
Dynamic Capacity-Speed Tradeoffs
in SMT Processor Caches?

Sonia López1, Steve Dropsho2, David H. Albonesi3,
Oscar Garnica1, and Juan Lanchares1

1 Departamento de Arquitectura de Computadores y Automatica,
U. Complutense de Madrid, Spain

2 School of Computer and Communication Science, EPFL, Switzerland
3 Computer Systems Laboratory, Cornell University, USA

Abstract

Caches are designed to provide the best tradeoff between access speed and capacity
for a set of target applications. Unfortunately, different applications, and even different
phases within the same application, may require a different capacity-speed tradeoff.
This problem is exacerbated in a Simultaneous Multi-Threaded (SMT) processor where
the optimal cache design may vary drastically with the number of running threads and
their characteristics.

We propose to make this capacity-speed cache tradeoff dynamic within an SMT core.
We extend a previously proposed globally asynchronous, locally synchronous (GALS)
processor core with multi-threaded support, and implement dynamically resizable in-
struction and data caches. As the number of threads and their characteristics change,
these adaptive caches automatically adjust from small sizes with fast access times to
higher capacity configurations. While the former is more performance-optimal when
the core runs a single thread, or a dual-thread workload with modest cache require-
ments, higher capacity caches work best with most multiple thread workloads. The use
of a GALS microarchitecture permits the rest of the processor, namely the execution
core, to run at full speed irrespective of the cache speeds. This approach yields an over-
all performance improvement of 24.7% over the best fixed-size caches for dual-thread
workloads, and 19.2% for single-threaded applications.

1. Introduction
Simultaneous Multi-Threading (SMT) [18, 19] is a widely used approach to increase

the efficiency of the processor core. In SMT, multiple threads simultaneously share
many of the major hardware resources, thereby making use of resources that may lie
partially unused by a single thread. SMT processors have the significant advantage of
dynamically trading off instruction-level parallelism (ILP) for thread-level parallelism
(TLP). That is, hardware resources that are partially unoccupied due to insufficient
single-thread ILP can be filled by instructions from a second thread. This leads to a
significant boost in instruction throughput over a single threaded processor with only a
modest increase in hardware resources.
? This research was supported in part by Spanish Government Grant TIN2005-05619, National

Science Foundation Grant CCF-0304574, an IBM Faculty Partnership Award, a grant from the
Intel Research Council, and by equipment grants from Intel and IBM.



Despite this advantage, large variations in runtime load cause greater pipeline ineffi-
ciencies in an SMT processor. These load fluctuations arise due to increased variation in
workload phase behavior, due to individual application phase differences coupled with
variations in the number of actively running threads. There are several reasons why
the number of running threads may differ from the maximum supported in the SMT
hardware:

– A server will not always operate at 100% load, leaving some processors running
with fewer than the maximum number of threads;

– Lock contention in systems such as databases can restrict the number of threads
that can run simultaneously on the processor core;

– A parallel program will have parallel portions running many threads, and serial
portions in which only a single thread runs.

Thus, a significant challenge for SMT processor core microarchitects is devising a
single core microarchitecture that is near optimal under a variety of single and multiple
thread operating conditions. Whereas a single thread, and some dual-thread workloads,
benefits from a streamlined pipeline with small, fast, hardware structures, such an or-
ganization would yield sub-optimal performance for many multi-threaded workloads.
Rather, larger structures would yield a better tradeoff between hardware resource com-
plexity and operating speed.

To address this disparity, we propose a phase-adaptive cache hierarchy whose size
and speed can dynamically adapt to match varying SMT workload behavior. We imple-
ment a dual-threaded core, and begin with a small, fast cache that works well for single
threaded, and some dual-threaded, workloads with modest working sets. The addition
of a second running thread often puts more demand on cache capacity, and this greater
demand is met by dynamically upsizing the cache. We adopt the Accounting Cache
design of [8] for our resizable caches.

Because the upsized cache has a higher access time, we also adopt a Globally Asyn-
chronous, Locally Synchronous (GALS) design style, in particular, the Multiple Clock
Domain (MCD) approach of [16] to decouple the adaptive caches from the execution
core. Unlike [16], our MCD processor supports SMT and a different domain organiza-
tion. Since the integer and floating point domains are at fixed frequency, and there is
negligible interaction between them (and thus negligible synchronization cost), they in
effect serve as a single “execution core” domain. This execution core operates at full
speed while the front-end and load/store domains adapt their frequencies to the resizing
of the caches.

