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Abstract— We present a language and compilation framework
for productively generating high-performance systolic arrays for
dense tensor kernels on spatial architectures, including FPGAs
and CGRAs. It decouples a functional specification from a spatial
mapping, allowing programmers to quickly explore various spatial
optimizations for the same function. The actual implementation
of these optimizations is left to a compiler. Thus, productivity and
performance are achieved at the same time.

We used this framework to implement several important dense
tensor kernels. We implemented dense matrix multiply for an
Arria-10 FPGA and a research CGRA, achieving 88% and 92% of
the performance of manually written, and highly optimized expert
(“ninja”) implementations in just 3% of their engineering time. Three
other tensor kernels, including MTTKRP, TTM and TTMc, were
also implemented with high performance and low design effort, and
for the first time on spatial architectures.

I. INTRODUCTION

High-performance computing (HPC) on spatial architectures

tends to be limited by very low design productivity — it is not

unusual for industry experts to spend several months or even more

than a year to deliver one seemingly simple kernel with good quality

of results (QoRs) [1]. While HPC programming is presumably

challenging on any architecture including CPUs/GPUs, it is

especially painful on spatial architectures like field-programmable

gate arrays (FPGAs) due to their much longer compile time

and primitive debugging support. In addition, FPGA designs

often require construction of specialized user-managed on-chip

memory hierarchy, which significantly increases the programming

complexity. Coarse-grain reconfigurable architectures (CGRAs)

have been proposed to address the slow compilation problem, but

how to efficiently program CGRAs remains an open question.

To address these long-standing challenges, we propose a novel

programming system consisting of a language and compiler,

named T2S (Temporal To Spatial), for productively generating

high-performance spatial hardware. The work in this paper is named

T2S-Tensor, since its main focus is tensor computations using T2S.

We observe that a computation suitable for a spatial architecture is

usually a dataflow function, and a high-performance spatial design

partitions the computation into many sub-computations. These sub-

computations are distributed over the spatial architecture, and are

connected with channels, i.e. FIFOs. They run in parallel, and are

individually optimized by a series of loop and data transformations.

Based on this observation, T2S enables programmers to describe a

computation in a functional notation, followed by a spatial mapping

that describes compute partition and loop and data transformations.

A compiler then composes these optimizations and synthesizes

them to run on a spatial architecture. Thus, T2S allows programmers

to succinctly specify different optimizations and leave the actual

implementation of the optimizations to the compiler.

We focus on accelerating dense tensor computations to

demonstrate the effectiveness of our proposal. Tensors are a

generalization of two-dimensional matrices to higher dimensions.

Dense tensor algebra is a powerful tool for computing multi-

dimensional data and has many applications in machine learning,

data analytics, engineering, and scientific computing [2]–[6].

Well-known dense tensor kernels include general matrix multiply

(GEMM), tensor times matrix (TTM), matricized tensor times

khatri-rao product (MTTKRP), and tensor times matrix-chain

(TTMc). These dense tensor kernels have regular memory access

patterns and high parallelism, making them a good match for spatial

architectures. Yet how to productively accelerate the tensor kernels

on spatial architectures for high performance remains a challenge.

Firstly, tensors often have many dimensions and a tensor kernel

can involve many tensors. Secondly, every tensor kernel has many

possible designs. Implementing any design efficiently on spatial

hardware like FPGAs usually takes significant engineering effort.

In this work, we show that T2S enables dense tensor kernels

to be succinctly expressed and effectively optimized for spatial

architectures. Our major technical contributions are as follows:

• We propose a concise yet expressive programming abstraction

that decouples a spatial mapping from a functional

specification. The spatial mapping can direct the compiler

to realize many sophisticated optimizations, achieving

productivity and performance at the same time.

• We identify a set of key compiler optimizations that are

essential for creating high-performance spatial hardware

for dense tensor computations, and implement them in a

comprehensive compilation framework. Our compiler further

provides composability of these optimizations, where various

combinations of transformations can be applied and the

compiler automatically generates the correct low-level code.

• We demonstrate the efficacy of our approach on an Arria-10

FPGA as well as a research CGRA by generating OpenCL



and assembly code for the two architectures, respectively.

Our GEMM implementations achieve 88% and 92% of the

performances achieved by codes that were manually written,

highly optimized, and extensively tuned by experts, with only

around 3% of engineering time (two weeks vs. 18 months on

the FPGA, and three days vs. three months on the CGRA).

The T2S GEMM implementation on the Arria-10 FPGA

is also 76% faster than a (tuned) NDRange-style OpenCL

implementation [7].

• Using our system, three other important tensor kernels,

including MTTKRP, TTM, and TTMc, were also implemented

in a productive and high-performance manner, and for the first

time on spatial architectures, to the best of our knowledge.

The rest of the paper is organized as follows: Section II gives

a brief overview of our programming model, Section III illustrates

the spatial optimizations in our system with GEMM as a working

example, Section IV describes our compiler flow and optimizations,

followed by experimental results in Section V, and related work

in Section VI. Finally, we conclude the paper in Section VII.

II. OVERVIEW OF THE PROGRAMMING MODEL

A T2S program is a specification consisting of two parts, a

temporal definition, and a spatial mapping. The former defines a

computation functionally, while the latter specifies how to map the

computation to a spatial architecture. In this paper, we focus on the

programming model and the associated compilation framework,

not the language syntax1. Hence we will describe the programming

abstraction with small intuitive examples to facilitate understanding.

The same principle can be applied to construct very sophisticated

spatial designs.

Fig. 1(a) shows a trivial computation that computes a function

B with an input vector A. To map it to a spatial architecture, we

isolate out two functions: A_loader for loading the input values

and B_unloader for saving the computed values from function

B. This is called compute partition. It leads to a spatial layout shown

in Fig. 1(b).

