
Scheduling Algorithms for Unpredictably Heterogeneous
CMP Architectures

Jonathan A. Winter and David H. Albonesi
Computer Systems Laboratory, Cornell University

{winter, albonesi}@csl.cornell.edu

Abstract

In future large-scale multi-core microprocessors,
hard errors and process variations will create dynamic
heterogeneity, causing performance and power
characteristics to differ among the cores in an
unanticipated manner. Under this scenario, naïve
assignments of applications to cores degraded by
various faults and variations may result in large
performance losses and power inefficiencies. We
propose scheduling algorithms based on the
Hungarian Algorithm and artificial intelligence (AI)
search techniques that account for this future
uncertainty in core characteristics. These thread
assignment policies effectively match the capabilities
of each degraded core with the requirements of the
applications, achieving an ED2 only 3.2% and 3.7%
higher, respectively, than a baseline eight core chip
multiprocessor with no degradation, compared to over
22% for a round robin policy.

1. Introduction

The microprocessor industry has transitioned to the
strategy of incorporating additional processor cores on
a die with each new process generation. While this chip
multiprocessor (CMP) approach has the potential to
provide supercomputer levels of processing
performance on a single die, to bring this vision to
fruition in the long term, architects must address a
number of significant challenges, among them
programmability, power consumption, and reliability.

In terms of the latter, while transient (soft) errors are
the primary focus today, permanent (hard) errors and
circuit variability are expected to become a major
challenge in the future [4]. In this paper, we consider
permanent faults and variability that are caused by
imperfections in the manufacturing process and from
wear-out over the lifetime of the chip. As transistors
continue to shrink to microscopic dimensions, the

manufacturing process becomes less dependable,
resulting in more defective transistors and wires.
Moreover, these components more easily wear out
when subjected to the stress of high levels of activity,
power, and temperature.

Ultimately, a major consequence of decreasing
hardware reliability is that many cores on the die will
provide performance/power efficiency levels below
that to which they were designed. Some components
will have faults, certain circuits will be leakier than
normal, and some transistors on critical paths will be
slower, thereby requiring reduced frequency for correct
operation. Manufacturers will not have the option of
shipping only fully functional chips as this will
necessitate unaffordably low yields. Instead, in order to
provide reasonable performance at acceptable cost,
future CMPs will be designed to tolerate faults and
variations and operate in a degraded state [29]. These
degradations are largely random physical processes that
occur during manufacturing and usage. Consequently,
each core will be uniquely affected by manufacturing
and wear-out defects. Thus, the resulting degraded
CMP will be an unpredictably heterogeneous multi-
core system, even if it was designed to be
homogeneous.

A number of previous studies [1,5,28,29,30,33]
have explored processors that can tolerate
manufacturing and wear-out faults and variations,
thereby keeping these chips operational. Prior research
has not yet addressed the problem of ensuring that
these degraded multi-core processors deliver adequate
performance and power efficiency throughout their
expected lifetime. Even if processors are able to
continue to function in the presence of errors and
variability, they may not deliver the minimum expected
level of power/performance efficiency, causing them to
be rendered unusable before their expected end of life.
This paper addresses this issue through self-tuning
operating system scheduling policies that use high-level
system feedback to match application characteristics to
the degraded cores so as make the performance and

power impact of hard errors and variability
imperceptible to the user.

While many prior reliability efforts examined purely
hardware solutions [5,17,18,28,29,30,32,33], we take a
combined hardware/software approach to address this
complex scheduling problem. The hardware is best
capable of providing feedback on the performance and
power dissipation of threads running on the degraded
processors. On the other hand, the operating system is
best situated to assess the overall situation and to
balance the requirements of each application from a
global perspective.