Our results demonstrate that adaptive caches are very effective at reacting to sin-
gle and dual-threaded workload phase behavior. As expected, larger cache configura-
tions are more prominent for the dual-thread workloads due to the higher cache pres-
sure of running two simultaneous threads. The cache control algorithm often dynam-
ically chooses more optimal smaller, faster caches for single-threaded workloads, and
in several cases different cache configurations run for non-trivial periods of execution,
demonstrating the benefit of phase-adaptive multi-threaded workload adaptation. The
result is an average 24.7% performance improvement over an aggressive baseline syn-
chronous architecture with fixed cache designs for two-threaded workloads, and 19.2%
for single-threaded applications.



Branch Predictor


Fetch Unit


Rename and Dispatch


Issue Queue


Register file


Functional Units


ROB


Front End


Integer
 Floating-Point


L1 ICache


Issue Queue


Register file


Functional Units


Load/Store Queue


L2 Cache


L1 DCache


Load/Store
Floating Point


Execution Core


Main Memory


External (Main Memory)


Fig. 1. Adaptive MCD microarchitecture. Boxes with multiple borders indicate resiz-
able structures.

The rest of this paper is organized as follows. The next section discusses the adaptive
SMT MCD microarchitecture, including the adaptive cache organizations. Section 3
briefly reviews the Accounting Cache algorithm for resizing the caches and modifying
their domain frequencies. Our simulation infrastructure and benchmarks are described
next, followed by our results. Finally, we discuss related work in Section 6, and present
our conclusions in Section 7.

2. Adaptive SMT MCD Microarchitecture

The base MCD microarchitecture highlighted in Figure 1 has five independent clock
domains, comprising the front end (L1 ICache, branch prediction, rename and dis-
patch); integer processing core (issue queue, register file and execution units); floating-
point processing core (issue queue, register file and execution units); load / store unit
(load / store queue, L1 DCache and unified L2 cache); and ROB (Reorder Buffer). The
integer and floating-point domains have fixed structures and run at fixed frequency at
all times. Since there is little interaction between them (and thus their interface intro-
duces negligible synchronization cost), they are effectively one fixed-frequency execu-
tion core domain.



The ROB lies in its own independent domain running at all times at full frequency.
Since the speed of both dispatch and commit depends on the operating speed of the
ROB, decoupling the ROB in this manner permits the front and back-end domains to
be independently adapted [21]. The dynamic frequency control circuit within the two
adaptive domains (front end and load / store) is a PLL clocking circuit based on indus-
trial circuits [7, 10]. The lock time in our experiments is normally distributed with a
mean time of 15µs and a range of 10–20µs. As in the XScale processor [7], we as-
sume that a domain is able to continue operating through a frequency change. Main
memory operates at the same fixed base frequency as the processing core and is also
non-adaptive.

Data generated in one domain and needed in another must cross a domain boundary,
potentially incurring synchronization costs. The MCD simulator models synchroniza-
tion circuitry based on the work of Sjogren and Myers [17]. It imposes a delay of one cy-
cle in the consumer domain whenever the distance between the edges of the two clocks
is within 30% of the period of the faster clock. Both superscalar execution (which allows
instructions to cross domains in groups) and out-of-order execution (which reduces the
impact of individual instruction latencies) tend to hide synchronization costs, resulting
in an average overall slowdown of less than 3% [15]. Further details on the baseline
MCD model, including a description of the inter-domain synchronization circuitry, can
be found in prior papers [12, 14–16] . We extend this model with SMT (dual-thread)
support, the details of which are provided in Section 4.

In this paper, we focus on the varying caching needs of SMT workloads. We there-
fore make the L1 ICache in the front end domain adaptive, as well as the L1 DCache and
L2 cache of the load / store domain. This adaptive SMT MCD architecture has a base
configuration using the smallest cache sizes running at a high clock rate. For applica-
tions that perform better with larger storage, caches can be upsized with a correspond-
ing reduction in the clock rate of their domain. In this study, the three non-adaptive
domains, integer, floating point, and main memory, run at the base frequency of 1.0
GHz. Only the front end and load / store domains make frequency adjustments. The L1
DCache and L2 cache are resized in tandem.