A corresponding T2S specification is shown in Fig. 1(c). Line

1-4 are the temporal definition expressing the original computation,

where A is a one-dimensional single-precision floating-point

vector, i is a variable, and B is a function that is to be run on

the device. The upper loop bound of 100 is set upon execution,

which is not shown.

Line 5-7 are the spatial mapping. A_loader and

B_unloader are the two new functions on the device,

isolated out of function B as a producer of the input values in A

and a consumer of the computed values in B, respectively. A more

detailed intermediate representation (IR) after compute partition is

shown in Fig. 1(d), where RCH and WCH are primitives for read-

ing and writing a channel. All the functions have exactly the same

loop structure. However, function A_loader does nothing but

loading values of A and sending them to a channel, channel1.

Function B reads data from channel1, performs computation,

and sends the results to channel2. Function B_unloader

reads data from channel2, and stores it into memory.

1The syntax of T2S is similar to Halide [8].

Compute partition maintains the semantics of the original

computation. Its purpose is to partition a computation into sub-

computations, which in turn become accessible to optimizations and

can be specialized individually (Section IV). For example, in the mid-

dle box of Fig. 1(d), the compiler finds that the loop variable i is

no longer used, and all the inputs are from channel1. Therefore,

the compiler automatically replaces the loop with an infinite loop,

while(true), which executes (or stops) if data are (not) available

in channel1. This optimization is called loop infinitization.

Assuming a temporal definition, usually including simple math

equations, is correctly specified by the programmer, the compiler

checks the spatial directives to ensure that they do not violate the se-

mantics of the temporal definition. This provides a correctness guar-

antee of the generated hardware, and composability of the directives.

Our system is built on Halide [8], a domain-specific language

(DSL) for image processing on CPUs and GPUs. A key strength of

Halide is to decouple a functional specification from optimizations.

Many important loop-nest optimizations (e.g. loop reordering and

tiling) can be easily specified in Halide. T2S extends Halide to

spatial architectures with the following optimizations: (1) Spatial

layout: compute partition. (2) Loop transformations: loop unrolling 2,

flattening, perfectization, infinitization, and removal. (3) Data trans-

formations: data forwarding, scattering, gathering, and vectorization.

(4) Data caching: single/double buffer insertion. (5) Control: over-

lapping draining and filling of a pipeline, and drain signal generation.

Function A_loader  

 for i = 0 .. 100

   x = load A(i)

   WCH(channel1, x) 

channel1

1  ImageParam A(Float(32), 1);

2  Var                i;

3  Func              B(Place::Device);

4  B(i) = A(i) * 2;

5  Func A_loader(Place::Device), B_unloader(Place::Device);

6  B.isolate_producer(A, A_loader)

7    .isolate_consumer(B, B_unloader);
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  Function B

for i = 0 .. 100 //i.e. 0 i<100

  B(i) = A(i) * 2

S
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m
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p
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g

Function B

 for i = 0 .. 100 while(true)

    x = RCH(channel1)

    WCH(channel2, x * 2) 

 Function B_unloader

 for i = 0 .. 100

    x = RCH(channel2)

    store x to B(i)

channel2

B_unloaderA_loader B
channel1 channel2

(c) T2S specification

(a) Computation (b) Spatial Layout

(d) IR after compute partition

Fig. 1. An illustration of the T2S approach.

III. HIGH-LEVEL ILLUSTRATION OF THE OPTIMIZATIONS

In this section, we introduce the spatial optimizations that can

be specified with T2S, using a high-performance FPGA-targeted

2Different from unrolling on CPUs/GPUs, unrolling a loop of n iterations in a
loop nest on a spatial architecture will hoist that loop to the outermost level, create
n Processing Elements (PEs) in hardware, each for an iteration, and input/output
channels will also be unrolled (Section IV). We will use the syntax unroll(l,

Hoist) to indicate that we hoist a loop l, then unroll the loop and related
channels into hardware.



1   ImageParam A(Float(32), 2), B(Float(32), 2);

2   Var                i, j;

3   RDom           k(0, K * KK * KKK);

4   Func              C;

5   C(i, j)   = 0;

6   C(i, j) += A(i, k) * B(k, j);

7   Var ii, jj, iii, jjj;

8   RDom kk, kkk;

9   C.update().tile(k, j, i, kk, jj, ii, KK * KKK, JJ * JJJ, II * III)

10                  .tile(kk, jj, ii, kkk, jjj, iii, KKK, JJJ, III);

(a) Temporal definition
for i = 0..I 

  for j = 0..J

    for k = 0..K

      for ii = 0..II

        for jj = 0..JJ

          for kk = 0..KK

            for iii = 0..III

              for jjj = 0..JJJ

                for kkk = 0..KKK

                  _i = i*II*III + ii*III + iii

                  _j = j*JJ*JJJ + jj*JJJ + jjj

                  _k = k*KK*KKK + kk*KKK + kkk

                  C(_i, _j) += A(_i, _k) * B(_k, _j)

for i = 0 .. I * II * III 

   for j = 0 .. J * JJ * JJJ

      for k = 0 .. K * KK * KKK

            C(i, j) += A(i, k) * B(k, j)

tiling

(b) Function C before and after tiling

Fig. 2. Temporal definition of matrix multiply, including tiling.

GEMM design as the driver example. For ease of understanding,

we illustrate the optimizations at a high level, and leave the compiler

details to Section IV. As the optimizations can be freely composed

together, one may use these optimizations to specify many different

designs for the same workload. The design illustrated here is thus

only one of the possibilities. In general, programmers can start from

a simple design with no or few optimizations, and gradually evolve

it into more complicated designs by specifying more optimizations.

