
SHARED RECONFIGURABLE ARCHITECTURES FOR CMPS
Matthew A. Watkins, Mark J. Cianchetti, and David H. Albonesi

Computer Systems Laboratory
Cornell University

ABSTRACT
This paper investigates reconfigurable architectures suit-

able for chip multiprocessors (CMPs). Prior research has
established that augmenting a conventional processor with
reconfigurable logic can dramatically improve the perfor-
mance of certain application classes, but this comes at non-
trivial power and area costs. Given substantial observed
time and space differences in fabric usage, we propose that
pools of programmable logic should be shared among mul-
tiple cores. While a common shared pool is more compact
and power efficient, fabric conflicts may lead to large per-
formance losses relative to per-core private fabrics.

We identify particular characteristics of past reconfig-
urable fabric designs that are particularly amenable to fabric
sharing. We then propose spatially and temporally shared
fabrics in a CMP. The sharing policies that we devise in-
cur negligible performance loss compared to private fabrics,
while cutting the area and peak power of the fabric by 4X.

1. INTRODUCTION
The microprocessor industry is rapidly transitioning to chip
multiprocessors comprised of many processing cores. While
the move away from single complex cores is indisputable,
the most profitable way to organize future multicore chips is
a topic of ongoing debate.

One attractive approach is to intermix conventional pro-
cessing cores with reconfigurable logic that can be pro-
grammed to assume multiple specialized functions. This
approach provides a form of reconfigurable heterogeneity
that can be matched to changing workload characteristics at
runtime. While the physical design may be homogeneous,
with identical cores and attached programmable logic fab-
rics, each fabric can be configured at runtime to perform
a different function according to the tasks assigned to the
cores, or in the case of homogeneous threads from a parallel
application, they may be configured identically.

Despite its potential, reconfigurable logic as an attached
customizable unit has not yet been widely embraced by main-
stream microprocessor manufacturers. One major impedi-
ment is the large power and area costs of FPGA technol-
ogy relative to the fixed functionality of commercial mi-
croprocessors [1]. While researchers have made significant
progress in devising specialized programmable logic (SPL)
to bridge this gap, many microprocessor architects still view
the costs as too high to justify their mainstream adoption.

In this paper, we propose shared SPL microarchitectures
and low-level hardware control for future CMPs. In a mul-
ticore system where each core is coupled with its own fab-
ric there are inevitably periods where one fabric is highly
utilized while another lies largely or even completely idle.
Thus, by sharing SPL fabric resources among multiple pro-
cessor cores, programmable logic can be much more effi-
ciently integrated – at far less power and area cost – into
future multicore microprocessors.

In our approach, a number of standard cores share a
common pool of SPL. Depending on the particular needs at

any given point in time, each pool is dynamically partitioned
among the cores, either spatially, where the shared fabric
is physically partitioned among multiple cores, or tempo-
rally, where the fabric is shared in a time multiplexed man-
ner. We develop spatial and temporal control policies that
direct the cores to particular SPL partitions, or pipeline time
slots, based on runtime statistics. We show in Section 5 that
pooled SPL configurations guided by effective control poli-
cies have little impact on performance for both parallel and
coarse-grain multithreaded workloads – compared to private
SPL attached to each core – while significantly reducing
SPL area and energy costs.

2. RELATED WORK
Several survey papers (e.g., [2, 3]) provide an overview of
the contributions of prior reconfigurable computing projects.
We focus on those proposals that address the low level SPL
design, the SPL characteristics of prior approaches that we
find particularly amenable to shared fabrics, and the integra-
tion of the fabric with a CMP.

PRISC [4], Proteus [5], Stretch [6], Chimaera [7], and
DPGA [8] tightly integrate the fabric with the processor as
a specializable execution unit. The fabric predominates in
DISC [9] and NAPA [10] with the processor serving largely
to feed the reconfigurable hardware. Garp [11, 12] and
PipeRench [13, 14, 15] fall in between.