Having adaptable structures and a variable clock means that structures may be safely
oversized [9]. The greater capacity (and lower domain frequency) is used only if a
workload attains a net benefit; Section 5 demonstrates that this occurs more often under
dual-thread conditions. Workloads that do not require the extra capacity, such as many
single-threaded workloads, configure to a smaller size and run at a higher frequency.
This approach permits the tradeoff between per-domain clock rate and complexity to be
made for each workload phase.

Implementing adaptive structures incurs two static performance penalties. First, the
degree of pipelining in each domain matches the high frequency that supports the small-
est dynamic configuration. When the clock frequency is lowered to accommodate the
additional delay of an upsized structure, the resulting stage delay imbalance results in a
design that is over-pipelined with respect to the new frequency. This results in a longer
branch mis-predict penalty compared with a tuned synchronous design. In our study,
the adaptive SMT MCD microarchitecture incurs one additional front end cycle and
two additional integer cycles for branch mispredictions. Second, we have found that the



resizable structures should be optimized in terms of sub-banking for fast access at the
smallest size. However, for modularity, the larger configurations consist of duplicates of
this baseline structure size. These larger configurations may have a different sub-bank
organization than the same size structure that has been optimized for a non-adaptive
design. We model this cost as additional access latency for the larger configurations.

2.1. Resizable Caches

In the load / store domain, the adaptive L1 DCache and L2 cache are up to eight-
way set associative, and resized by ways [2, 8]. This provides a wide range of sizes to
accommodate a wide variation in workload behavior. The base configuration (smallest
size and highest clock rate) is a 32 KB direct-mapped L1 DCache and a 256 KB direct-
mapped L2 cache. Both caches are upsized in tandem by increasing their associativity.
We restrict the resizing to one, two, four, and eight ways to reduce the state space of
possible configurations (shown in Table 1).

We use version 3.1 of the CACTI modeling tool [20] to obtain timings for all plau-
sible cache configurations at a given size. The Optimal columns in Table 1 list the con-
figurations that provide the fastest access time for the given capacity and associativity,
without the ability to resize. The number of sub-banks per way in the Adapt columns
were chosen by adopting the fastest configuration of the minimal-size structure and
then replicating this configuration at higher levels of associativity to obtain the larger
configurations. This strategy ensures the fastest clock frequency at the smallest con-
figuration, but may not produce the fastest possible configuration when structures are
upsized. Since CACTI configures a 32 KB direct-mapped cache as 32 sub-banks, each
additional way in the adaptive L1 DCache is an identical 32 KB RAM. The reconfig-
urable L2, similarly, has eight sub-banks per 256 KB way. In contrast, the number of
sub-banks in an optimal fixed L1 varies with total capacity, and the optimal L2 structure
has four sub-banks per way for all sizes larger than the minimum.

In the front end domain, the L1 ICache is adaptive; the configurations are shown in
Table 2. The cache adapts by ways as with the L1 DCache, but with associativities of
one, two, three, and four.

Table 1. Adaptive L1 DCache and L2 Cache configurations. The Size column refers to the size
of the A partition selected by the cache control algorithm, as discussed in Section 3. The column
Adapt provides the number of sub-banks per way for each adaptive cache configuration, while
Optimal gives the number that produces the fastest access time at that size and associativity.

L1 DCache Sub-banks L2 Cache Sub-banks
Configuration Size Assoc Adapt Optimal Size Assoc Adapt Optimal

D0 32 KB 1 32 32 256 KB 1 8 8
D1 64 KB 2 32 8 512 KB 2 8 4
D2 128 KB 4 32 16 1 MB 4 8 4
D3 256 KB 8 32 4 2 MB 8 8 4



Table 2. Adaptive L1 ICache configurations.

I-cache, dynamic
Configuration Size Assoc Sub-banks

I0 16 KB 1 32
I1 32 KB 2 32
I2 48 KB 3 32
I3 64 KB 4 32

3. Phase Adaptive Cache Control Algorithm
To control the reconfigurable caches, we employ the Accounting Cache algorithm

previously applied to improving cache energy efficiency [8]. Due to the fact that the
smaller configurations are subsets of the larger ones, the algorithm is able to collect
statistics for all possible configurations simultaneously. This permits the calculation of
the number of hits and misses that would have occurred over a given span of time for
any of the possible configurations.

