the DG andPDG policies,we fetch gateda thread



0−8 9−16 17−24 25−32 33−40
0

20

40

60

80

pe
rc

en
t o

cc
ur

re
nc

e 
(%

)

(a) distribution of the number of valid queue entries 

AvgST
Baseline 
UCG
DG
PDG
PDG+UCG

0−8 9−16 17−24 25−32 33−40
0

10

20

30

40

50

is
su

e 
lo

ca
tio

n 
(%

)

(b) distribution of the issued instructions

Figu re 4. Integ er issue queue occup ancy and issue
dist rib utio n for single -threade d, baseline multi-
threa ded, and propos ed polic ies.

whenever it had an actual or predicted data cachemiss,
i.e., �<;>= . For theUCG andFP UCG schemes,a thread
wasfetch gatedwhenits UnreadyInstruction Counterex-
ceededthreeandtwo, respectively. For PDGcoupled with
FP UCG, a threshold of threefor the Unready Instruction
Counterperformedbest,while for PDGcoupledwith UCG,
a thresholdof five wasused.A higherthreshold is needed
in this caseto preventover-gatingwith thetwo policiesop-
eratingsimultaneously. Wechosethesethresholdsbasedon
thosethat performed bestfor the combination of all four
workload mixes. Thesechoicesof thresholds arein some
casessub-optimal for the all-integer or all-floating point
workloads. This highlights the needto adaptthe thresh-
oldsdynamicallyat runtimeto fit theworkload,whichis an
areafor future work.

5 Results

We first present individual resultsfor the integer and
floatingpoint issuequeues.In Section5.3,wepresentcom-
positeresultsfor bothqueues.

5.1 Integer IssueQueue

Figure4(a)shows thepercentageof cyclesthata partic-
ular range of issuequeueentrieswerevalid, while the (b)
part of this figure shows in what range of the issuequeue
instructionswereissuedfrom. AvgSTis theaveragesingle-
threaded result, i.e., averagedover individual runsof each
of the eight integerbenchmarks. In comparing the single-
threaded resultswith the baselineSMT ICOUNT scheme,

AvgST Baseline UCG DG PDG PDG+UCG
0

10

20

30

40

(a) average valid issue queue entries

AvgST Baseline UCG DG PDG PDG+UCG
0

10

20

30

(b) average issue position

AvgST Baseline UCG DG PDG PDG+UCG
0

5

10

(c) start issue position

AvgST Baseline UCG DG PDG PDG+UCG
0

5

10

15

(d) range of issue

Figu re 5. Stati stics for singl e-thread ed and multi-
threa ded polic ies for the integ er issue queue .

we find bothahigheroverall issueoccupancy anda greater
numberof instructionsissuedfrom deeperin thequeuewith
multi-threading. In fact, with ICOUNT, about 75% of the
timethequeueisnearlyfully occupied(33-40validentries),
while this is the casefor only 50% of the time in single-
threadedmode. This reflectsthegreaterusageof queuere-
sourcesin SMT and the ability to find more instructions
to issueon averageeachcycle to achieve greaterIPC. The
downside,however, is a significant increasein queue occu-
pancy to achievethis higher level of performance.

The distributions for the PDG andPDG+UCGpolicies
closelymirror thoseof single-threadedmode. This is pri-
marily becausethesepoliciesprevent the queue from get-
ting clogged with instructions which areunlikely to issue
in the nearfuture. For instance,with PDG, over 75% of
theinstructions areissuedfrom thelower 16 queueentries
(exceeding even that of single-threadedmode), whereas
roughly 40% of the instructions areissuedfrom thesepo-
sitionswith thebaselineICOUNT policy.

Figure5 providesa varietyof statisticsfor thedifferent
policiesas appliedto the integer issuequeue. As shown
in Figure5(a),theenhancedpolicies,particularly PDGand
PDG+UCG,utilize much lessof the40-entry integer issue



16 24 32 40
0

10

20

30

40

50

60

70

 %

(a) Performance improvement

baseline
UCG
DG
PDG
PDG+UCG

16 24 32 40
−10

0

10

20

30

40

 %

(b) Reduction in integer queue occupancy

Figu re 6. Performance impr ovement and reduc -
tion in integ er queue occup ancy for multi-th readed
poli cies with varying integ er issue queue size.

queue thanthebaselineICOUNT policy. As shown in the
(b)and(c)partsof thisfigure,while theaverageandstartis-
suepositionsincreasedramaticallyfor ICOUNT compared
to single-threadedmode, thesetwo enhancedpolicies re-
ducethesebackcloserto single-threadedmodelevels.

