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Abstract

In future large-scale multi-core microprocessors, 
hard errors and process variations will create dynamic
heterogeneity, causing performance and power 
characteristics to differ among the cores in an 
unanticipated manner. Under this scenario, naïve 
assignments of applications to cores degraded by 
various faults and variations may result in large 
performance losses and power inefficiencies. We 
propose scheduling algorithms based on the 
Hungarian Algorithm and artificial intelligence (AI) 
search techniques that account for this future 
uncertainty in core characteristics. These thread 
assignment policies effectively match the capabilities 
of each degraded core with the requirements of the 
applications, achieving an ED2 only 3.2% and 3.7% 
higher, respectively, than a baseline eight core chip 
multiprocessor with no degradation, compared to over 
22% for a round robin policy.

1. Introduction

The microprocessor industry has transitioned to the 
strategy of incorporating additional processor cores on 
a die with each new process generation. While this chip 
multiprocessor (CMP) approach has the potential to 
provide supercomputer levels of processing 
performance on a single die, to bring this vision to 
fruition in the long term, architects must address a 
number of significant challenges, among them 
programmability, power consumption, and reliability.  

In terms of the latter, while transient (soft) errors are 
the primary focus today, permanent (hard) errors and 
circuit variability are expected to become a major 
challenge in the future [4]. In this paper, we consider 
permanent faults and variability that are caused by 
imperfections in the manufacturing process and from 
wear-out over the lifetime of the chip. As transistors 
continue to shrink to microscopic dimensions, the 

manufacturing process becomes less dependable, 
resulting in more defective transistors and wires. 
Moreover, these components more easily wear out 
when subjected to the stress of high levels of activity, 
power, and temperature.

Ultimately, a major consequence of decreasing 
hardware reliability is that many cores on the die will 
provide performance/power efficiency levels below 
that to which they were designed. Some components 
will have faults, certain circuits will be leakier than 
normal, and some transistors on critical paths will be 
slower, thereby requiring reduced frequency for correct 
operation. Manufacturers will not have the option of 
shipping only fully functional chips as this will 
necessitate unaffordably low yields. Instead, in order to 
provide reasonable performance at acceptable cost, 
future CMPs will be designed to tolerate faults and 
variations and operate in a degraded state [29]. These 
degradations are largely random physical processes that 
occur during manufacturing and usage. Consequently, 
each core will be uniquely affected by manufacturing 
and wear-out defects. Thus, the resulting degraded 
CMP will be an unpredictably heterogeneous multi-
core system, even if it was designed to be
homogeneous. 

A number of previous studies [1,5,28,29,30,33] 
have explored processors that can tolerate 
manufacturing and wear-out faults and variations, 
thereby keeping these chips operational. Prior research 
has not yet addressed the problem of ensuring that 
these degraded multi-core processors deliver adequate 
performance and power efficiency throughout their
expected lifetime. Even if processors are able to 
continue to function in the presence of errors and 
variability, they may not deliver the minimum expected 
level of power/performance efficiency, causing them to 
be rendered unusable before their expected end of life. 
This paper addresses this issue through self-tuning 
operating system scheduling policies that use high-level 
system feedback to match application characteristics to 
the degraded cores so as make the performance and 



power impact of hard errors and variability 
imperceptible to the user. 

While many prior reliability efforts examined purely 
hardware solutions [5,17,18,28,29,30,32,33], we take a 
combined hardware/software approach to address this 
complex scheduling problem. The hardware is best 
capable of providing feedback on the performance and 
power dissipation of threads running on the degraded 
processors. On the other hand, the operating system is 
best situated to assess the overall situation and to 
balance the requirements of each application from a 
global perspective.