In a four-way set associative Accounting Cache there are four possible configura-
tions, as shown in Figure 2. In this example, the A partition can be one, two, three, or
four ways. The B partition is the remaining portion. The A partition is accessed first.
If the data block is found, it is returned. Otherwise a second access is made to the B
partition, which causes blocks to be swapped in the A and B partitions. Note that the B
partition is not considered a lower level of cache. In the adaptive MCD architecture, all
three caches (L1 ICache, L1 DCache, and combined L2 Cache) have their own A and B
partitions. An access to an L1 cache accesses its A partition first; on a miss, the access
is sent to the B partition and simultaneously to the L2 A partition. A hit in the L1 B
partition squashes the in-flight L2 access.

A B

A B

Swap A&B blocks

A

A AB

B

���
���
���
���

���
���
���
���

Fig. 2. Partitioning options for a four-way Accounting Cache.

A cache with a small A partition runs at a higher frequency than one with a larger
A partition. (The B partition access latency is an integral number of cycles at the clock
rate dictated by the size of the A partition.) At runtime, the cache control algorithm
attempts to continually maintain the best balance between the speed of an A access and
the number of slower B accesses.



As described in detail in previous work [8], the Accounting Cache maintains full
most-recently-used (MRU) state on cache lines. Simple counts of the number of blocks
accessed in each MRU state are sufficient to reconstruct the precise number of hits and
misses to the A and B partitions for all possible cache configurations, regardless of the
current configuration. The control algorithm resets the counts at the end of every 15K
instruction interval, choosing a configuration for the next interval that would have min-
imized total access delay cost in the interval just ended. This interval length is compa-
rable to the PLL lock-down time. Thus, during a frequency change we always run with
a permissible configuration: downsizing at the beginning of the change when speeding
up the clock, upsizing at the end of the change when slowing down. The control al-
gorithm circuitry requires 10K equivalent gates and 32 cycles per cache configuration
decision [9].

4. Evaluation Methodology

The simulation environment is based on the SimpleScalar toolset [5] with MCD
processor extensions [16]. The modifications include splitting the Register Update Unit
(RUU) into a Reorder Buffer and separate issue queues and physical register files for
both the integer and floating point domains. The time management code has also been
re-written to emulate separate clocks for each domain, complete with jitter, and to ac-
count for synchronization delays on all cross-domain communication.

For this study, we extended this model to support an SMT core. The SMT proces-
sor extensions include independent program counters for each thread; thread IDs for
caches and predictor history tables; and per-thread ROBs and queues. Table 3 contains
a summary of the simulation parameters. These have been chosen, in general, to match
the characteristics of the Alpha 21264, but with additional resources for two threads.

Table 4 provides timing parameters for adaptive L1 and L2 caches, as well as the
clock domain frequencies for each configuration. The four configurations of each of the
load/store (D0-D3) and fetch (I0-I3) domains are shown. Listed for each configuration
are the frequency of the domain and the cache access times (in cycles) at that frequency.
The first access time is for A partition accesses and the second is the B partition access.
For comparison, the baseline fully synchronous processor (described in detail below)
runs at a frequency of 1.0 GHz and has an L1 DCache access time of two (pipelined)
cycles, L2 access time of 12 (pipelined) cycles, and an L1 ICache access time of one
cycle. Note that larger adaptive cache configurations have over double the access latency
(in ns) of the fully synchronous baseline design. However, if for a given interval, the
larger cache could have reduced the number of misses of an application sufficiently to
compensate for this extra delay on every access, then the reconfiguration algorithm will
upsize the cache for the next interval.

Our workload consists of nine programs from the SPEC2000 suite, which we com-
bine into nine dual-thread workloads, shown in Table 6. Table 5 specifies the individual
benchmarks along with the instruction windows and input data sets.

We chose a fully synchronous baseline processor based on a prior study [9]. In that
study on single thread performance, an exhaustive search of the design space was made
to determine the best overall baseline fully synchronous design for a set of 32 applica-
tions (of which the benchmarks in this study are a subset). The study ran 1024 config-



Table 3. Architectural parameters for simulated processor.

Fetch queue (per thread): 16 entries
Issue queue (per thread): 32 Int, 32 FP
Branch predictor: Combined gshare & 2-level PAg

Level 1 1024 entries, history 10
Level 2 4096 entries
Bimodal predictor size 2048
Combining predictor size 4096
BTB 4096 sets, 2-way

Branch mispredict penalty: 10 front-end + 9 integer cycles
Decode, issue, and retire widths: 8, 11, and 24 instructions
Memory latency: 80 ns (1st access), 2 ns (subsequent)
Integer ALUs: 6 + 1 mult/div unit
FP ALUs: 4 + 1 mult/div/sqrt unit
Load/store queue (per thread): 32 entries
Reorder buffer (per thread): 256 entries

Table 4. Cache latencies (in cycles) and domain frequency for each cache configuration.