We explore two methodologies for attacking the
scheduling problem. First, by assuming that application
behavior changes slowly and that interactions between
applications are limited, we reduce the scheduling
problem to the Assignment Problem, which can be
solved by employing the Hungarian Algorithm [21].
Our second approach is to apply iterative optimization
algorithms that have been shown to be effective on
many similarly difficult combinatorial problems
[25,27]. These iterative techniques operate with little
domain-specific knowledge, are easy to implement,
have low computational requirements, and
continuously improve their solution, permitting the user
to trade off algorithm runtime and solution quality. To
our knowledge, our study is the first work to apply
iterative optimization algorithms to heterogeneous
multi-core thread scheduling.

2. Related Work

A number of prior research areas relate closely to
our degraded multi-core scheduling problem. First, a
number of efforts address architectural techniques to
tolerate permanent errors resulting from manufacturing
defects or wear-out during the processor lifetime.
Shivakumar et al. [29] suggest exploiting inherent
redundancy in the processor for hard error tolerance.
Srinivasan et al. [33] propose two methods to increase
the processor lifetime: structural duplication and
graceful performance degradation. Schuchman and
Vijaykumar [28] develop a methodology for testing
architecture level components and isolating faults.
Bower el al. [5] address fault diagnosis and unit de-
configuration. Distributed built-in self-testing and
checkpointing techniques are devised by Shyam et al.
[30] for detecting and recovering from defects. Finally,
Aggarwal et al. [1] study mechanisms for isolating
faulty components in a CMP and reducing an error’s
impact through reconfiguration. We assume such
schemes are already implemented in our baseline CMP,
permitting cores to function in degraded states. Our
work examines the next stage of the problem: making

most effective use of the resulting heterogeneous CMP
by scheduling applications to match core and workload
characteristics.

A second direction of prior research strives to
understand, model, and mitigate manufacturing process
variations (PV). Most work on PV focuses on the
semiconductor device and circuit level, but a number of
researchers have devised system-level approaches.
Humenay et al. [10, 11] examine how parameter
variations specifically impact multi-core chips. A
number of studies [17,18,22] propose techniques to
reduce the negative impact of variations on frequency
and yield. Many of the mechanisms create
heterogeneity on a CMP by disabling array elements or
creating variable access times.

Other previous research uses the operating system to
improve CMP energy efficiency. Juang et al. [13] argue
for coordinated formal control-theoretic methods to
manage energy efficiency in multi-core systems. Li and
Martínez [16] investigate heuristics that adaptively
change the number of cores used, and the chip voltage
and frequency to optimize power-performance in
parallel applications. Isci et al. [12] further develop
globally aware policies to dynamically tune DVFS to
workload characteristics to maximize performance
under a chip-wide power constraint. While this effort
has similar elements to ours, they use DVFS to improve
efficiency, whereas in our heterogeneous system, we
use core scheduling.

Most papers on power-aware multi-core thread
scheduling are primarily concerned with thermal
control in homogeneous chip multiprocessors
[7,8,20,24,34]. In heterogeneous chip multiprocessors
architectures [3,15], the heterogeneity is designed into
the system rather than the unintentional result of
hardware faults and variations. As a result, the degree
and nature of heterogeneity is quite different. In Kumar
et al. [15] the focus is on multi-programmed
performance and applications are scheduled on cores to
best match execution requirements. However, since
only two types of cores are used, the solution space is
small and thus a simple sampling scheme achieves
good assignments. Becchi and Crowley [3] extend that
work to use performance driven heuristics for
scheduling. Our scheduling problem is far more
complex: an unpredictably large number of
heterogeneous organizations can arise in term of
frequency, dynamic power, and leakage currents, in
addition to architectural parameters.

Kumar et al. [14] study heterogeneous architectures
where the cores are not restricted to a few
configurations. The goal is to determine how much
heterogeneity is necessary and how the cores should be
designed to fit a given power budget. They focus on the

architectural design issues rather than the scheduling
aspect of the problem. Balakrishnan et al. [2] study the
impact of asymmetry in core frequency on parallel
commercial workloads using a hardware prototype.
Ghiasi et al. [9] examine heterogeneity resulting from
cores running at different voltages and frequencies.
While their work adapts the core voltages and
frequencies, we investigate cores with unpredictably
heterogeneous frequencies and power output. We adapt
the workload assignment to mitigate possible negative
affects.