A. Temporal Definition

Consider matrix multiplication C = A * B. A temporal

definition for this is shown in Fig. 2(a). Here A and B are

single-precision floating-point matrices, i and j are variables,

and k is a reduction domain (i.e. a variable for reduction) with

the range of[0, K * KK * KKK) (Line 1-3). In this example,

we use I, II, III, J, JJ, JJJ, K, KK, and KKK

to represent some compile-time constants, and assume the input

matrices have a row-major storage format.

The output function C includes an initial definition (Line 5),

and an update definition (Line 6) referred to as C.update().

From now on, we will focus on transforming the update definition

for high performance. For convenience, by function C, we will

refer to the update definition of function C, unless stated otherwise.

With the temporal definition, we get a familiar three-level loop

nest as shown in the left side of Fig. 2(b). This initial implementation

does not exploit data locality, which is critical for achieving high per-

formance. To optimize for locality, Line 9-10 tile every loop twice to

generate a nine-level loop nest, as shown in the right side of Fig. 2(b).

B. Evolving the Initial Specification into a High-Performance

Spatial Design

Now let us see how we may transform the basic tiled loop nest

(the right side of Fig. 2(b)), which has no notion of “space” at all,

to a high-performance spatial design. Fig. 3 abstractly visualizes

the major spatial optimizations, with the details to be described in

the next section.

Compute partition (Fig. 3(a)): It isolates from function C the

loading of matrix A into another function named A_feeder.

Further, it isolates the loading of matrix A from A_feeder

into another function A_loader. These three functions are

automatically connected via channels after the isolation.

Loop unrolling (Fig. 3(b)): It unrolls loops ii and jj of

function C. This results in an II × JJ array of PEs for

function C (II=JJ=2 in Fig. 3(b)). The input channel from

A_feeder is also replicated accordingly.

Data forwarding (Fig. 3(c)): A(_i, _k) can be shared

when multiplied with B(_k, _j), B(_k, _j + 1), etc. to

compute C(_i, _j), C(_i, _j + 1), etc. To minimize

redundant memory accesses, let A_feeder send the data of

matrix A to the boundary C PEs (jj = 0), which receive

and forward the data to their neighbor PEs in jj direction. The

neighbors receive and forward the data to their own neighbors in

jj direction, and so on. This effectively allows the jj loop in

A_feeder to be removed.

Buffering (Fig. 3(d)): To minimize redundant memory accesses,

loop jj and jjj in A_loader can be removed, because

they do not appear in the subscripts of the reference to matrix A.

Such loops are called reuse loops. This further reduces the total

accesses of matrix A by JJ * JJJ times.

However, because A_loader sends less data to its consumer

after the loop removal, the data stream produced is different from

what is expected by the consumer. To restore the correct data

stream, an on-chip (double) buffer is inserted in the consumer,

A_feeder, at an appropriate loop level so that A_feeder

accepts the data from A_loader, stores the data in the buffer,

and sends the buffered data to C in the right order. This restores

the correct dataflow relationship that was broken by loop removal.

Fig. 4 shows the IR after loop removal in A_loader and buffer

insertion in A_feeder.

How about removing loop j from A_loader, which is also

a reuse loop? That will further reduce the total accesses of matrix A

by J times. This is feasible with a bigger on-chip buffer. However,

in this example, we assume that loop j is not removed due to

insufficient on-chip buffer.

Data scattering (Fig. 3(e)): A single A_feeder transferring

data to all the boundary PEs of C will not scale for bigger

FPGAs. Thus, unroll loop ii in A_feeder such that every

A_feeder PE feeds a boundary C PE (jj = 0). The first

A_feeder PE keeps the data needed by the first boundary PE

of C, and streams the rest of the data to the next A_feeder PE,

which works similarly. Fig. 5 shows the IR and the corresponding

dataflow after loop unrolling and data scattering.

Data gathering (Fig. 3(f)): Directly writing the results to the

memory from each of the C PEs requires a big cross-bar, which

can hurt timing. To avoid this, isolate from C the consumer

of the computed C values to a function, C_drainer. Then

isolate from C_drainer the consumer of the computed C

values to another function, C_collector. Further, isolate from



(f) Gathering
C.update().isolate_consumer(C, C_drainer)

C_drainer.isolate_consumer(C, C_collector)

C_collector.isolate_consumer(C, C_unloader)

C_drainer.unroll(jj, ii, Hoist).gather(C, {0, -1})

C_collector.unroll(jj, Hoist).gather(C, {-1})

(e) Scattering
A_feeder.unroll(ii, Hoist)

.scatter(A, {1})

(d) Loop removal and 

data buffering
A_loader.remove(jjj, jj)

A_feeder.buffer(ii, Buffer::Double)

C
_

d
rain

er

C_collector

(a) Compute Partition
C.update().isolate_producer(A, A_feeder)

A_feeder.isolate_producer (A, A_loader)

CA_loader A_feeder

(b) Unrolling
C.update().unroll(jj, ii,  Hoist)

ii

jj

(c) Forwarding
C.update().forward(A_feeder,{1, 0})   

Buffer

C_unloader

C_collector

Device 

memory

Host

_B serializer

_A serializer

_C deserializer

_A loader

_B loader

C_unloader

A_feeder

Matrix

C

Matrix

B

Matrix

A

Matrix

C

Matrix

B

Matrix

A

Host

memory

B_feeder

FPGA

KKK

KKK

JJ

Buffer

Rotating registers C_drainer

C

(g) Complete design

Fig. 3. Illustrating some major optimizations with GEMM as an example. For each optimization, the corresponding T2S specification is also shown.