Figure5(d) shows thattherange of issue, definedasthe
number of entriesbetweenthe first andlast instruction in
an issuegroup, remainsfairly constantacrossthe multi-
threadedschemes.In otherswords,thenumberof neighbor-
ing instructionsneededto be inspectedon a cycle to cycle
basisis relatively invarient. However, thepositionof these
instructions in thequeuevariessignificantlyby policy. On
average, the issuequeuewith PDGbehaves comparablyto
that for a single-threadedworkload,yet performance more
thandoubles.

A salientfeatureof theseenhancedpoliciesis a reduc-
tion of the averagenumber of in-flight instructions dueto
instructions spendinglesstime waiting in the issuequeue.
This resultsin a25-40%reductionin thenumberof rename
registersusedascomparedto ICOUNT.

Figure6 plotstheoverall performanceimprovement ob-
tainedrelative to ICOUNT with a 16 entryissuequeue for
different fetchpoliciesandinteger issuequeue sizes. The
lower partof this figuregives the reduction in theaverage
occupancy of theinteger issuequeuerelativeto thebaseline
with thesamenumberof queueentries.

By all measures(including thosein Figures4 and 5),

0−8 9−16 17−24 25−32 33−40
0

10

20

30

40

50

60

pe
rc

en
t o

cc
ur

re
nc

e 
(%

)

(a) distribution of the number of valid queue entries 

0−8 9−16 17−24 25−32 33−40
0

20

40

60

80

100

is
su

e 
lo

ca
tio

n 
(%

)

(b) distribution of the issued instructions

AvgST
Baseline 
UCG
FP_UCG
DG
PDG
PDG+UCG
PDG+FP_UCG

Figu re 7. Floatin g point iss ue queue occu panc y
and issue distrib ution for single -threade d, base-
line multi-thre aded, and proposed policie s.

PDG andPDG+UCGaresuperiorto both UCG andDG.
Theuseof loadmissprediction in PDGpreventsthequeue
from beingfilled with unreadyinstructions asin DG. This
dramatically reduces the averagestart issueposition and
the averageissueposition compared to DG, resulting in
a significantly greaterreduction in occupancy. As men-
tionedpreviously, thethresholdsin PDG+UCGaretuned to
thelarger combinedworkload; for theall-integer workload
usedfor Figure 6, thesevaluesyield higherissuequeue oc-
cupancy savingsbut worseperformancethanPDG.In com-
parisonto the baseline,PDG achieves betteroverall per-
formancewith a 24-entry queue than the baselinewith a
40-entry queue. This representsa 40%reduction in there-
quired integer issuequeue resources to achieve the same
level of performance.

5.2 Floating Point Issue Queue

Figures 7, 8, and9 give similar statisticsfor the float-
ing point issuequeue using the all-floating point work-
load. With the enhanced fetch policies, floating point is-
sueefficiency improvescomparably to thatof integerissue.
ThePDGandcombinedpoliciesdramaticallyincreasethe
percentageof time eight or fewer instructionsoccupy the
queue,andthefractionof instructionsissuedfromthesepo-
sitions,evenoutperforming single-threadedmodeon these
metrics. With a 40 entry issuequeue, PDG achievesa 2-



AvgST Baseline UCG FP_UCG DG PDG PDG+UCG PDG+FP_UCG
0

10

20

30

40

(a) average valid issue queue entries

AvgST Baseline UCG FP_UCG DG PDG PDG+UCG PDG+FP_UCG
0

5

10

15

20

25

(b) average issue position

AvgST Baseline UCG FP_UCG DG PDG PDG+UCG PDG+FP_UCG
0

2

4

6

8

10

(c) start issue position

AvgST Baseline UCG FP_UCG DG PDG PDG+UCG PDG+FP_UCG
0

0.5

1

1.5

2

2.5

3

(d) range of issue

Figu re 8. Stati stics for singl e-thread ed and multi-
threa ded polic ies for the float ing point queue.

3X reductionin both the average andstart issuepositions
(Figures 8(b) and(c)), andover a 30%reduction in theoc-
cupancy of bothqueues (Figure9(b) and(c)) comparedto
the baselineICOUNT policy in addition to a performance
improvement (Figure9(a)). Thecombinedpoliciesachieve
greaterreductionsin queue occupancy thanPDGalonebut
with a non-trivial performance degradation, again,due to
thresholds thataresub-optimal for this workload.