We explore two methodologies for attacking the 
scheduling problem. First, by assuming that application 
behavior changes slowly and that interactions between 
applications are limited, we reduce the scheduling 
problem to the Assignment Problem, which can be 
solved by employing the Hungarian Algorithm [21]. 
Our second approach is to apply iterative optimization 
algorithms that have been shown to be effective on 
many similarly difficult combinatorial problems 
[25,27]. These iterative techniques operate with little 
domain-specific knowledge, are easy to implement, 
have low computational requirements, and 
continuously improve their solution, permitting the user 
to trade off algorithm runtime and solution quality. To 
our knowledge, our study is the first work to apply 
iterative optimization algorithms to heterogeneous 
multi-core thread scheduling.

2. Related Work

A number of prior research areas relate closely to 
our degraded multi-core scheduling problem. First, a 
number of efforts address architectural techniques to 
tolerate permanent errors resulting from manufacturing 
defects or wear-out during the processor lifetime. 
Shivakumar et al. [29] suggest exploiting inherent 
redundancy in the processor for hard error tolerance. 
Srinivasan et al. [33] propose two methods to increase 
the processor lifetime: structural duplication and 
graceful performance degradation. Schuchman and 
Vijaykumar [28] develop a methodology for testing 
architecture level components and isolating faults. 
Bower el al. [5] address fault diagnosis and unit de-
configuration. Distributed built-in self-testing and 
checkpointing techniques are devised by Shyam et al. 
[30] for detecting and recovering from defects. Finally, 
Aggarwal et al. [1] study mechanisms for isolating 
faulty components in a CMP and reducing an error’s 
impact through reconfiguration. We assume such 
schemes are already implemented in our baseline CMP, 
permitting cores to function in degraded states. Our 
work examines the next stage of the problem:  making 

most effective use of the resulting heterogeneous CMP 
by scheduling applications to match core and workload 
characteristics.

A second direction of prior research strives to 
understand, model, and mitigate manufacturing process 
variations (PV). Most work on PV focuses on the 
semiconductor device and circuit level, but a number of 
researchers have devised system-level approaches. 
Humenay et al. [10, 11] examine how parameter 
variations specifically impact multi-core chips. A 
number of studies [17,18,22] propose techniques to 
reduce the negative impact of variations on frequency 
and yield. Many of the mechanisms create 
heterogeneity on a CMP by disabling array elements or 
creating variable access times. 

Other previous research uses the operating system to 
improve CMP energy efficiency. Juang et al. [13] argue 
for coordinated formal control-theoretic methods to 
manage energy efficiency in multi-core systems. Li and 
Martínez [16] investigate heuristics that adaptively 
change the number of cores used, and the chip voltage 
and frequency to optimize power-performance in 
parallel applications. Isci et al. [12] further develop 
globally aware policies to dynamically tune DVFS to 
workload characteristics to maximize performance 
under a chip-wide power constraint. While this effort 
has similar elements to ours, they use DVFS to improve 
efficiency, whereas in our heterogeneous system, we 
use core scheduling. 

Most papers on power-aware multi-core thread 
scheduling are primarily concerned with thermal 
control in homogeneous chip multiprocessors 
[7,8,20,24,34]. In heterogeneous chip multiprocessors 
architectures [3,15], the heterogeneity is designed into 
the system rather than the unintentional result of 
hardware faults and variations. As a result, the degree 
and nature of heterogeneity is quite different. In Kumar 
et al. [15] the focus is on multi-programmed 
performance and applications are scheduled on cores to 
best match execution requirements. However, since 
only two types of cores are used, the solution space is 
small and thus a simple sampling scheme achieves 
good assignments. Becchi and Crowley [3] extend that 
work to use performance driven heuristics for 
scheduling. Our scheduling problem is far more 
complex: an unpredictably large number of 
heterogeneous organizations can arise in term of 
frequency, dynamic power, and leakage currents, in 
addition to architectural parameters.

Kumar et al. [14] study heterogeneous architectures 
where the cores are not restricted to a few 
configurations. The goal is to determine how much 
heterogeneity is necessary and how the cores should be 
designed to fit a given power budget. They focus on the 



architectural design issues rather than the scheduling 
aspect of the problem. Balakrishnan et al. [2] study the 
impact of asymmetry in core frequency on parallel 
commercial workloads using a hardware prototype. 
Ghiasi et al. [9] examine heterogeneity resulting from 
cores running at different voltages and frequencies. 
While their work adapts the core voltages and 
frequencies, we investigate cores with unpredictably 
heterogeneous frequencies and power output. We adapt 
the workload assignment to mitigate possible negative 
affects.