       Function A_loader  

  for i, j, k, ii, jj, kk, iii, jjj, kkk

    _i=i*II*III + ii*III + iii

    _k=k*KK*KKK+kk*KKK+kkk

    x=A[_i][_k]

    WCH(chALoader, x)

         Function A_feeder

   for i, j, k, ii

     float buffer[KK][III][KKK]

     for kk, iii, kkk

        x = RCH(chALoader)

        buffer[kk][iii][kkk] = x

     for jj, kk, iii, jjj, kkk

       y = buffer[kk][iii][kkk]

       WCH(chAFeeder[ii][0], y)

(a)

(b)
Send data to a boundary C PE

Write to buffer

Read from buffer

Loop removal

Automatically removed due to 

data forwarding along jj 

direction in Fig.3(c)

chALoader

A_loader

chAFeeder[0][0]

chAFeeder[1][0]

A
_
fe

ed
e
r

Fig. 4. IR after loop removal and data buffering in Fig. 3(d). The IR changes
introduced by the optimizations are highlighted in bold fonts.

         Function A_feeder

 for ii (unroll)

   for i, j, k

     float buffer[KK][III][KKK]

     for t = 0...(II - ii)

        for kk, iii, kkk        

           x = RCH(chALoader[ii])

           if (t == 0)                  

             buffer[kk][iii][kkk] = x

           else    

             WCH(chALoader[ii+1], x)

     for jj, kk, iii, jjj, kkk

        y = buffer[kk][iii][kkk]

        WCH(chAFeeder[ii][0], y)

chALoader[0]

chALoader[1]

A_loader

First fill the buffer of 

this PE

Then forward data 

to fill the buffers of 

the other PEs below

Counting loop

Body of the unrolled loop 

becomes the code for a 

PE, parameterized by ii

Unrolled loop is moved 

to the outermost level

chAFeeder[0][0]

chAFeeder[1][0]

A
_

fe
ed

e
r (2

 P
E

s)

Fig. 5. IR of A feeder after loop unrolling and data scattering in Fig. 3(e). The
resulting changes to A feeder relative to the IR in Fig. 4 are highlighted in bold
fonts. The changes to A loader (not shown) are that due to loop unrolling, channel
chALoader is split into an array of channels chALoader[0..II], and then
due to data scattering, this array of channels are scattered across the A feeder PEs
as shown in the right of the figure, and A loader writes only to chALoader[0].

C_collector the consumer of the computed C values to yet

another function, C_unloader. Unroll C_drainer into a

2-dimensional array of PEs, each accepting the results of a C PE.

Each column of the drainer PEs relay the results upward. Unroll

C_collector into a 1-dimensional array of PEs, each reading

the data from a column of the drainer PEs and merging them with

the data from its right, and sending the results to its left.

Data vectorization is not illustrated, but is important for

performance. That is, load matrix A in vectors of data, vectorize

related channels and operations, and save the results in vectors as

well. For the GEMM example, load vectorization can be specified

by C.update().vload(A) before the compute partition in

Fig. 3(a) so that after the partition, all the functions on the data path

of matrix A, including function A_loader, A_feeder, and

C, are automatically vectorized. Finally, store vectorization can be

specified by C_collector.vstore(C).

Besides the optimizations that can be specified, there are

optimizations that are automatically done by the compiler. For

example, our compiler automatically flattens nested loops, because

after flattening a loop nest into a single loop, the resulting loop can

be pipelined efficiently.

The optimizations can also be specified to compose some other

optimizations, for example, data serialization and de-serialization.

In GEMM, matrix A is not visited sequentially (one can see

this from the tiled loops in Fig. 2(b)). To maximize the usage of

memory bandwidth, isolate from A_loader another function

A_serializer. Unlike all the functions we have seen so far that

run on the device, A_serializer can be declared to run on

the host. A_serializer reads matrix A once, and sends the

values via a memory channel to A_loader on the device. The

memory channel is a virtual FIFO that our system automatically

constructs with the host and device memory. This enables

A_loader to visit the device memory completely sequentially.

Similarly, C_unloader can send the results sequentially using

a memory channel to a new function C_deserializer on

the host, which stores the results into the host memory in the right

order (i.e. data de-serialization).

So far, we mainly talked about optimizations for matrix A. Sim-

ilar optimizations can be applied to matrix B to get the complete

design shown in Fig. 3(g). The corresponding IR is shown in Fig. 6.

IV. COMPILER FLOW AND OPTIMIZATIONS

T2S leverages the Halide compiler [8] and extends it to spatial

architectures. Fig. 7 shows the overall flow of the T2S compiler. The

compiler works in two modes: first in reactive, then proactive mode.

In the reactive mode, the compiler reads a programmer’s

specification, which includes a temporal definition and spatial

mapping. The compiler then builds an IR according to the temporal



KKK

                                                    Function C

  for ii, jj (unroll)                 // Unrolled loops are moved to the outermost levels

    for i, j

      float C_buf[III][JJJ]                            // Buffer for results in the current PE

      for k, kk, iii, jjj

        float_KKK a = RCH(chAFeeder[ii][jj])

        float_KKK b = RCH(chBFeeder[ii][jj])

        WCH (chAFeeder[ii][jj+1],  a )

        WCH (chBFeeder[ii+1][jj], b ) 

        if ( drain )

           c = C_buf[iii][jjj]

           WCH (chC[ii][jj], c);

           C_buf[iii][jjj] = 0

        for kkk = 0...KKK

           C_buf[iii][jjj] += a[kkk] * b[kkk]

                                             Function C_drainer

 for ii, jj (unroll)              // Unrolled loops are moved to the outermost levels

    for i, j

       for t = 0 (II - ii)                // Counting loop for gathering the results

          for iii, jjj

             if ( t == 0 )                                  // First gather results of the

                x=RCH(chC[ii][jj] )                // corresponding C PE

             else                                             // Then forward results of the other

                x=RCH(chCDrainer[ii+1][jj]) // C PEs in the same column                                                           

             WCH (chCDrainer[ii][jj], x )                