5.3 CombinedResults

Resultsaveragedacrossall workload mixes in Table2
areshown in Figure10 for the threepoliciesthat perform
bestunderthis workloadas well as for DG. Onceagain,
we observe how PDG significantlyoutperforms DG in all
respectsdue to its ability to perform early and accurate
prediction of load misses. On average, PDG+FPUCG
achieves a cumulative 33%reduction in issuequeueoccu-
pancy whileslightly increasingperformance. PDGachieves

24 32 40
0

5

10

15

20

25

30

 %

(a) Performance improvement

baseline
UCG
FP_UCG
DG
PDG
PDG+UCG
PDG+FP_UCG

24 32 40
0

10

20

30

40

50

 %

(b) Reduction in integer queue occupancy

24 32 40
0

10

20

30

40

50

 %

(c) Reduction in floating point queue occupancy

Figu re 9. Overall perf ormance , weighte d speedup,
and floatin g poin t issu e queue occup ancy for dif-
ferent multi-thre aded policie s with varying floa ting
poin t issue queue size.

greaterperformance improvementbut at thecostof higher
occupancy. In general, the PDG+FPUCG is morerobust
thanPDGoverarangeof workloadsdueto its ability to ad-
dressothersourcesof issuequeueclog in additionto loads.

6 RelatedWork

Several techniques for simplifying the issue queue
in single-threaded processors have been proposed.
Palacharla [13] proposes a dependence-based microar-
chitecture using multiple smaller queuesand grouping
dependentinstructionsin thesamequeue. Canal[5] devel-
opstwo schemesfor simplifying thequeuelogic. Thefirst
is basedon keeping trackof the instructionthat is thefirst
useof eachproducedregistervalue. After beingdecoded,
eachinstructionis dispatchedin a different way depending
on the availability of its sourceoperands. The secondis
basedon the fact that the latency of most instructions is



DG PDG PDG+UCG PDG+FP_UCG
−2

0

2

4

6

 %

(a) Performance improvement

DG PDG PDG+UCG PDG+FP_UCG
0

10

20

30

40

 %

(b) Reduction in integer queue occupancy

DG PDG PDG+UCG PDG+FP_UCG
0

10

20

30

40

 %

(c) Reduction in floating point queue occupancy

Figu re 10. Overall perf ormance impr ovement, and
reduc tion in integ er and floa ting point issue queue
occ upanc ies for diff erent multi-thre aded polici es
usin g the average of all four workloa d mix es.

known whenthey aredecoded. Theseschemesremove the
associative look-up andcouldachieve a shortercycle time.
In [7, 8], Folegnani proposestechniques to dynamically
resizethe issuequeue basedon theparallelismin different
periodsof execution.A 15%reduction in thetotalpowerof
the processoris achieved with the simplified issuequeue.
Power reduction of theissuequeuevia dynamicadaptation
is alsoaddressedby Buyuktosunoglu [3, 4] in whicha70%
reduction in issuequeuepowerdissipationis achievedwith
a 3% average performance degradation. Ponomarev [15]
andDropsho[6] expandon this work by resizingmultiple
structures including theissuequeues.

Perhaps the closestwork to oursis that by Tullsenand
Brown [22] in which fetchingis blockedfrom threads with
anoutstanding long latency loadandinstructionsfrom that
threadareflushedfrom the issuequeue.Two mechanisms
areusedto identify long latency loads: an L2 cachemiss
anda load residingin the load queue beyond a particular
number of cycles.With our DataMiss Gatingfetchpolicy,
we gatefetching simply basedon L1 datacachemisses,
andwe do not addthecomplexity of flushinginstructions.
Thedifferencesbetweentheapproachesaredueto theper-
formancefocusof [22] andthe simplificationof the issue
queue asthecentraltenetof our work. In addition,we in-
troducethePredictive DataGatingandcombinedPDGand
FP UCG policiesthatachieve a significantreduction in is-

suequeue utilization over Data Gating as well as higher
performance.

Front-end throttling is proposedin [1] as a power re-
duction technique for single-threaded processors. Three
fetch/decode throttling techniques are proposed: De-
code/Commit Rate,Dependence-based, andAdaptive. The
Decode/Commit policy compares the number of instruc-
tions decoded and committed during eachcycle to make
a throttling decision. The Dependence-basedapproach
counts the dependencesamong the decoded instructions,
while theAdaptivepolicy combinesbothmethods.