3. Scheduling Algorithms for 
Unpredictable CMPs

We propose scheduling algorithms that assign 
applications to cores over a fixed, relatively short 
period of time. Scheduling decisions are periodically 
reassessed to account for large application phase 
changes, programs completing, and new applications 
arriving to be processed. Our best algorithms consist of 
an exploration phase where samples of thread behavior 
on different cores are observed and a steady phase 
during which the algorithm runs the best schedule it 
found during the sampling phase.

Table 1 compares the scheduling algorithms that we 
explore in this paper. The table specifies the 
complexity of each algorithm where N is the number of 
cores (and the number of applications). For comparison 
purposes, we also implement randomized and round 
robin scheduling, two simple algorithms that have 
worked well on past multi-core designs. 

3.1. Hungarian Scheduling Algorithm

The Hungarian scheduling algorithm is based on the 
Hungarian Algorithm developed by mathematicians to 
solve the well-known Assignment Problem, also called 
Weighted Bipartite Matching in graph theory [21]. 
During the exploration phase, the algorithm samples 
application performance and power statistics on each 
core and picks the best scheduling assignment. In 
general, finding the best schedule is extremely difficult 
because threads interact during execution through 
contention for I/O and memory bandwidth as well as 
through heat conductivity between cores. Furthermore, 
program behavior is dynamic both in the short-term 
time frame and over large program phases, such that 
sample information may not reflect future behavior.

In order to simplify the problem, our algorithm 
assumes that there are no such interactions between 
threads and that program behavior is static – at least for 
the duration of the exploration phase. Making these 

assumptions eliminates the interdependence between 
execution samples running simultaneously, reducing 
the scheduling problem to the Assignment Problem.

The Assignment Problem is defined as follows. 
Given an N×N cost matrix where the (i,j) element 
represents the cost of running application i on core j, 
find the assignment of applications to cores with lowest 
total cost. In our case, the elements of the cost matrix 
consist of the normalized energy-delay-squared (ED2) 
product obtained by first sampling the execution of 
applications on each core. For each application, we 
divide each ED2 sample by the ED2 obtained during the 
first sampling interval to obtain the normalized values. 
Normalization ensures that applications are treated 
fairly by the scheduler despite any differences in the 
absolute value of their performance and power data. 

Step 1: For each row of the matrix, find 
the smallest element and subtract it from 
every element in its row. Go to Step 2. 

Step 2: Find a zero (Z) in the resulting 
matrix. If there is no starred zero in 
its row or column, star Z. Repeat for 
each zero in the matrix. Go to Step 3. 

Step 3: Cover each column containing a 
starred zero. If N columns are covered, 
the starred zeros describe a complete set 
of unique assignments and the algorithm 
is done. Otherwise, go to Step 4. 

Step 4: Find a non-covered zero and prime 
it. If there is no starred zero in the 
row containing this primed zero, go to 
Step 5. Otherwise, cover this row and 
uncover the column containing the starred 
zero. Continue in this manner until all 
zeros are covered. Save the smallest 
uncovered value and go to Step 6. 

Step 5: Construct a series of alternating 
primed and starred zeros as follows. Let 
Z0 represent the uncovered primed zero 
found in Step 4. Let Z1 denote the 
starred zero in the column of Z0 (if 
any). Let Z2 denote the primed zero in 
the row of Z1 (there will always be one). 
Continue until the series terminates at a 
primed zero that has no starred zero in 
its column. Unstar each starred zero of 
the series, star each primed zero of the 
series, erase all primes, and uncover 
every line in the matrix. Return to Step 
3. 

Step 6: Add the value found in Step 4 to 
every element of each covered row, and 
subtract it from every element of each 
uncovered column. Return to Step 4 
without altering any stars, primes, or 
covered lines.