                            Function C_unloader

 addr = 0                         // Matrix C is written out serially,

                                       // to be de-serialized on the host

 for i, j, ii, jj, iii, jjj         // Loop jj is vectorized away

     x = RCH(chCCollector[0])

     C[addr++] = x           // Store to device memory 

JJ

                                     Function A_loader

  // Difference from Fig.4(a) is highlighted below  

  addr= 0                                      // Matrix A has been serialized

  for i, j, k, ii, jj, kk, iii, jjj, kkk    // Loop kkk is vectorized away

    x = (float_KKK) A[addr++]   // A is loaded in vectors of KKK floats

    WCH(chALoader[0], x)          // Unrolling of loop ii in the consumer

                                                      // (A_feeder) makes channel chALoader

                                                      // unrolled into an array of channels, 

                                                      // and A_loader writes the first channel. 

KKK

Read two input vectors

Drain and re-initialize

Reduction with elements in 

the vectors

                                    Function A_feeder

 //Difference from Fig.5 is highlighted below

 for ii (unroll)

   for i, j, k

     float_KKK buffer[KK][III] // Every buffer element is a vector

     for t = 0...(II - ii)

        for kk, iii, kkk                     // Loop kkk is vectorized away

           x = RCH(chALoader[ii])

           if (t == 0)                  

             buffer[kk][iii] = x         // Every buffer element is a vector

           else    

             WCH(chALoader[ii+1], x)

     for jj, kk, iii, jjj, kkk              // Loop kkk is vectorized away

        y = buffer[kk][iii]              // Every buffer element is a vector

        WCH(chAFeeder[ii][0], y)

Forward the inputs to the next 

PE in the same row/column

                            Function C_collector

 for jj (unroll)    //Unrolled loop is moved outwards

    for i, j, ii

       for iii, jjj

           // Get 1 result from the top drainer in column jj 

           float      x =RCH(chCDrainer[0][jj]) 

                                                           

           // Get a vector of results for the columns to the right

           float_JJ y=RCH(chCCollector[jj+1])

           // Merge the results together

           float_JJ  out;     // Result vector

           out[jj] = x

           for t = jj+1 .. JJ

              out[t] = y[t]      

           // Send the merged results to the PE to the left 

           // to further merge   

           WCH (chCCollector[jj], out)                

Fig. 6. IR of the complete design in Fig. 3(g). For simplicity, the data path for input B is skipped, loop perfectization, flattening, and infinitization and register rotation
in function C are not shown. Note that function C_drainer, C_collector, and C_unloader have no reduction loop k, kk, or kkk, as they have been
automatically removed due to isolate_consumer in Fig. 3(f).
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definition, and transforms the IR according to the spatial mapping.

The compiler is reactive in this phase, since its work is purely

directed by the specification.

After finishing the processing of the specification, the compiler

switches into the proactive mode, and performs optimizations

transparent to the programmer. Finally, it generates code for the

target architecture.

A. Reactive Compilation

The compiler builds up an IR according to the temporal definition.

The temporal definition defines a computation with some dataflow

functions, and often, also specifies how to tile or reorder the loops

of the functions for better data locality or reuse.

The compiler then transforms, or equivalently annotates, the IR

according to the spatial mapping. Typically, the spatial mapping

specifies how to partition the computation, which loops to unroll,

which loops to remove, how to manipulate data on the device

including buffering, forwarding, gathering and scattering, and

vectorizing of loads/stores from/to the off-chip device memory.

Compute partition – The compiler copies the IR to a new IR as

a producer (or consumer), prunes the new IR so that it contains only

the part that generates the input (or consumes the output) values.

The compiler creates a channel, and substitutes two nodes in the

IRs with the channel, such that the values flow between the two

IRs through the channel. The two IRs have the same loop structure,

and thus the values are communicated in the right order over the

newly-created channel. If the new IR is a consumer, reduction

loops are automatically removed, as the consumer is supposed to

consume the final results after reduction.

Loop unrolling – The unrolled loops are hoisted to the outermost

levels: all other loops become the body of the unrolled loops. Later

in code generation, every iteration of the unrolled loops is turned

into a hardware PE. With loop unrolling, channels in the IR have

to be unrolled as well. Suppose there is a channel ch between

a producer and a consumer. If loop x in the producer is unrolled X

times, the channel is split accordingly into an array of X number

of channels, such that instead of writing to channel ch, the x’th

producer PE writes to the x’th channel in the new channel array,

denoted by ch[x]. The consumer is also changed to read from

ch[x]. We have illustrated the effect of loop unrolling in Fig. 5.

Loop removal and data buffering – Loop removal is usually

accompanied by data buffering, as discussed in Section III. When

directed by a specification, the compiler removes a loop in a

producer IR, and inserts a buffer at a loop level in a consumer IR.

The compiler calculates the buffer size with the references of the

data in the body of the loop level in the consumer IR, and changes

all the references in the body to refer to the buffer elements. We have

illustrated the effect of loop removal and data buffering in Fig. 4.

Data buffering can also be specified without loop removal.

Data forwarding, scattering, gathering, and vectorization –

Data forwarding is also called dependence localization [9]. The

channels are renamed so that a producer sends data only to the

boundary PEs of its consumer, and every boundary PE broadcasts

the data it receives to the other PEs along a given direction. For

example, in Fig. 6, A_feeder sends data to the first column of

C PEs, which broadcast the data along jj direction.

For a PE to scatter data along a direction, the compiler



automatically inserts a counting loop t, counting the total data

received by the PE. Depending on the value of t, the received

data are either used by the current PE, or forwarded to the next PE

along the scattering direction. Fig. 5 shows the IR after applying

data scattering optimization. Gathering is the inverse operation of

scattering, and works similarly.