Other efforts [5, 16] have evaluated the high level inte-
gration of the fabric with a general purpose processor and
overall system performance, but none have explored inte-
grating a reconfigurable fabric in a multicore chip. Sev-
eral efforts, however, have developed reconfigurable fab-
rics whose characteristics – in particular higher computa-
tion granularity, row based design, and virtualization – we
found to be highly amenable to efficient SPL sharing.

Garp [12] and PipeRench [14] use two and eight bits,
respectively, as the smallest computation granularity. Using
larger granularities reduces power, area, and configuration
bits at the cost of flexibility and density in design mapping.
Most general purpose applications, however, do not require
bit level manipulation and so the savings tend to outweigh
the costs. While this does not directly ease sharing per se, it
does significantly reduce area and power.

Row based reconfiguration is employed by a number of
designs [7, 9, 14] for several reasons. The cycle time of the
fabric is set by the row delay and thus remains constant for
all configurations. Using row based fabrics makes hardware
design and application mapping easier and significantly re-
duces the routing complexity over traditional FPGA archi-
tectures. It also makes partial reconfiguration of the fabric
easier as designs occupy a certain number of rows; so long
as that number of rows is available in the fabric, it can be
reconfigured by reprogramming only those rows.

Virtualization, such as that employed by PipeRench [13,
14], allows the fabric to handle configurations that require
more rows than are physically available in the SPL. The



costs of virtualization are degraded throughput, since the de-
sign can no longer be fully pipelined, and higher power. De-
spite these drawbacks, virtualization is a key component of
efficient spatial sharing.

3. SPL ARCHITECTURE
3.1. Motivating Example
We motivate our work by demonstrating the drawbacks of
a straightforward application of prior SPL approaches to a
CMP, and the substantial benefits of intelligent SPL shar-
ing. Figure 1(a) shows a possible floorplan – with areas
drawn to scale – for a multicore with eight single-issue out-
of-order cores, each of which is coupled with a row-based
fabric (L2 cache not shown). Each fabric contains 26 rows
of programmable logic, just enough to avoid virtualization
for all eight applications. (Application statistics and model-
ing methodology are described later.)

The SPL area is roughly twice that of each core. Granted,
a more complex core would consume more area, and we
explore such options later in the paper. Still, from an area
perspective, there is clearly room for improvement. Figure 2
shows the utilization (percentage of the total number of rows
that are in use on average) and performance of several SPL
configurations for a coarse-grain multithreaded workload of
eight single-threaded applications, each of which runs on
one of the eight cores. The leftmost bars for the individual
benchmarks show the utilization of the 26-row configuration
of Figure 1(a). The utilization of seven of the SPL fabrics is
less than 10% (with the eighth at about 30% utilization), and
the average SPL utilization is only 7%. Reducing each SPL
to 12 rows (next set of bars) markedly increases SPL uti-
lization for some benchmarks; moreover, the area is greatly
reduced as shown in Figure 1(b). However, this comes at a
high cost: an 18% overall performance loss, since all bench-
marks use more than 12 rows. Moving to six-row fabrics fur-
ther improves utilization but at a 49% performance penalty.

By intelligently sharing the SPL among multiple cores,
the average number of rows for each core can be reduced
to six with little performance loss relative to the private 26-
row configuration. Figure 1(c) shows a floorplan with two
pools of SPL, each of which contains 24 rows and is shared
– using control policies that we describe in Section 3.5 –
among four cores. This configuration reduces the SPL area
and peak power costs by over 4X. Furthermore, as shown
by the fourth AvgUtilization bar1 in Figure 2, the average
utilization of the fabrics increases threefold. These bene-
fits come with virtually the same performance as the 26-row
private configuration. The rightmost bars show that a single
48-row SPL shared among all eight cores further improves
utilization, and also suffers negligible performance loss.

The contrast in performance between the Private six-row
and four-way shared SPL configurations – which have the
same total number of SPL rows – motivates the need for
good sharing policies. The six-row Private configuration
can be viewed as a spatially shared SPL organization with
a naı̈ve control policy that equally divides the SPL among
all cores at all times. The shared configurations use a more
intelligent policy that eliminates the 49% performance loss
of the naı̈ve approach.

1We do not show utilization for individual benchmarks since the fab-
rics are shared among multiple benchmarks.