Figure 1: The six step Hungarian Algorithm

Figure 1 outlines the six steps of the Hungarian 
Algorithm as described in [23]. The algorithm takes the 



cost matrix as input and proceeds by manipulating rows 
and columns through addition and subtraction to find a 
set of starred zero elements that represent the optimal 
assignment. During the algorithm, rows and columns 
are covered and zeroes are starred and primed to 
indicate special status. When the algorithm completes, 
there are N starred zeroes. A starred zero at location 
(i,j) means that the optimal solution to the Assignment 
Problem schedules application i to run on core j. The 
Hungarian scheduler then uses the best assignment for 
the simplified problem as the schedule for the steady-
state phase.

Table 1: Scheduling algorithms
Algorithm Exploration Phase 

(in cycles)
Complexity

Randomized none O(N)
Round Robin none O(N)

Hungarian 8 intervals of 12.5M O(N3)
Global Search 25 intervals of 4M O(N)
Local Search 25 intervals of 4M O(N)

3.2. Iterative Optimization Algorithms

Our other approach is to use iterative optimization 
algorithms inspired by artificial intelligence research 
[25,27]. These algorithms are highly suited to this 
scheduling task because they are generally simple to 
implement, have low computational requirements, and 
yet are extremely effective in practice. The simplest 
search algorithms are greedy: they avoid searching in 
directions that initially appear to have performance 
slowdowns or power inefficiencies even if they may 
hold promise in the future. Therefore, these greedy 
algorithms may get stuck in local minima. However, in 
practice, greedy algorithms are quite effective in 
certain problem domains and are often used due to their 
simplicity. In this paper, we study global search and 
local search. 

Figure 2: The global search algorithm

In global search (Figure 2), the processor is 
configured into a new random schedule in each interval 
of the exploration phase of the algorithm. The 
operating system keeps track of the best configuration 
thus far and employs this configuration during the 
longer, steady-state phase. Figure 2 illustrates how 
global search operates on a sample four core chip 
multiprocessor. Global search has the advantage of 
rapidly exploring a broad range of configurations in a 
large search space such as a CMP with many cores. 
However, it may not arrive at a near-optimal solution.

Local search defines a neighborhood of assignment 
options that are closely related to the current 
configuration. During each exploration interval, a 
member in the neighborhood of the current assignment 
is selected as the next assignment. If this new 
assignment performs better than the original, then it is 
kept and local search proceeds from this new 
configuration. If the new assignment does not function 
as well as the original, then local search reverts to 
searching further in the neighborhood of the original 
solution. We define the neighborhood of a scheduling 
configuration as all schedules that can be derived from 
the original schedule through some fixed number of 
pair-wise swaps. 

Figure 3: The one swap local search algorithm

In our results, we explore how many pair-wise 
swaps the algorithm should make per interval to 
determine the best setting. The advantage of selecting 
among a neighborhood of configurations that are 
derived from a few or even just one swap is that 
assignments in close proximity to the original are likely 
to have quite similar performance. This will lead to a 
more gradual search that steadily improves the solution 
and avoids the large changes which could lead to poor 
results. On the other hand, increased swapping more 
rapidly explores the search space of assignments. 
Figure 3 demonstrates how local search works when 
one swap is performed per iteration. Figure 4 shows a 
two swap version of local search and highlights a key 



improvement in our algorithm which allows some of 
the swaps from an interval to be retained while others 
are discarded. We also implemented a version of local 
search that uses hill climbing [27] to escape local 
minima. We found, however, that the improvements 
over greedy search were minimal, indicating that the 
algorithms were not greatly impacted by local minima.

Figure 4: The two swap local search algorithm

4. Methodology

Our simulation infrastructure is based on the SESC 
simulator [26]. We improved the power and thermal 
modeling by augmenting SESC with Cacti 4.0 [35], an 
improved version of Wattch [6], the block model of 
Hotspot 3.0 [31], and an improved version of 
HotLeakage [36]. We extended Wattch and 
HotLeakage to model the dynamic and static power of 
all the units not addressed in Cacti 4.0, including logic 
structures such as the decoder, dependency check logic, 
issue queue selection logic, and ALUs. We assume a 
nominal clock frequency of 4.0 GHz and a supply 
voltage of 1.0V. 