Loads and stores can be vectorized to access the device memory

in chunks of multiple contiguous data elements. This reduces the

number of memory accesses and improves the achieved memory

bandwidth. Currently, only the data accesses in an innermost loop

are allowed for vectorization. Since the data are communicated via

channels, the compiler increases the width of the channels to match

the width of vectorized data, and inserts a load before/a store after the

innermost loop to read/write the data as a vector. All the operations

in the innermost loop are changed to operate on the vector.

B. Proactive Compilation

Usually, a problem is too big to fit on the on-chip memory, and

thus has to be partitioned into tiles, and computed tile by tile, as

specified by the programmer. In the proactive mode, the compiler

automatically performs optimizations between tiles and within a

tile, and finally generates code for the target architecture.

Overlapping drain and compute – In general, a systolic array of

PEs (like the C PEs in GEMM) compute one tile of results, drain

them, and compute the next tile of results, and so on. It is desirable

to overlap the draining of one tile and the computation of the next

tile. The compiler identifies all the reduction loops and inserts a local

buffer right before the outermost reduction loop, as illustrated for

function C in Fig. 6. This buffer contains the results for the current

tile. The size of the buffer is calculated from the memory footprint

of the results in the body of the outermost reduction loop. Then the

compiler generates a drain signal and inserts code in the innermost

loop to drain and re-initialize one buffer element while computing

results for the next tile at the same time. If the buffer has unit-stride

cyclic access pattern, the buffer can be optimized into a rotating reg-

ister file. Rotating registers remove the area overhead due to address

calculation. The compiler changes the memory accesses to the buffer

so that a read/write access occur only at the first/last element of the

buffer, and code is inserted for rotation of the buffer after the access.

Loop perfectization, flattening, and infinitization – Next,

the compiler attempts to reduce the overhead of the loops by

perfectizing, flattening and infinitizing them. For loop perfectization,

the compiler moves an operation at an outer loop level into an inner

loop level by predication. When there are more than one inner loop

at the same level, the loops are merged together as a single loop

whose trip count is the sum of their individual trip counts.

After the loops in a nest are perfectized, loop flattening is

performed. The compiler merges all the original loops into a single

loop whose trip count is the multiplication of the original loops’ trip

counts. Then the compiler inserts code to extract the original loop

variables from the flattened loop variable. Bit masks and shift opera-

tions are used for extracting the original loop variables if all the loop

bounds are powers-of-two, which are efficient for FPGAs. So far, we

only support loop flattening for the loops with constant trip counts.

The compiler converts for loops to an infinite

while(true) loop, when all the input/output values in a

PE are read from/written to channels, and the loop variables are

no longer used anywhere. The infinite loop’s execution is then

controlled by data availability of the input channels.

Code generation – Finally, the compiler generates code for

the target architecture. Currently, the compiler generates Intel

(Altera) OpenCL code for Intel FPGAs, and assembly for a

research CGRA. The OpenCL code is further compiled by Intel

(Altera) high-level synthesis (HLS) compiler into bitstream for

FPGA. For CGRA, the assembly code is place-and-routed by an

assembler and simulated by a cycle-accurate simulator. So far,

the T2S compiler is fully automatic for the CGRA. For FPGAs,

we are still implementing a few optimizations, including drain

signal generation, data broadcasting and register rotation; thus

an automatically-generated OpenCL file is modified manually to

realize the missed optimizations, which are usually small changes.

V. EVALUATION

We designed and wrote T2S specifications for four important

tensor kernels, including GEMM, MTTKRP, TTM and TTMc.

Their definitions are shown in Table I. GEMM is a core computation

in many fields. MTTKRP is the computational bottleneck in

Cannonical Polyadic Decomposition, and TTM and TTMc are the

bottlenecks in Tucker Decomposition algorithms.

TABLE I
DEFINITIONS OF THE TENSOR KERNELS.

GEMM C(i,j)+=A(i,k)∗B(k,j)
MTTKRP D(i,j)+=A(i,k,l)∗B(k,j)∗C(l,j);
TTM C(i,j,k)+=A(i,j,l)∗B(l,k)
TTMc D(i,j,k)+=A(i,l,m)∗B(l,j)∗C(m,k)

Our designs try to match the underlying hardware architectures

for the maximum efficiency, and thus for the same kernel, its

designs for an FPGA and the CGRA are different. While all four

tensor kernels are dominated by multiply-add operations, they

vary in data reuse and compute patterns, and must be individually

designed for the best performance. Therefore we have created eight

different designs, which is in fact a proof of the flexibility and

generality of our proposed approach.

For FPGA experiments, we use the Intel vLab Academic

Cluster [10] to access one Xeon CPU and an Arria 10 GX FPGA

(10AX115N2F40E2LG). For CGRA experiments, we use a research

CGRA based on the triggered-instruction architecture (TIA) [11].

Our designs use the machines’ native precisions, i.e. single and

double-precision floats for the FPGA and CGRA, respectively.

For either architecture, a high-performance expert (the so-called

“ninja”) implementation of GEMM is available to us — for FPGA it

is a production design implemented in OpenCL; for CGRA it is in

assembly. Both implementations were manually written and highly

optimized by industry experts, and have been extensively tuned for

performance. These two designs took 18 and 3 months to develop,

respectively. For FPGA, we also compare with an NDRange-style

OpenCL implementation, a tutorial HLS design from Intel.