(a) (b) (c)

Fig. 1: Sample floor plans for an eight-way multicore with (a)
26-row private, (b) 12-row private, and (c) 4-way shared SPL.

Fig. 2: SPL utilization for private and shared SPL organizations.
*The last set of bars shows percentage slowdown relative to 26-row
private SPL.

3.2. Fabric Microarchitecture
Each SPL fabric consists of n rows, in which each row con-
tains c cells, and each cell computes b bits of data. Fig-
ure 3(a) shows the cell design. The major components are
a main 4-input look-up table (4-LUT), a set of two 2-LUTs
(equivalent to one 3-LUT) plus a fast carry chain to compute
carry bits or other logic functions if carry calculation is not
needed, barrel shifters to properly align data as necessary,
flip-flops to store results of computations, and an intercon-
nect network between each row. Within a cell, the same
operation is performed on all b bits. These b-bit cells are
arranged in a row to form a c×b-bit row. Each cell in a row
can perform a different operation on its inputs and a number
of these rows are grouped together to execute an application
function. Each row completes in a single SPL clock cycle.

As shown previously [14], several tradeoffs dictate the
optimal choice of bit width, row width, and number of rows.
Increasing the bit width decreases area and power at the cost
of less configuration flexibility. Increasing the row width al-
lows more computation in a single cycle but also increases
the likelihood of less than 100% resource utilization if not
all of the cells in a row can be put to use. Furthermore, the
fabric width should match the ability of the memory sys-
tem to supply data at a fast enough rate. Finally, reducing
the number of rows has linear area and power benefits but
increases the number of functions that must be virtualized.

To quantitatively evaluate these tradeoffs, we created an-
alytical area, latency, and power models for SPL in 65nm
technology. The model is created by combining estimates
for the different components of the fabric. We use Cacti
4.2 [17] to model LUTs, Orion [18] for between row inter-
connect modeling, the models of Heo and Asanovic [19] for
local wiring and between cell wires (such as for the barrel
shifter and carry logic not included in the Orion model), and



(a) (b)
Fig. 3: (a) SPL cell design and (b) integration in overall fabric. Unless indicated, all data paths are b bits wide.

Table 1: Comparison of data from actual reconfigurable fabrics
(scaled to 65nm) and the analytical model.

Scaled Actual Model % Diff
PipeRench - 8-bit, 16-cell, 16-row - 180 nm

Area (mm2) 1.5 1.59 6.0%
Frequency (MHz) 350 460 31.4%
Power (W) 0.929 0.832 -10.5%

Chimaera - 1-bit, 32-cell, 32-row - 0.6 µm
Area (mm2) 0.805 0.751 -6.7%
Frequency (GHz) 1.27 1.06 -16.5%

Garp - 2-bit, 24-cell, 32-row - 0.5 µm
Area (mm2) 1.32 1.06 -19.7%

the work of [20] for the carry chain logic implementation.
Finally, various bit level components, such as transistor de-
lay, area, and power, used to compute estimates for muxes
and small SRAM cells, are taken from the ITRS [21].

To validate our model, we compare scaled values of area,
latency, and power available from previous reconfigurable
fabric designs [12, 15, 22] with predictions by our model
for these fabric architectures. The results are given in Ta-
ble 1. The Scaled Actual Area values in this table are de-
rived by scaling the fabric area of each design by the square
of the ratio of the technology factors. For frequency, the
reported values are linearly scaled by the technology ratio.
The Scaled Actual Power value for PipeRench is derived by
scaling the reported power value by the square of the ratio
of the PipeRench voltage to the SPL voltage, by the ratio of
the PipeRench frequency to the SPL frequency, and by the
ratio of the technology factors (to account for capacitance
scaling). The model achieves good correlation except for
the frequency in PipeRench and Chimaera and the area of
Garp. For PipeRench, the PipeRench paper notes that the
circuit design was not highly optimized [15], and therefore
we expect that a frequency closer to our higher value could
be achieved in an industrial PipeRench design. Given the
disparity in technologies between our design and Chimaera,
a 16% error is not unexpected. For the area disparity with
Garp, the information available is limited, making good cor-
relation with the Garp design difficult.