In order to efficiently simulate large multi-core 
architectures, we developed a parallel simulation 
framework. For this study, we focus on workloads of 
single-threaded applications chosen from the SPEC 
CPU2000 benchmarks. Multi-threaded workloads will 
present a unique set of additional challenges when run 
on a heterogeneous CMP and we leave this added 
dimension to future work. 

With these workloads, direct interaction among 
applications executing on different cores is limited. 
While heat from one core conducted across the silicon 
die can cause inter-core heating effects, in our design, 
private L2 caches surround each core. These large 
caches have low and relatively uniform activity and 
thus act as heat sinks preventing much of the heating 
from another core from affecting its neighbors. The 
second major interaction among cores is their 

contention for off-chip memory bandwidth. We assume 
the bandwidth is statically partitioned among the cores. 
This avoids further complicating our already large 
search space of thread scheduling and core 
configuration options.

With these assumptions, we simulate a multi-core 
processor using single-core simulations to obtain 
performance, power, and thermal statistics that are then 
combined by a higher level chip-wide simulator that 
performs the role of the operating system scheduler. 
The chip-wide simulator is responsible for setting up 
the proper application assignments for each interval in 
the sampling phase, gathering and interpreting the 
individual core results, and applying the algorithms to 
determine the best schedule for the steady-state phase. 
A major advantage of this approach is its scalability to 
CMPs with a large number of cores.

Table 2: Core architectural parameters
Front-End Parameters

Branch Predictor

Hybrid of gshare and 
bimodal with 4K entries in 

the bimodal, gshare 2nd

level, and meta predictor
Branch Target Buffer 512 entries, 4-way assoc.
Return Address Stack 64 entries, fully assoc.
Front-End Width 3-way
Fetch Queue Size 18 entries
Re-Order Buffer 100 entries
Retire Width 3-way

Back-End Parameters
Integer Issue Queue 32 entries, 2-way issue
Integer Register File 80 registers
Integer Execution 
Units

2 ALUs and 1 mult/div unit

FP Issue Queue 24 entries, 1-way issue
FP Register File 80 registers
FP Execution Units 1 adder and 1 mult/div unit

Memory Hierarchy

L1 Instruction Cache
8KB, 2-way assoc., 1 port, 

1 cycle latency
Instruction TLB 32 entry, fully assoc., 1 port
Load Queue 32 entries, 2 ports
Store Queue 16 entries, 2 ports

L1 Data Cache
8KB, 2-way assoc., 2 ports, 

1 cycle latency
Data TLB 32 entry, fully assoc., 2 ports

L2 Cache
1MB, 8-way assoc., 1 port, 

10 cycle latency
Main memory 1 port, 200 cycle latency

Our baseline architecture consists of an eight core 
homogeneous chip multiprocessor with no degradation 



due to hard failures or variations. Each core is a single-
threaded, 3-way superscalar, out-of-order processor. 
The main architectural parameters are listed in Table 2. 
In order to model temperature-dependent leakage 
power, we created a core floor plan. Each core is 
surrounded by its L2 cache modeled as four banks and 
illustrated in Figure 5. 

Figure 5: Processor core floor plan

The task of modeling faults and variations in an 
architectural simulation is quite challenging. Much of 
the effect from errors and variability on a chip is highly 
device and circuit dependent and such low level details 
are not available at the time of initial architectural 
design. In this work, we focus on the architecturally 
visible effects of faults and variations. We study 
processor configurations that have become degraded 
from the nominal design through manufacturing 
inconsistencies as well as wear-out over the lifetime of 
the device. For this study, the specific source of the 
degradation – manufacturing or wear-out – is not 
important because we focus on adapting the OS thread 
scheduling and core configuration ex post facto.