For the other workloads, namely MTTKRP, TTM and TTMc,

we are not aware of any existing implementations on any spatial

architectures. Since GEMM is a highly parallel and compute-

intensive application, it provides an estimate how close one can get

to the peak throughput of the target hardware. Hence, we choose to



TABLE II
COMPARISON BETWEEN AN NDRANGE OPENCL BASELINE,

T2S AND NINJA IMPLEMENTATIONS FOR GEMM ON ARRIA-10 FPGA

Baseline T2S Ninja

LOC 70 20 750

Systolic Array Size — 10×8 10×8

Load Vector Length — 16×float 16×float

Store Vector Length — 8×float 8×float

# Logic Elements 131K (31%) 214K (50%) 230K (54%)

# DSPs 1,032 (68%) 1,282 (84%) 1,280 (84%)

# RAM Blocks 1,534 (57%) 1,384 (51%) 1,069 (39%)

Frequency (MHz) 189 215 245

Throughput (GFLOPs) 311 549 626

use the performance of the ninja GEMM as a “yardstick” to roughly

estimate if the achieved throughput of a tensor kernel is high.

For FPGA experiments, we further report the absolute

performance (in GFLOPS) and resource usage. For CGRA

experiments, we report performance relative to the ninja

implementation of GEMM. In addition, we report productivity in

terms of the engineering time and lines of code (LOC).

A. Overall Performance and Productivity

For most of the workloads on either architecture, using a

small fraction of lines of code, the performance achieved by T2S

implementations is very close to or sometimes even higher than

that of the ninja implementation of GEMM.

On the FPGA, we have achieved an absolute throughput of 549,

700, 562 and 738 GFLOPS for GEMM, MTTKRP, TTM and

TTMc, respectively. On average, the T2S specifications have 29

LOC and achieve 637 GFLOPS. On the CGRA, we have achieved

92%-104% of the performance of the fine-tuned GEMM using an

average 38 LOC. It took us approximately two weeks on the FPGA

(due to long compile time for FPGA) and three days on the CGRA

for engineering a workload, which is only about 3% of the time

spent by the experts who created the ninja GEMM implementations.

B. Evaluation on the FPGA

Table II compares between the NDRange-style OpenCL

baseline [7], T2S and ninja GEMM implementations. We have

tuned the parameters of the baseline for the specific FPGA and

show its best performance. Overall, T2S GEMM design achieves

1.76× speedup over the baseline, and 88% performance of the

manually written and highly optimized ninja implementation.

As one can see from Table II, the baseline design is not able

to efficiently utilize the DSP resources and achieve a lower clock

frequency. The design uses NDRange kernels consisting of a

2-dimensional array of work-items (threads), each loading one

data element from each of the input matrices and storing them in

a buffer shared by the threads, and computing one element of a tile

of the output matrix.

The T2S GEMM design for the FPGA has been shown in

Fig. 3(g). Here we set its parameters such that it has ten rows

and eight columns of PEs in the systolic array of function C, i.e.,

II=10 and JJ=8. We stream loads in the unit of 16 floats every

memory access, i.e., KKK=16. Due to vectorized gathering along

the systolic array columns, 8 floats are stored to the memory simul-

taneously. Each PE computes 1024 results with III=JJJ=32.

TABLE III
PARAMETERS FOR GEMM, MTTKRP, TTM AND TTMC DESIGNS.

GEMM MTTKRP TTM TTMc

i, j, k, l, m 32,32,32,-,- 8,4,16,16,- 8,4,4,16,- 8,4,4,4,4

ii, jj, kk, ll, mm 10,8,32,-,- 8,9,16,2,- 1,8,11,4,- 1,8,10,32,2

iii, jjj, kkk, lll, mmm 32,32,16,-,- 16,16,1,16,- 8,8,16,16,- 16,4,4,1,16

Unrolled Loops ii, jj ii, jj jj, kk jj, kk

LOC 20 28 30 37

Systolic Array Size 10×8 8×9 8×11 8×10

Load Vector Length 16×float 16×float 16×float 16×float

Store Vector Length 8×float 9×float 11×float 10×float

TABLE IV
EVALUATION RESULTS OF MTTKRP, TTM AND TTMC IN T2S ON THE FPGA.

# Logic # DSPs # RAM Frequency Throughput
Elements Blocks (MHz) (GFLOPs)

MTTKRP 228K (53%) 1,224 (81%) 1,526 (56%) 204 700

TTM 265K (64%) 1,416 (93%) 2,394 (88%) 201 562

TTMc 229K (54%) 1,368 (90%) 1,679 (62%) 205 738

Similarly, for MTTKRP, TTM and TTMc we tile each loop

twice and unroll two of the resulting loops to get a 2-D systolic

array. Table III shows the parameters for all the four designs.

Data loads from the memory are vectorized in the innermost loop.

For stores, vectorized gathering is applied to each design and

hence the second dimension of the systolic array determines the

vector length for stores. Since MTTKRP computation, D(i,j) =∑
k,l A(i, k, l) ∗ B(k, j) ∗ C(l, j), can also be expressed as

D(i,j)=
∑

kB(k,j)∗(
∑

lA(i,k,l)∗C(l,j)), we manually perform

this optimization in the innermost loop of the generated OpenCL

code, which is a tiny code change. A similar optimization is also

applied to TTMc. Such an optimization reduces the number of op-

erations to be performed in the hardware, which results in high DSP

utilization leading to throughputs even better than the ninja GEMM

implementation. The designs for these workloads are shown in Fig. 8

with their resource usage and performance shown in Table II and IV.

C. Evaluation on the CGRA

Fig. 9 shows the design for GEMM on CGRA. First, the triple

loop nest is tiled, similar to the FPGA design, so that a tile fits into

the CGRA. Then for a tile, loader PEs read matrix A from external

memory, and send data to a feeder. The feeder has a “virtual buffer”

inside, which is functionally equivalent to a single buffer based on

scratchpad memory, but is implemented using latency-insensitive

channels (LICs) [11], [12]. This basic construct is important to

performance: without it, GEMM loses almost 60% of performance.