Figure 4 shows area and latency comparisons between
our model and [23] in which area and latency values were
derived for different numbers of row inputs and outputs. The
model error is within 15% in all but two cases.

We use the model to estimate the costs of different con-
figurations for the various functions that we map to the SPL
(discussed in Section 4). An 8-bit wide cell with 128-bit

Fig. 4: Comparison of latency and area predicted by model to
results from Yehia et al. [23].
Table 2: Area and power of different core types and 26-row SPL
normalized to IO area and power.

Area Dyn. Power Leakage Power
IO 1.00 1.00 1.00
OOO1 1.19 1.06 1.05
OOO2 1.82 1.26 1.26
OOO4 4.87 1.66 1.63
SPL 2.47 0.66 3.00

wide rows provides a good compromise between flexibility
and area/power cost, and permits significant parallelization.
Each SPL function can take in up to 512 bits of input and can
produce up to 128 bits of output. This organization achieves
a reasonably high frequency (500MHz) relative to the pro-
cessor core frequency (assumed 2GHz at 65nm). At this 1/4
clock speed differential, four quadword load instructions can
supply 512 bits to the SPL pipeline every SPL clock period.
Finally, for the baseline 26-row private SPL, we set the num-
ber of configurations to eight, the maximum needed during
any program phase for our workloads.

Table 2 shows the area and power of a 26-row SPL com-
pared with four conventional core types: an in-order core
(designated as IO), and one-, two-, and four-way out-of-
order cores (OOO1, OOO2, and OOO4). Results are nor-
malized relative to the IO core. Each core has separate 8KB
L1 instruction and data caches. We adopted the methodol-
ogy of Kumar et al. [24] to calculate per-core area and power
costs. We note that an OOO1 core augmented with SPL has
an area that falls between OOO2 and OOO4, while the area
of OOO2 + SPL is slightly less than that of OOO4.

We create shared SPL configurations by pairing OOO1
cores with SPL that consumes approximately half the area of
the cores. A six row SPL consumes slightly more than half



Table 3: SPL configurations and area and power costs.

Rows/
SPL

Configs/
Row

Total
SPL
Area

(mm2)

Dynamic
Energy/

Row (nJ)

Total SPL
Leakage

Power (W)
Eight Private 26 8 23.52 .0600 4.58
Four 2-way Shared 12 8 5.45 .0601 1.06
Two 4-way Shared 24 10 5.83 .0601 1.07
One 8-way Shared 48 12 6.23 .0601 1.09

the area of an OOO1 core and the combination of the two
is smaller than OOO2. Given these constraints, we arrive
at the shared SPL configurations shown in Table 3, which
also includes the baseline private 26-row SPL organization
for comparison purposes. In terms of total area and leakage
power, four two-way shared SPLs come at slightly less than
a quarter of the cost of the eight private SPLs. The reduced
number of rows, however, means that functions will need to
be virtualized more often. Indeed, any function requiring
all 26 rows of the private configuration will be virtualized
in both a two- and four-way shared SPL, even if the other
cores are not using the shared SPL at that time. SPL config-
urations with a higher degree of sharing consume a slightly
larger area than the two-way shared configuration but they
require less virtualization. When several applications simul-
taneously reach a point where they do not need the SPL, it
can be allocated among the remaining cores so that virtual-
ization can be avoided. The area increase for higher degrees
of sharing comes from the additional datapath hardware and
on-chip configurations for higher degrees of sharing, with
the latter contributing most of the increase.

3.3. Core/Fabric Integration and Shared Fabrics
As with a number of previous designs [4, 5, 6, 7], the SPL
fabric is tightly integrated with the processor core as a re-
configurable functional unit. However, rather than consume
additional register file ports, we use a queue-based decou-
pled architecture to interface the SPL to the memory system.
The queue matches the SPL row input width (512 bits) and
special SPL load instructions place values into the queue at
a particular data alignment. The queue accepts input data
at the 2GHz core frequency such that four quadword loads
match the maximum input bandwidth of the fabric. Like-
wise, instead of writing to the register file, the SPL writes
to a single output staging register that is then written out to
the Store Queue using a special SPL store instruction. Since
the normal LSQ/cache datapath is used for data transfer, no
additional steps are needed to handle memory dependences
with the processor core.