We focus on three forms of processor degradation. 
First, we model errors that cause the system to disable 
part of a pipeline component such as an ALU, load 
queue port, or set of ROB entries. We focus on large 
granularity errors that damage significant portions of 
the structure. Prior work has shown that when only a 
few entries in structures, such as an issue queue or 
register file, are damaged, the performance impact 
(assuming graceful degradation) is negligible, and thus 
adaptation is unnecessary [17]. Second, we assume 
core frequency degradation from manufacturing 

process variations that result in slow transistors in 
critical circuit paths [17,22]. Prior work has found that 
these variations can increase processor cycle time by as 
much as 30%, eliminating an entire technology 
generation’s worth of frequency improvement [4]. 
Third, we assume leakage current variations, which are 
also caused by process variations that diminish the 
quality of the transistors, magnifying sub-threshold and 
gate leakage currents. 

Past research concluded that excessive leakage 
currents will be a very serious problem, with some [4] 
saying that leakage variability across dies could be as 
high as 20X. Others [10] suggest that even at 45nm 
within-die variations alone could cause leakage 
differences among cores of as much as 45%. Following 
the arguments of [10,11], we focus on leakage 
variations that can be attributed to systematic 
variability. Thus, we consider leakage variations that 
affect an entire core as in [10] as well as those that 
affect a group of architectural blocks in close 
proximity.

Table 3: Degraded CMP configuration
Core Structural Faults Frequency 

Degradation
Leakage 
Increase

1 2x normal memory 
latency (100 ns) 

– 2x in the 
L1 caches

2 half the nominal 
size integer 

issue queue (16)

20% 
 (3.2 GHz)

2x for the 
whole core

3 half the nominal 
size load queue (16)

10% 
(3.6 GHz)

2x in the 
store and 

load queues
4 one integer ALU is 

disabled
20% 

(3.2 GHz)
–

5 integer issue queue 
can only issue one 

instruction per cycle

– –

6 half the L2 cache is 
broken leaving 

500KB 

10%
(3.6 GHz)

2x in the 
integer 
cluster

7 half the nominal 
ROB entries (50)

– 2x in the 
FP cluster

8 half the nominal 
size store queue (8)

– 2x in the 
front-end 

In a CMP where cores could be affected in a 
multitude of ways, there are numerous heterogeneous 
core configurations that could arise. In this study, we 
assume the degraded CMP configuration shown in 
Table 3. We assumed each core experienced some form 
of faults or variation but each processor was only 
affected by at most a few problems.



To test the effectiveness of our scheduling 
algorithms, we created the four eight-threaded 
workloads of SPEC CPU2000 applications shown in 
Table 4. Each benchmark was used evenly among the 
four workloads. For each simulation, we fast forwarded 
every benchmark five billion instructions, and then 
executed one billion cycles in SESC, or 0.25 seconds at 
a nominal frequency of 4 GHz. Cores that run at lower 
frequencies execute for proportionally fewer cycles.

Table 4: Workloads
Workload 1 applu, bzip2, equake, gcc, mcf, mesa, 

parser, swim
Workload 2 ammp, apsi, art, crafty, twolf, vortex, 

vpr, wupwise
Workload 3 mesa, ammp, applu, crafty, vortex, gcc, 

wupwise, mcf
Workload 4 swim, parser, vpr, bzip2, art, apsi, 

twolf, equake

The OS scheduler periodically switches between the 
exploration and steady-state phases of the algorithm. 
During the exploration phase, which constitutes 10% of 
the total execution time, the algorithm adapts to 
workload changes to find the best assignment of 
threads to cores. During the longer steady-state phase, 
the CMP runs with this best configuration. The 
performance of the algorithm is based on both the 
exploration and steady-state phases. The length and 
number of the sampling intervals are algorithm 
dependent parameters and are chosen to the best 
advantage of each technique. For each workload, we 
performed five different runs with different application-
to-core starting assignments, and report the average, 
best, and worst results. 