Load/Store Domain
Configuration D0 D1 D3 D4
Frequency 1.59 GHz 1.00 GHz 0.76 GHz 0.44 GHz
L1 DCache Latency (A/B) 2/7 2/5 2/2 2/-
L2 Cache Latency (A/B) 12/42 12/27 12/12 12/-

Front End Domain
Configuration I0 I1 I3 I4
Frequency 1.62 GHz 1.14 GHz 1.12 GHz 1.10 GHz
L1 ICache Latency (A/B) 2/3 2/2 2/2 2/-

Table 5. SPEC2000 benchmarks, input datasets used, and simulation windows.

Benchmark Datasets Simulation window
Integer

bzip2 source 58 100M–200M
gzip source 60 100M–200M

parser ref 100M–200M
vpr ref 190M–290M

Floating-Point
art ref 300M–400M

equake ref 100M–200M
galgel ref 100M–200M
mesa ref 100M–200M

mgrid ref 100M–200M

uration combinations on each of the 32 applications and required 160 CPU months to
simulate. The result for a single threaded processor was that best overall performance is
achieved with a direct-mapped L1 ICache, L1 DCache, and L2 cache with sizes 64 KB,
32 KB, and 256 KB, respectively. To create a fully synchronous SMT competitor to



Table 6. SPEC2000 dual-thread workloads.

Integer
bzip2-vpr, parser-gzip, vpr-parser

Floating-Point
art-galgel, equake-galgel, mesa-mgrid

Combined Integer and Floating-Point
galgel-bzip2, gzip-equake, vpr-art

the adaptive SMT MCD architecture, we made the L1 instruction cache two-way set-
associative to support SMT and reduced its access time to one cycle from two cycles
(we determined a faster L1 ICache access is more important than additional cache ca-
pacity), and doubled the L1 DCache and L2 cache (to 64 KB and 512 KB, respectively)
made each two-way set-associative. We did not increase the access times from the origi-
nal baseline processor of [9] even though we increased the capacity and/or associativity
(we actually decrease the L1 ICache access time while increasing its associativity). The
access times are one cycle, two cycles, and 12 cycles for the L1 ICache, L1 DCache,
and L2 cache, respectively.

5. Performance Results

In this section, we compare the performance of the SMT MCD microarchitecture
with adaptive caches with that of the baseline fully synchronous design described in
Section 4, for both dual-thread and single-thread SPEC2000 workloads. First, however,
we demonstrate the variety of cache behavior observed in SMT machines, by comparing
the best-performing cache configurations selected by the Accounting Cache algorithm
for single and dual-thread workloads.

Figure 3 shows the percentage of time each application spends in a particular load / store
domain cache configuration when run in isolation (non-SMT) on the adaptive MCD
SMT processor, while Figure 4 shows the corresponding results for the dual-thread
workloads. (We do not discuss the instruction caches since the control algorithm al-
ways selects the configuration with the smallest A partition. The reason is the front end
is generally more sensitive to the clock frequency rather than L1 ICache capacity.) As
the first figure shows, most applications exhibit a dominant behavior requiring a par-
ticular cache configuration. Exceptions are art, mgrid, and vpr which use multiple
configurations a noticeable fraction of the time. While four of the benchmarks prefer
the larger A partition configurations, five gravitate to the smaller A partition sizes.

In contrast, as shown in Figure 4, two-thirds of the dual-thread workloads highly
favor the largest A partition cache configuration, due to the additional pressure on the
caches with two threads. A noteworthy counter-example is the SMT pair art galgel
in which the preference of art for the smaller A partition configurations dominates
the larger A partition preference of galgel. Even though galgel needs a large L1 A
partition to avoid downstream accesses, the large fraction of memory accesses in art
make it the bottleneck of the pair and the control algorithm adapts appropriately. The
configuration changes of the SMT pair galgel bzip2 are quite extreme. This pair
runs for 75% of the time using the largest 256 KB A partition configuration (D3), but
once galgel finishes, the algorithm selects the preferred configuration for bzip2
(D0).