As discussed in Section 2, row-based designs employing
virtualization are highly amenable to sharing. Figure 5(a)
shows how our row-based SPL is modified to enable spatial
sharing between two cores. Additional muxes select input
bits at the entry point of the SPL and at each point where
the SPL pool might be partitioned. Furthermore, an addi-
tional set of tristate drivers tap off of each row output to
drive the sharer’s output register. Finally, there is additional
wire overhead to get data to and from multiple cores. These
wires can be pipelined if necessary to match the SPL clock
frequency at the cost of additional pipeline initiation time.
However, with deeply pipelined row-based fabrics, the cost
is small and is outweighed by the efficiency gains.

For temporal sharing (see Figure 5(b)), all rows of the
fabric are available to all cores in a time multiplexed fashion.
Therefore, no intermediate muxes are required.

Fig. 5: Two core (a) spatial sharing and (b) temporal sharing.

Table 4: ISA extensions.
Instruction Description

spl lsize align, offset(reg)
load data of size size into SPL input
queue at alignment align

spl ssize align, offset(reg)
store data of size size from SPL output
register to memory at alignment align

spl initiate config Invoke SPL using configuration config

spl prefetch config
Prefetch SPL configuration config into
configuration memory

3.4. Software Interface
To expose the SPL to software, we extend the ISA with the
instructions shown in Table 4. These instructions handle
moving data to and from the SPL and initiating the execution
of a SPL instruction. In an actual system these instructions
could be generated by a compiler that supports reconfig-
urable architectures such as those proposed in [11, 13, 25].

3.5. Sharing Policies
We explore hardware-level control policies for spatial and
temporal SPL sharing. The advantage of spatial sharing is
that each core has dedicated resources and is guaranteed
to make forward progress each cycle, although possibly at
a degraded rate due to increased virtualization. Temporal
sharing is almost diametrically opposed to spatial sharing.
While all cores must vie for the same SPL resources, those
resources are large enough that virtualization is likely to oc-
cur less often, perhaps even less so than with private SPLs.
We discuss each of these approaches in turn.

3.5.1. Spatial Sharing Algorithm
The first decision with spatial sharing is how finely to di-
vide up the fabric. One can choose an equal number of rows
based on the number of sharers, i.e., the SPL is split into n
equal sections if there are n sharers, or split according to ex-
pected application usage. These approaches require a large
number of intermediate muxes. We investigated a simpler
alternative that splits by only powers of two; if, for exam-
ple, there are 5-8 sharers, the SPL will be broken into eight
partitions and some of these may lie unused.

To determine when to merge SPL partitions, per-core
idle cycle counters and an idle count threshold value (1000
in our implementation) are associated with each shared SPL
pool. When a core has no SPL instructions in-flight, its idle
counter is reset. The counter counts up each cycle that the
core does not request use of the SPL. Once the threshold is
reached, the SPL checks to see if the number of threads now
using the SPL falls within a different power of two partition.
If so, it waits for all current in-flight functions to finish and



Table 5: Benchmark, number of SPL functions, maximum rows
used by SPL functions, percentage of execution time replaced by
SPL functions, percentage of SPL instructions executed relative to
total committed instructions, and percentage of time with at least
one SPL instruction in flight, for OOO1 cores.

SPL
Functions

Max
Rows

% Replaced
Exec Time

% Dyn.
SPL Insts SPL Usage

cjpeg 5 21 49.9% 1.19% 17.77%
djpeg 3 23 61.9% 0.84% 9.72%
g721dec 1 26 48.1% 0.71% 27.94%
g721enc 1 26 45.5% 0.67% 24.11%
mpeg2dec 3 10 62.9% 1.07% 22.28%
gsm toast 2 16 54.2% 2.83% 28.92%
gsm untoast 1 22 75.8% 2.18% 36.55%
adpcmDec 1 24 95.9% 10.29% 79.22%
MPGenc 4 16 69.1% 0.72% 17.23%
MPGdec o0 5 20 44.8% 0.35% 15.30%
MPGdec o3 12 20 47.8% 0.57% 19.25%
crypt 1 298 97.9% 4.48% 99.90%

then repartitions the SPL, allocating the core’s partition to
the other active sharers.