For the simpler randomized and round robin 
algorithms, we modeled 10 million cycle operating 
system time slices, the equivalent of 2.5 milliseconds. 
These algorithms do not require exploration and 
instead they use each time slice interval to perform 
their reassignments.

5. Results and Discussion

In this section, we present the results of the various 
scheduling algorithms on our degraded eight core 
CMP. All comparisons are made using the energy-
delay squared (ED2) metric against a baseline with no 
errors or variations and an oracle scheduler which uses 
a priori knowledge to derive the best schedule among 
all possible options. We chose ED2 as the metric in 
order to balance performance with power dissipation 
[19]. Section 5.1 discusses how simple schedulers 

compare to the non-degraded baseline. Section 5.2 
shows how the Hungarian and AI search algorithms 
fare against the offline oracle. Finally, Section 5.3 
provides an overall comparison of the scheduling 
algorithms.

5.1. Simple Scheduling Algorithms

We first evaluate the effectiveness of two simple 
scheduling algorithms – round robin and randomized –
that are suitable for homogeneous CMPs and statically 
designed heterogeneous CMPs, on the degraded CMP 
of Table 3. The round robin scheduler rotates the 
threads on the cores at the beginning of each OS 
interval. This approach avoids a worst case assignment 
by limiting how long an application runs on any given 
core. The even assignment of applications to 
processors also avoids high power density scenarios 
and uneven wear-out of a core through over-activity or 
high temperature. 

The randomized scheduler randomly assigns threads 
to cores every operating system interval. This approach 
avoids degenerate behavior that might occur with round 
robin such as destructive interference with program 
phases. 

Figure 6 shows the results of these schedulers on the 
degraded CMP relative to a baseline with no 
degradation. Both approaches degrade ED2 by over 
22% on average. The final bar on the graph, the worst-
case schedule, shows that an arbitrary assignment of 
threads to cores can degrade ED2 by almost 45% 
compared to the baseline. Clearly, naïve policies can 
result in an unacceptable loss in power/performance 
that may render the degraded microprocessor unusable. 
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Figure 6: Comparison of simple schedulers

5.2. Hungarian Policy and Search Algorithms

The Hungarian scheduling policy samples each 
benchmark on each core during the exploration phase, 



and then computes the best assignment among all 
permutations (assuming no interactions or phase 
behavior). For the Hungarian policy, the exploration 
phase is divided into eight intervals, each 12.5 million 
cycles long, during which the eight applications are 
executed once on each core, by starting with an initial 
assignment and then rotating the threads in a round 
robin fashion seven times. This allows the scheduler to 
generate the 8×8 cost matrix of ED2 values to use as 
input to the algorithm. 
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Figure 7: Comparison of advanced schedulers

Figure 7 shows the ED2 of the Hungarian scheduling 
algorithm compared to the oracle scheduler. The solid 
bar represents the average of the five runs, and the 
error bars show the best and worst results. The 
algorithm performs well, suffering only a 7.3% 
increase in ED2 relative to the oracle. The performance 
and power characteristics of the benchmarks during the 
initial 100 million cycle exploration phase are quite 
reflective of the overall traits of the benchmarks. Thus, 
using the Hungarian Algorithm to calculate the best 
solution among all possible scheduling permutations 
based on this sampling information yields a good 
assignment over the whole run, regardless of the 
starting assignment.

While effective, the Hungarian scheduling algorithm 
has O(N3) complexity, while the other algorithms are of 
O(N). We simulated the Hungarian Algorithm on our 
baseline core configuration and found it takes 
approximately 200K cycles to solve a cost matrix with 
eight cores, a non-trivial cost that may not scale well to 
larger-scale CMPs. Since the number of sampling 
intervals scales linearly with the number of cores, a 
large amount of online profiling will also be required 
for chips with tens or hundreds of cores. Moreover, the 
algorithm may not work well when there are significant 
interactions among applications or rapid phase 
changes. 