Fetchpolicieswith two priority levelshave beeninves-
tigatedin [12, 16]. In [16], thefirst level priority decision
distinguishesbetweenthe foreground andthe background
threads,with ICOUNT andRoundRobinschemesprioritiz-
ing the threadsin eachcategory. However, overall perfor-
mancedegradesusingthis policy. In contrast,[12] demon-
stratescombinedpoliciesthatcreateabalancebetweenfair-
nessandthroughput.

SMT power optimizationshave beenexamined in [18].
The authors demonstratethat an SMT processor with a
smallerexecution bandwidth canachieve comparableper-
formanceto a more aggressive single-threadedprocessor
while consuming lesspower. They also proposemecha-
nismsto reduce peakpower dissipationwhile still maxi-
mizing performanceusingfeedbackregardingpower dissi-
pationin orderto limit processoractivity. They alsoexam-
inetheeffectof thethreadselectionalgorithm onpower and
performanceandproposefavoring lessspeculative threads
over morespeculative threads.

In contrastto this previouswork, oursis thefirst to our
knowledge that addressesreduction of issuequeuecom-
plexity in SMT processors via enhanced,yet low complex-
ity, front-endpolicies.

7 Conclusionsand Futur e Work

The designof aggressive out-of-order superscalarpro-
cessorsrequiresstrikinga carefulbalancebetweenexploit-
ing parallelismandenablinghighfrequencies.Overlycom-
plex hardwarethreatensto decreasefrequency, increasela-
tency, and/orincreasepower dissipation.The issuequeue
is one suchcritical structurewherethis balancemust be
achieved to optimize performanceand power efficiency.
Unfortunately, SMT processorsput pressure on increasing
thewindow sizein order to hold instructionsfrom multiple
threads and to make betteruseof that window, rendering
fine-grain clock gating andadaptive techniqueslesseffec-
tive thanin single-threadeddesigns.

We presentan approachfor reducing the occupancy of
boththeintegerandfloatingpoint issuequeueswithoutun-
duly impactingperformance.Theenhanced front-endpoli-
cies that we proposeboth increasethe number of instruc-



tions issuedfrom nearthe headof the queue,andprevent
the fetching of instructions which arenot likely to issuein
thenearfuture. Theresultis a 33%reduction in theoccu-
pancy of theissuequeuesfor thesamelevelof performance.

In thefuture,weplanto evaluateadapting thethresholds
dynamically to fit the workload, and to explore the inter-
actionbetweenfetch,dispatch, andscheduling policieson
complexity reduction in otherareasof SMT processors.

8 Acknowledgements

The authorswish to thank DeanTullsenfor the useof
his simulator[19] andhis help with our many questions,
andthe reviewersfor their usefulcomments, especiallyas
relatedto simulationmethodology.

References

[1] A. Baniasadi,A. Moshovos. InstructionFlow-BasedFront-
endThrottling for Power-Aware High-Performance Proces-
sors. 5th International Symposiumon Low Power Electron-
ics andDesign,pp.16-21, August2001.

[2] P. Bose,D. Brooks,A. Buyuktosunoglu,P. Cook,K. Das,P.
Emma,M. Gschwind,H. Jacobson, T. Karkhanis,P. Kudva,
S.Schuster, J.Smith,V. Srinivasan,V. Zyuban,D. Albonesi,
S.Dwarkadas.Early Stage Definitionof LPX: a Low Power
Issue-ExecuteProcessor. Workshopon Power-AwareCom-
puterSystems,in conjunctionwith HPCA-8,Feb2002.

[3] A. Buyuktosunoglu, D. Albonesi, S. Schuster, D. Brooks,
P. Bose, P. Cook. Power-Efficient Issue Queue Design.
PowerAwareComputing, R. Graybill andR. Melhem(Eds),
Kluwer AcademicPublishers,Chapter3, pp.37-60,2002.

[4] A. Buyuktosunoglu, S. Schuster, D. Brooks, P. Bose, P.
Cook, D. Albonesi. A Circuit Level Implementationof an
Adaptive Issue Queuefor Power-Aware Microprocessors.
11th GreatLakes Symposiumon VLSI, pp. 73-78, March
2001.