3.5.2. Temporal Sharing Algorithm
For temporal sharing, we share the fabric among the cores in
a round-robin manner on an SPL cycle-by-cycle basis. The
per-core queues permit each core to continue to issue SPL
instructions while it awaits its turn in the rotation.

4. EVALUATION METHODOLOGY
Our simulator is a highly modified version of SESC [26].
We assume processors implemented in 65 nm technology
running at 2.0 GHz with a 1.1V supply voltage. We use
Wattch and Cacti to model dynamic power and Cacti and
HotLeakage to model leakage power.

Since the SPL versions of each benchmark execute a sig-
nificantly different number of instructions than the baseline,
we compare execution times for complete program execu-
tion as IPC comparisons are meaningless. To make our com-
parisons more accurate, we continuously respawn jobs that
finish before the longest running thread in order to maintain
a consistent SPL access pattern.

4.1. Benchmarks
For our coarse grain workload, we use five benchmarks from
the MediaBench suite [27] and three benchmarks from the
MediaBench II suite [28]. For parallel workloads, we select
two benchmarks from the ALPBench suite [29] and a ver-
sion of the Java Grande [30] crypt benchmark ported to C++.
We run the ALPBench version of MPGdec with two differ-
ent command line parameters (-o0 and -o3) as they produce
drastically different execution characteristics.

Benchmark statistics are given in Table 5. All but three
of the benchmarks use at least 20 rows, but few of these
occupy the SPL for any great length of time. This indicates
that for our workloads and architecture, there may be more
opportunity for temporal rather than spatial sharing.

5. RESULTS
Prior work has shown that SPL coupled with a standard pro-
cessor can significantly speed up certain application classes,
e.g., multimedia workloads. We achieve similar results as
shown in Figure 6, which plots the performance improve-
ment of adding 26-row private SPL to each core. For each
benchmark, the values are normalized to the performance

Fig. 6: Performance relative to IO cores without SPL.

Fig. 7: Performance relative to OOO1 + 26 row private SPL.

on an IO core without SPL. In all eight coarse grain bench-
marks and three of the parallel benchmarks, a CMP with an
n-way OOO core plus SPL outperforms the next larger OOO
core; in eight of these cases the OOO1+SPL outperforms the
OOO4 core, which consumes far more area and power.

We quantify the shared versus private SPL performance
for a CMP of OOO1 cores. We compare the shared con-
figurations to two versions of the private SPL: one with the
full 26 rows, and another with six rows, the same per core
amount as the shared cases (Table 3).

With two- and four-way sharing, we need to consider
which applications should be scheduled together on the same
SPL pool. Our algorithm statically schedules threads based
on the percentage of time they use the SPL, with the ob-
jective of roughly equalizing SPL usage. We schedule ad-
pcmDec, the highest utilization thread with djpeg, the lowest
utilization one (see Table 5 for usage values). We then pair
the next highest with the next lowest on the next SPL pool,
and so on until all threads are scheduled.

The performance and energy×delay results for all bench-
marks are shown in Figures 7 and 8, respectively. Sharing
SPL pools reduces energy×delay by up to 33% overall com-
pared to the use of private SPL, with little or no performance
degradation with the proper sharing policy. The SPL area is
also reduced by more than 4X.