0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

art bzip2 equake galgel gzip mesa mgrid parser vpr

config D0 (small) config D1 config D2 config D3 (large)

Fig. 3. Percentage of time individual SPEC2000 benchmarks spend in each load / store
domain cache configuration.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

art
_g

alg
el

bz
ip2

_v
pr

eq
ua

ke
_g

alg
el

gz
ip_

eq
ua

ke

ga
lge

l_b
zip

2

mgri
d_

mes
a

pa
rse

r_g
zip

vp
r_a

rt

vp
r_p

ars
er

config D0 (small) config D1 config D2 config D3 (large)

Fig. 4. Percentage of time dual-thread workloads spend in each load / store domain
cache configuration.

These results demonstrate the wide ranging cache behavior observed in a simple
SMT processor design that supports either one or two threads (the behavior would vary
even more widely for a four-thread machine). While single-thread workloads largely fa-
vor smaller, faster L1 A cache partitions (there are exceptions of course), the two-thread
workloads more often select larger A partitions for best performance. Interestingly, for
some dual-thread workloads containing an application that favors a large cache, the
control algorithm gravitates towards the small fast A partition configurations. The per-
formance sensitivity of both applications to memory latency is the deciding factor that
determines the chosen configuration. Finally, significant phase behavior is observed in
several workloads that choose several different configurations during execution.



0
1
2
3
4
5
6

art
_g

alg
el

bz
ip2

_v
pr

eq
ua

ke
_g

alg
el

ga
lge

l_b
zip

2

gz
ip_

eq
ua

ke

mgri
d_

mes
a

pa
rse

r_g
zip

vp
r_a

rt

vp
r_p

ars
er

IP
C

Synchronous SMT Adaptive SMT MCD

Fig. 5. IPC comparison of dual-thread workloads for the fully synchronous SMT base-
line (left bars) and SMT MCD with adaptive caches (right bars).

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

art
_g

alg
el

bz
ip2

_v
pr

eq
ua

ke
_g

alg
el

ga
lge

l_b
zip

2

gz
ip_

eq
ua

ke

mgri
d_

mes
a

pa
rse

r_g
zip

vp
r_a

rt

vp
r_p

ars
er

Sp
ee
du
p

Synchronous SMT Adaptive SMT MCD

Fig. 6. Speedup of the adaptive design over the baseline with dual-thread workloads.

Figures 5, 6, 7, and 8 show how this phase varying cache behavior translates into a
significant performance advantage for the adaptive SMT MCD configuration. The first
figure compares the IPCs of the adaptive and fixed cache approaches for the dual-thread
workloads, while the second figure graphs the corresponding speedup of the adaptive
approach. Figures 7 and 8 show the same results for single-thread SPEC2000 applica-
tions. In all dual-thread cases, except mgrid mesa, the adaptive organization outper-
forms the conventional approach, with art galgel improving by 64%. The average
dual-thread performance improvement is 24.7%. The overall improvement for the single
SPEC2000 applications is almost as significant: an overall performance improvement
of 19.2%.

The slight degradation seen in mgrid is due to an approximation made in the
Accounting Cache cost estimation function. Significant temporal overlap in adjacent
memory requests have a true delay cost that is lower than the heuristic estimates (the



0

0.5

1

1.5

2

2.5

3

3.5

4

art bzip2 equake galgel gzip mesa mgrid parser vpr

IP
C

Synchronous SMT Adaptive SMT MCD

Fig. 7. IPC comparison of individual SPEC2000 applications for the fully synchronous
SMT baseline (left bars) and SMT MCD with adaptive caches (right bars).

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

art bzip2 equake galgel gzip mesa mgrid parser vpr

Sp
ee
du
p

Synchronous SMT Adaptive SMT MCD

Fig. 8. Speedup of the adaptive design over the baseline with individual SPEC2000
applications.

Accounting Cache can only estimate the degree of parallelism between accesses). In-
cluding more accurate temporal overlap measurements in the cost estimation would im-
prove the adaptive SMT MCD performance on mgrid and mgrid mesa. Still, these
performance losses pale in comparison to the significant gains observed with the other
workloads using the SMT MCD organization with phase adaptive caches.