[5] R. Canal,A. Gonzalez.A Low-Complexity IssueLogic. 14th
InternationalConference on Supercomputing, pp. 327-335,
May 2000.

[6] S. Dropsho,A. Buyuktosunoglu, R. Balasubramonian, D.
Albonesi,S.Dwarkadas,G. Semeraro,G. Magklis,M. Scott
Integrating Adaptive On-Chip Storage Structures for Re-
duced Dynamic Power. 11th InternationalConferenceon
ParallelArchitecturesandCompilationTechniques,pp.141-
152,September2002.

[7] D. FolegnaniandA. Gonzalez.Energy-EffectiveIssueLogic.
28th Annual InternationalSymposiumon ComputerArchi-
tecture,pp.230-239, July 2001.

[8] D. FolegnaniandA. Gonzalez.ReducingPower Consump-
tion of the IssueLogic. Workshopon Complexity-Effective
Design,heldin conjunction with ISCA 2000, June2000.

[9] M. Goshima,K. Nishino,Y. Nakashima,S.-I.Mori, T. Kita-
mura,S.Tomita.A high-speed dynamic instructionschedul-
ing schemefor superscalar processors. 34th International
Symposiumon Microarchitecture,pp.225-236, Dec.2001.

[10] D.S. Henry, B.C. Kuszmaul,G.H. Loh, R. Sami.Circuits
for Wide-WindowSuperscalarProcessors. 27thInternational
Symposiumon Computer Architecture,pp. 236-247, June
2000.

[11] R. Kessler. TheAlpha 21264microprocessor. IEEE Micro,
19(2): 24-36,March/April 1999.

[12] K. Luo, J. Gummaraju,M. Franklin. Balancingthoughput
and fairnessin SMT processors. InternationalSymposium
on PerformanceAnalysisof SystemsandSoftware,pp.164-
171,Jan.2001.

[13] S.Palacharla,N. P. Jouppi,J.E.Smith.Complexity-Effective
Superscalar Processors. 24th InternationalSymposiumon
ComputerArchitecture,pp.206-218,June1997.

[14] S.Palacharla,N. P. Jouppi, J.E.Smith.QuantifyingtheCom-
plexity of SuperscalarProcessors.TechnicalReportCS-TR-
96-1328, 1996.

[15] D. Ponomarev, G. Kucuk, K. Ghose.Reducingpower re-
quirementsof instruction scheduling through dynamical-
location of multiple datapath resources.34th International
Symposiumon Microarchitecture,pp.90-101, Dec.2001.

[16] S. Raasch,S. Reinhardt.Applicationsof ThreadPrioritiza-
tion in SMTProcessors. MultithreadedExecutionAnd Exe-
cutionWorkshop(MTEAC), Jan.1999.

[17] S. Sair, M. Charney. Memory behavior of the SPEC2000
benchmark suite. TechicalReport,IBM Corporation,Octo-
ber2000.

[18] J.S. Seng,D.M. Tullsen, G.Z. Cai. Power-SensitiveMul-
tithreadedArchitecture. InternationalConferenceon Com-
puterDesign,pp.199-206,September2000.

[19] D.M. Tullsen.Simulationand modelingof a simultaneous
multithreadingprocessor. 22ndAnnualComputerMeasure-
mentGroupConference,pp.819-828, December1996.

[20] D.M. Tullsen,S.J.Eggers,J.S.Emer, H.M. Levy, J.L. Lo,
and R.L. Stamm.Exploiting choice: Instruction fetch and
issueonanimplementablesimultaneousmultithreadingpro-
cessor. 23rdAnnual InternationalSymposiumon Computer
Architecture,pp.191-202, May 1996.

[21] D.M. Tullsen, S.J. Eggers,and H.M. Levy. Simultaneous
multithreading: Maximizingon-chip parallelism. 22nd An-
nual InternationalSymposiumon ComputerArchitecture,
pp.392-403, June1995.

[22] D.M. Tullsen,J.A. Brown. HandlingLong-latencyLoadsin
a SimultaneousMultithreadingProcessor. 34thInternational
Symposiumon Microarchitecture,pp.318-327, Dec.2001.

[23] K. Wilcox and S. Manne. Alpha Processors: A history of
powerissuesand a look to the future. Cool ChipsTutorial,
in conjunctionwith Micro-32,1999.

[24] K. Yeager. TheMips R10000Microprocessor. IEEE Micro,
16(2): 28-41,April 1996.