The private SPL configuration with only six rows is not
an acceptable alternative to fabric sharing. For three of the
benchmarks – gsm untoast, adpcmDec, and crypt – the per-
formance and energy×delay costs are significant relative to
the 26-row private SPL configuration. Spatial sharing im-
proves slightly upon the 6-row private SPL organization for
two of these three cases, but has the least benefit for crypt.
This workload experiences almost a 100% performance slow-
down – and a larger energy×delay penalty – with spatial



Fig. 8: Energy×Delay relative to OOO1 + 26 row private SPL.

sharing relative to 26-row private SPLs.
Temporal sharing, especially four- and eight-way shar-

ing, outperforms spatial sharing overall for two primary rea-
sons. First, all benchmarks but crypt need a maximum of 26
rows for all functions; thus, with four- and eight-way tem-
poral sharing virtualization is rarely required. Second, there
are significant periods where the benchmarks access the SPL
at a slow enough rate to intersperse requests from different
cores. With eight-way sharing, however, the performance
of several benchmarks degrades non-trivially due to a 40%
increase in input queue wait time due to increased SPL con-
flicts. In any event, the temporal four-way sharing approach
achieves neglible performance loss, and significant energy
savings, for every benchmark relative to the private SPL or-
ganization at far less area and peak power costs.

6. CONCLUSIONS
In this paper, we propose a reconfigurable architecture that
uses a shared fabric and control policies to reduce the costs
of marrying reconfigurable logic and processor cores in fu-
ture CMPs. Using intelligent sharing policies, our approach
requires 4X less area and peak power than private SPL while
achieving the same performance improvement over area-
equivalent conventional CMPs.

7. REFERENCES
[1] I. Kuon and J. Rose, “Measuring the Gap Between FPGAs and

ASICs,” Computer–Aided Design of Integrated Circuits and Systems,
IEEE Transactions on, vol. 26, no. 2, pp. 203–215, 2007.

[2] R. Hartenstein, “A Decade of Reconfigurable Computing: A Vision-
ary Retrospective,” in Proc. of the Conference on Design, Automation,
and Test in Europe, 2001, pp. 642–649.

[3] T. Todman, G. Constantinides, S. Wilton, P. Cheung, W. Luk, and
O. Mencer, “Reconfigurable Computing: Architectures and Design
Methods,” IEE Proc. – Computers and Digital Techniques, vol. 152,
no. 2, pp. 193–205, March 2005.

[4] R. Razdan and M. Smith, “A High-Performance Microarchitec-
ture with Hardware-Programmable Functional Units,” in Proc.
IEEE/ACM 27th International Symposium on Microarchitecture,
1994, pp. 172–180.

[5] M. Dales, “Managing a Reconfigurable Processor in a General Pur-
pose Workstation Environment,” in Proc. of the Design, Automation,
and Test in Europe Converence and Exhibition, 2003, pp. 980–985.

[6] Stretch Inc., The S6000 Family of Processors.
[7] Z. Ye, A. Moshovos, S. Hauck, and P. Banerjee, “CHIMAERA:

A High-Performance Architecture with a Tightly-Coupled Reconfig-
urable Functional Unit,” in Proc. 27th IEEE/ACM International Sym-
posium on Computer Architecture, 2000, pp. 225–235.

[8] A. DeHon, “DPGA Utilization and Application,” in Proc. 1996
ACM/SIGDA 4th International Symposium on Field Programmable
Gate Arrays, 1996, pp. 115–121.

[9] M. Wirthlin and B. Hutchins, “A Dynamic Instruction Set Com-
puter,” in Proc. 1995 IEEE Symposium on Field–Programmable Cus-
tom Computing Machines, 1995, pp. 99–107.

[10] C. Rupp, M. Landguth, T. Garverick, E. Gomersall, and H. Holt, “The
NAPA Adaptive Processing Architecture,” in Proc. 1998 IEEE Sym.
on Field–Programmable Custom Computing Machines, 1998, p. 28.

[11] T. Callahan, J. Hauser, and J. Wawrzynek, “The Garp Architecture
and C Compiler,” Computer, vol. 33, pp. 62–69, Apr. 2000.

[12] J. Hauser and J. Wawrzynek, “Garp: A MIPS Processor with a Re-
configurable Coprocessor,” in Proc. 1996 IEEE Symposium on Field–
Programmable Custom Computing Machines, 1997, pp. 12–21.

[13] S. Goldstein, H. Schmit, M. Budiu, S. Cadambi, M. Moe, and
R. Taylor, “PipeRench: A Reconfigurable Architecture and Com-
piler,” Computer, vol. 33, pp. 70–77, 2000.