6. Related Work
Our work builds on prior efforts in both adaptive caches and GALS processor mi-

croarchitectures.
In terms of the former, Albonesi [1] first proposed the idea of trading off clock

speed for hardware complexity within a single-threaded processor core, including the
L1 DCache. Unlike our approach, the global clock within the synchronous processor
is slowed down whenever the cache is upsized. Thus, only those applications whose
performance is data-cache-bound show signficant benefit. Albonesi also proposed Se-
lective Cache Ways in which energy is saved in single-threaded processors by disabling



ways for application working sets that fit comfortably in a subset of the cache [2]. Our
approach, by contrast, explores improving performance on an SMT processor.

Balasubramonian et al. [3] describe a reconfigurable data cache hierarchy whose
latency adjusts with the configuration. Their cache organization uses a similar A/B or-
ganization as our own, but they use a different control algorithm. Powell et al. [13]
devise a variable latency data cache. By predicting which way in a set associative cache
holds the requested data, an access can be as fast as in a direct-mapped cache.

Both of these approaches assume a single threaded processor. In addition, they re-
quire additional cache hardware support for, for instance, variable cache latency. Our
approach is to decouple the clock domains and adapt the frequencies within the cache
clock domains along with the cache configurations. This approach maintains a con-
stant latency (in terms of cycles), but adds the complexity of decoupled domains and
asynchronous interfaces. If GALS designs are adopted for other reasons, such as lower
clock overhead, energy efficiency, or increased tolerance to process variations, then our
approach can be easily integrated. Our work also has the additional contribution of ex-
ploring the varying cache demands in an SMT processor, due in part to differences in
the number of running threads.

Multiple clock domain architectures [4, 11, 16] permit the frequency of each do-
main to be set independently of the others. Semeraro et al. [14] adjust frequencies au-
tomatically at run time to reduce energy in domains that are not on the critical path of
the instruction stream. These approaches attempt to downsize hardware structures in
single-threaded workloads for energy efficiency. In contrast, we explore the integration
of adaptive caches within MCD architectures built around SMT processors to improve
performance.

Our work highly leverages the Accounting Cache research of [8] and the adaptive
GALS processor design of [9]. The latter effort uses the Accounting Cache within an
MCD processor design much like we do. We deviate from this work in that we investi-
gate for the first time the use of adaptive caches within SMT processors, particularly, the
benefits of adapting the caches to workloads that vary widely due in part to differences
in the number of running threads.

In terms of adaptive SMT processors, [6] is perhaps the closest effort to our own.
In this paper, the allocation of shared hardware resources to threads is dynamically
managed at runtime by the hardware. While this effort focuses on the issue queues and
register files, ours is concerned with the caches. In addition, [6] uses fixed size resources
and allocates a certain number of entries to each thread. Our approach is to resize the
hardware resources (caches in our case) to fit varying SMT cache behavior, and we add
the ability to change the size/frequency tradeoff through the use of an MCD processor.

7. Conclusions

The advent of SMT processors creates significantly more variability in the cache
behavior of workloads, due in part to the differing number of threads that may be run-
ning at any given time. We propose to integrate adaptive caches within an SMT MCD
processor microarchitecture. Our approach is to decouple the execution core from the
adaptive cache domains, to permit full speed operation of the execution core as the
cache domain frequencies are dynamically altered to match the cache configurations.



We demonstrate significant differences in the configurations chosen by the cache
algorithm under single and dual-thread workloads, and we also observe cases of strong
phase behavior where multiple cache configurations are chosen for non-trivial peri-
ods of execution. Overall, a 24.7% improvement is realized for dual-thread workloads
by implementing adaptive cache organizations and an MCD design style within an
SMT processor. In addition, a 19.2% performance improvement is observed for single-
threaded applications.

References

1. D. H. Albonesi. Dynamic IPC/Clock Rate Optimization. In 25th Intl. Symp. on Computer
Architecture, June 1998.

2. D. H. Albonesi. Selective Cache Ways: On-Demand Cache Resource Allocation. In 32nd
Intl. Symp. on Microarchitecture, Nov. 1999.

3. R. Balasubramonian, D. H. Albonesi, A. Buyuktosunoglu, and S. Dwarkadas. Memory Hi-
erarchy Reconfiguration for Energy and Performance in General-Purpose Processor Archi-
tectures. In 33rd Intl. Symp. on Microarchitecture, Dec. 2000.

4. L. Bengtsson and B. Svensson. A Globally Asynchronous, Locally Synchronous SIMD
Processor. In 3rd Intl. Conf. on Massively Parallel Computing Systems, Apr. 1998.