The same mechanism is built for matrix B. The reduction loop k

is unrolled so that several PEs are accumulating partial results of

the same C(i, j) with different parts of the matrix A and B

data. The initial values of C(i, j) are loaded from memory,

and the final values are stored back to memory. One can visually see

the big differences of this design from its FPGA counterpart. Unlike

the FPGA design, which is a 2-D systolic array, the CGRA design

is 3-D systolic. This difference is due to the difference between the

architectures — unrolling a loop results in a PE for each iteration of

the unrolled loop; if the unrolled loop has inner loops not unrolled, a

finite state machine (FSM) has to be constructed for each PE, which

is easy to implement on an FPGA using LUTs, but is difficult to

implement on a CGRA due to the limited number of control flow

PEs. Hence, we fully unroll the innermost loop levels for the CGRA



A_loader

B_loader C_loader

D_unloader

D_drainer

D_collector

A_feeder

C_feeder
B_feeder

buffer

(a) MTTKRP

B_loader

A_loader

C_unloader

B_feeder

A_feeder

C_drainer

C_collector

buffer

(b) TTM

C_loader

B_loader

D_unloader

C_feeder

B_feeder

D_drainer

D_collectorbuffer

A_loader

A_feeder

(c) TTMc

Fig. 8. Systolic arrays for the FPGA workloads.

Ci+1,j

Virtual 

buffer

in 

LICs

A_feeder

A_loader

B_loader

Virtual buffer in LICs B_feeder

…Ai,k+3 Ai,k+1

…Ai,k+2 Ai,k

Ci+1,j+1

…Ai+1,k+3 Ai+1,k+1

…Ai+1,k+2 Ai+1,k_

st

ld

ld

st

ld

ld

ld

ld

fma

fma

…
B

k
+

2
,j B

k
,j

…
B

k
+

3
,j B

k
+

1
,j

…
B

k
+

2
,j+

1
B

k
,j+

1

…
B

k
+

3
,j+

1
B

k
+

1
,j+

1

ld

fma

fma

Ci,j Ci,j+1

stst

ld

fma

fma

ld

fma

fma

ld ld ld

C_loader

C_drainer

Fig. 9. Systolic array for GEMM on the CGRA

design to reduce the number of FSMs. Although this increases the

number of inter-PE data communication channels, the CGRA has

sufficient LICs to efficiently implement them. Following the same

principle, the designs for MTTKRP, TTM and TTMc are 4-D, 4-D

and 5-D systolic arrays (not shown), respectively.

Table V shows the LOCs, performance and area results for all

the four kernels. All the kernels have utilized 100% fused-multiply

add (FMA), except TTMc, which uses 95% FMAs, achieving

a performance very close to the ninja GEMM implementation.

The average LOC for these designs is 38, while the ninja GEMM

implementation uses 2,280 LOC. The usage of all the other resources

for these designs are well within the hardware resource constraints.

TABLE V
EVALUATION RESULTS OF T2S DESIGNS ON THE RESEARCH CGRA

LOC Throughput
w.r.t Ninja GEMM

FMA usage

GEMM 40 92% 100%

MTKRP 32 99% 100%

TTM 47 104% 100%

TTMc 38 103% 95%

VI. RELATED WORK

HDLs like Verilog and VHDL describe a circuit at the register-

transfer level (RTL) with explicit timing [13], [14]. They can be

compared to “assembly languages”. HLS languages have a higher

abstraction. They accept an algorithmic description of a desired

behavior without clock-level timing [15]–[19]. Languages like

Chisel [20], PyMTL [21], BlueSpec [22], and Hot & Spicy [23]

raise level of hardware design abstraction by introducing concepts

like object orientation, functional programming and guarded

atomic actions in hardware design. T2S code is more succinct

and at an even higher abstraction level than an HLS program. T2S

code controls a compiler to generate details, instead of letting the

programmer directly write the details.

DSLs also have a higher abstraction level than HLS

languages [24]. Such languages express and optimize an algorithm

in predefined domain-specific patterns, and lower the patterns into

an HDL [8], [25]–[29]. The system we presented in this paper

extends Halide [8], a DSL for image processing on CPUs/GPUs,

to spatial architectures. Most of the optimizations we implemented

are new to Halide as they are specific to spatial architectures.

Some of them, like loop unrolling, extend the existing Halide

implementation. Halide-HLS [25] is another spatial extension of

Halide, where a dataflow graph of functions is specified to offload

to an FPGA, with line buffers to optimize the communication. It

currently focuses on image processing applications and has not

implemented any of the tensor kernels we have.

Spatial [26] is a language whose abstraction level is higher

than T2S. For example, for matrix multiply, Spatial specifies the

multiplication, and lets the compiler determine an efficient systolic

array. In comparison, T2S lets the programmer specify a systolic

array in detail. This simplifies the compiler due to the diversity of the

possible systolic arrays, and the difficulty for a compiler to statically

determine the best choice. We have attempted to make a direct

comparison with Spatial on the GEMM kernel. Unfortunately, the

current Spatial provides a more robust flow for Xilinx FPGAs but

fails in compilation when we target the Intel device. Nevertheless,

we notice that the reported GEMM performance in the Spatial pa-

per [26] is much lower than what we have achieved. HeteroCL [30]

decouples algorithm specification from compute, data type and

memory customizations. It also provides an abstraction level higher

than T2S where the compiler automatically determines the systolic

array for GEMM using PolySA [31] framework.

VII. CONCLUSION

We proposed a system that enables programmers to productively

specify optimizations for constructing high-performance spatial

designs. With this system, several important dense tensor kernels

have achieved high performance with high productivity. In future,

we plan to extend the system to more domains.
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