The global and local search algorithms divide the 
exploration phase into 25 intervals of four million
cycles. Both start with the initial configuration and try 
other configurations, greedily pursuing paths that 
improve on the best schedule to date. Global search 
simply tries the initial configuration and 24 other 
randomly chosen ones and then selects the best among 
them for the steady-state phase. This strategy 
sometimes works quite well but can perform poorly
depending on the 25 configurations pursued. Overall, 
global search degrades ED2 by 19.5% over the oracle 
scheduler.

Three versions of the local search method were 
implemented which vary in the number of pair-wise 
swaps performed to explore a neighboring 
configuration. Local Search N uses N pair-wise swaps 
such that two benchmarks are involved in each switch 
for Local Search 1, while all benchmarks are swapped 
for Local Search 4. Local Search 1 makes a swap and 
then runs that schedule for the next 4 million cycle 
interval. If performance improves, it keeps that new 
configuration; otherwise, it selects another neighbor of 
the original solution. The comparison is made using the 
average of the normalized ED2 (with respect to the ED2

of the previous interval) of the two threads involved in 
the swap. Local Search 2 and Local Search 4 have an 
additional feature to improve their performance. 
Instead of collectively accepting or rejecting all the 
swaps made in an interval, beneficial pair-wise swaps 
are kept and others discarded. From the results in 
Figure 7, the additional pair-wise swaps of Local 
Search 2 and Local Search 4 significantly improves the 
algorithm; the ED2 increase achieved with one, two, 
and four pair-wise swaps each interval is 15.0%, 
12.6%, and 7.8%, respectively. Moreover, Local 
Search 4 significantly outperforms global search. The 
error bars show that Local Search 4 is also less 
sensitive to the initial assignment due to its ability to 
more rapidly search the space of possible assignments.

5.3. Overall Comparison

In Figure 8, we compare all the scheduling 
algorithms to the non-degraded chip multiprocessor. 
The offline oracle scheduler achieves 3.1% better ED2

than the CMP without degradation. This occurs due to 
the fact that some of the some of the degraded cores 
operate at lower power, due to lower frequency or 
failed components that are power gated. Consequently, 
an omniscient scheduler can find an assignment that is 
more power/performance efficient than the baseline.

Moreover, both the Hungarian and Local Search 4 
scheduling algorithms achieve ED2 values very close to 
the non-degraded baseline – higher only by 3.2% and 



3.7%, respectively – compared to the over 22% 
degradations with naïve schedulers. Thus, intelligent 
scheduling will be critical to maintaining acceptable 
levels of power/performance efficiency on future CMPs 
degraded by wear-out and variations.
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Figure 8: Overall comparison

6. Conclusions

In future CMPs, variations and hard errors will 
conspire to create dynamic heterogeneity among the 
cores. Unlike statically designed heterogeneous CMPs, 
the unpredictability of manufacturing defects, wear-out 
mechanisms, and variations will require self-tuning 
scheduling techniques that efficiently find a near-
optimal schedule given any degraded CMP scenario, 
thereby making the chip degradation imperceptible to 
the user. In this paper, we devise a number of different 
scheduling algorithms for finding near-optimal thread 
to core assignments in a degraded CMP. 

We first demonstrate that simple policies, such as 
round robin scheduling, degrade ED2 to the point that 
the chip may be rendered unusable. Under the 
assumption of limited core-to-core interaction, we 
observe that the scheduling problem reduces to the 
Assignment Problem and can be addressed through the 
Hungarian Algorithm. We devise a scheduler based on 
this algorithm that achieves an ED2 close to that of an 
oracle scheduler. We further develop schedulers based 
on AI search techniques that obviate the requirement of 
limited core-to-core interaction, and that better scale to 
large CMP organizations. The most scalable and 
effective of these policies rapidly arrives at a near-
optimal solution that degrades ED2 by only 3.7% over a 
non-degraded architecture, compared to over 22% for 
simple approaches. 

For future work, we plan to investigate algorithms 
for CMPs with tens to hundreds of cores, and those that 
address workloads containing a mix of parallel and 
sequential applications.
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