[14] S. Goldstein, H. Schmit, M. Moe, M. Budiu, and S. Cadambi,
“PipeRench: A Coprocessor for Streaming Multimedia Accelera-
tion,” in Proc. 26th IEEE/ACM International Symposium on Com-
puter Architecture, 1999, pp. 28–39.

[15] H. Schmit, D. Whelihan, A. Tsai, M. Moe, B. Levine, and R. Taylor,
“PipeRench: A Virtualized Programmable Datapath in 0.18 Micron
Technology,” in Proc. of the IEEE 2002 Custom Integrated Circuits
Conference, 2002, pp. 185–192.

[16] J. Carrillo and P. Chow, “The Effect of Reconfigurable Units in Su-
perscalar Processors,” in Proc. 2001 ACM/SIGDA 9th International
Symposium on Field Programmable Gate Arrays, 2001, pp. 141–150.

[17] D. Tarjan, S. Thoziyoor, and N. Jouppi, “CACTI 4.0,” HP Technical
Report, 2006.

[18] H.-S. Wang, X. Zhu, L.-S. Peh, and S. Malik, “Orion: A Power-
Performance Simulator for Interconnection Networks,” in Proc.
IEEE/ACM 35th International Symposium on Microarchitecture,
2002, pp. 294–305.

[19] S. Heo and K. Asanovic, “Replacing Global Wires with an On-Chip
Network: A Power Analysis,” in ISLPED ’05: Proc. of the 2005 In-
ternational Symposium on Low Power Electronics and Design, 2005,
pp. 369–374.

[20] S. Hauck, M. Hosler, and T. Fry, “High-Performance Carry Chains for
FPGA’s,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 8, pp. 138–147, 2000.

[21] Semiconductor Industry Association, “International Technology
Roadmap for Semiconductors,” 2007.

[22] S. Hauck, T. W. Fry, M. M. Holser, and J. P. Kao, “The Chimaera
Reconfigurable Functional Unit,” IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 12, pp. 207–217, Feb. 2004.

[23] S. Yehia, N. Clark, S. Mahlke, and K. Flautner, “Exploring the De-
sign Space of LUT-based Transparent Accelerators,” in CASES ’05:
Proceedings of the 2005 International Conference on Compilers, Ar-
chitectures and Synthesis for Embedded Systems, 2005, pp. 11–21.

[24] R. Kumar, D. Tullsen, and N. Jouppi, “Core Architecture Optimiza-
tion for Heterogeneous Chip Multiprocessors,” in Proc. IEEE/ACM
International Conference on Parallel Architectures and Compilation
Techniques, 2006, pp. 23–32.

[25] M. Budiu and S. C. Goldstein, “Fast Compilation for Pipelined Re-
configurable Fabrics,” in Proc. 1999 ACM/SIGDA 7th International
Symposium on Field Programmable Gate Arrays. New York, NY,
USA: ACM, 1999, pp. 195–205.

[26] “SESC Architectural Simulator,” http://sourceforge.-
net/projects/sesc, 2007.

[27] C. Lee, M. Potkonjak, and W. Mangione-Smith, “MediaBench: A
Tool for Evaluation and Synthesizing Multimedia and Communica-
tions Systems,” in Proc. IEEE/ACM 30th International Symposium
on Microarchitecture, 1997, pp. 330–335.

[28] J. Fritts, F. Steiling, and J. Tucek, “MediaBench II Video: Expediting
the Next Generation of Video Systems Research,” in Proc. of The Int’l
Society for Optical Engineering, vol. 5683, 2005, pp. 79–93.

[29] M.-L. Li, R. Sasanka, S. V. Adve, Y.-K. Chen, and E. Deves, “The
ALPBench Benchmark Suite for Complex Multimedia Applications,”
in Proc. of the IEEE International Symposium on Workload Charac-
terization, 2005, pp. 34–45.

[30] L. Smith, J. Bull, and J. Obdrzálek, “A Parallel Java Grande Bench-
mark Suite,” in Supercomputing ’01: Proc. of the 2001 ACM/IEEE
conference on Supercomputing (CDROM), 2001, pp. 8–17.