5. D. Burger and T. Austin. The Simplescalar Tool Set, Version 2.0. Technical Report CS-TR-
97-1342, U. Wisc.–Madison, June 1997.

6. F. J. Cazorla, A. Ramirez, M. Valero, and E. Fernandez. Dynamically Controlled Resource
Allocation in SMT Processors. In 37th Intl. Symp. on Microarchitecture, Dec. 2004.

7. L. T. Clark. Circuit Design of XScaleTM Microprocessors. In 2001 Symposium on VLSI
Circuits, Short Course on Physical Design for Low-Power and High-Performance Micropro-
cessor Circuits, June 2001.

8. S. Dropsho, A. Buyuktosunoglu, R. Balasubramonian, D. H. Albonesi, S. Dwarkadas, G. Se-
meraro, G. Magklis, and M. Scott. Integrating Adaptive On-Chip Storage Structures for
Reduced Dynamic Power. In 11th Intl. Conf. on Parallel Architectures and Compilation
Techniques, Sept. 2002.

9. S. Dropsho, G. Semeraro, D. H. Albonesi, G. Magklis, and M. L. Scott. Dynamically Trading
Frequency for Complexity in a GALS Microprocessor. In 37th Intl. Symp. on Microarchi-
tecture, Dec. 2004.

10. M. Fleischmann. LongRunTM Power Management. Technical report, Transmeta Corpora-
tion, Jan. 2001.

11. A. Iyer and D. Marculescu. Power and Performance Evaluation of Globally Asynchronous
Locally Synchronous Processors. In 29th Intl. Symp. on Computer Architecture, May 2002.

12. G. Magklis, M. L. Scott, G. Semeraro, D. H. Albonesi, and S. G. Dropsho. Profile-Based
Dynamic Voltage and Frequency Scaling for a Multiple Clock Domain Microprocessor. In
30th Intl. Symp. on Computer Architecture, June 2003.

13. M. Powell, A. Agrawal, T. N. Vijaykumar, B. Falsafi, and K. Roy. Reducing Set-Associative
Cache Energy Via Selective Direct-Mapping and Way Prediction. In 34th Intl. Symp. on
Microarchitecture, Dec. 2001.

14. G. Semeraro, D. H. Albonesi, S. G. Dropsho, G. Magklis, S. Dwarkadas, and M. L. Scott.
Dynamic Frequency and Voltage Control for a Multiple Clock Domain Microarchitecture.
In 35th Intl. Symp. on Microarchitecture, Nov. 2002.

15. G. Semeraro, D. H. Albonesi, G. Magklis, M. L. Scott, S. G. Dropsho, and S. Dwarkadas.
Hiding Synchronization Delays in a GALS Processor Microarchitecture. In 10th Intl. Symp.
on Asynchronous Circuits and Systems, Apr. 2004.



16. G. Semeraro, G. Magklis, R. Balasubramonian, D. H. Albonesi, S. Dwarkadas, and M. L.
Scott. Energy-Efficient Processor Design Using Multiple Clock Domains with Dynamic
Voltage and Frequency Scaling. In 8th Intl. Symp. on High-Performance Computer Archi-
tecture, Feb. 2002.

17. A. E. Sjogren and C. J. Myers. Interfacing Synchronous and Asynchronous Modules Within
A High-Speed Pipeline. In 17th Conf. on Advanced Research in VLSI, Sept. 1997.

18. D. Tullsen, S. Eggers, and H. Levy. Simultaneous Multithreading: Maximizing On-Chip
Parallelism. In 22nd Intl. Symp. on Computer Architecture, June 1995.

19. D. Tullsen, S. Eggers, H. Levy, J. Emer, J. Lo, and R. Stamm. Exploiting Choice: Instruction
Fetch and Issue on an Implementable Simultaneous Multithreading Processor. In 23rd Intl.
Symp. on Computer Architecture, May 1996.

20. S. J. E. Wilton and N. P. Jouppi. CACTI: An Enhanced Cache Access and Cycle Time Model.
IEEE J. of Solid-State Circuits, May 1996.

21. Y. Zhu, D. H. Albonesi, and A. Buyuktosunoglu. A High Performance, Energy Efficient,
GALS Processor Microarchitecture with Reduced Implementation Complexity. In Intl.
Symp. on Performance Analysis of Systems and Software, March 2005.