3. Scheduling Algorithms for
Unpredictable CMPs

We propose scheduling algorithms that assign
applications to cores over a fixed, relatively short
period of time. Scheduling decisions are periodically
reassessed to account for large application phase
changes, programs completing, and new applications
arriving to be processed. Our best algorithms consist of
an exploration phase where samples of thread behavior
on different cores are observed and a steady phase
during which the algorithm runs the best schedule it
found during the sampling phase.

Table 1 compares the scheduling algorithms that we
explore in this paper. The table specifies the
complexity of each algorithm where N is the number of
cores (and the number of applications). For comparison
purposes, we also implement randomized and round
robin scheduling, two simple algorithms that have
worked well on past multi-core designs.

3.1. Hungarian Scheduling Algorithm

The Hungarian scheduling algorithm is based on the
Hungarian Algorithm developed by mathematicians to
solve the well-known Assignment Problem, also called
Weighted Bipartite Matching in graph theory [21].
During the exploration phase, the algorithm samples
application performance and power statistics on each
core and picks the best scheduling assignment. In
general, finding the best schedule is extremely difficult
because threads interact during execution through
contention for I/O and memory bandwidth as well as
through heat conductivity between cores. Furthermore,
program behavior is dynamic both in the short-term
time frame and over large program phases, such that
sample information may not reflect future behavior.

In order to simplify the problem, our algorithm
assumes that there are no such interactions between
threads and that program behavior is static – at least for
the duration of the exploration phase. Making these

assumptions eliminates the interdependence between
execution samples running simultaneously, reducing
the scheduling problem to the Assignment Problem.

The Assignment Problem is defined as follows.
Given an N×N cost matrix where the (i,j) element
represents the cost of running application i on core j,
find the assignment of applications to cores with lowest
total cost. In our case, the elements of the cost matrix
consist of the normalized energy-delay-squared (ED2)
product obtained by first sampling the execution of
applications on each core. For each application, we
divide each ED2 sample by the ED2 obtained during the
first sampling interval to obtain the normalized values.
Normalization ensures that applications are treated
fairly by the scheduler despite any differences in the
absolute value of their performance and power data.

Step 1: For each row of the matrix, find
the smallest element and subtract it from
every element in its row. Go to Step 2.

Step 2: Find a zero (Z) in the resulting
matrix. If there is no starred zero in
its row or column, star Z. Repeat for
each zero in the matrix. Go to Step 3.

Step 3: Cover each column containing a
starred zero. If N columns are covered,
the starred zeros describe a complete set
of unique assignments and the algorithm
is done. Otherwise, go to Step 4.

Step 4: Find a non-covered zero and prime
it. If there is no starred zero in the
row containing this primed zero, go to
Step 5. Otherwise, cover this row and
uncover the column containing the starred
zero. Continue in this manner until all
zeros are covered. Save the smallest
uncovered value and go to Step 6.

Step 5: Construct a series of alternating
primed and starred zeros as follows. Let
Z0 represent the uncovered primed zero
found in Step 4. Let Z1 denote the
starred zero in the column of Z0 (if
any). Let Z2 denote the primed zero in
the row of Z1 (there will always be one).
Continue until the series terminates at a
primed zero that has no starred zero in
its column. Unstar each starred zero of
the series, star each primed zero of the
series, erase all primes, and uncover
every line in the matrix. Return to Step
3.

Step 6: Add the value found in Step 4 to
every element of each covered row, and
subtract it from every element of each
uncovered column. Return to Step 4
without altering any stars, primes, or
covered lines.

Figure 1: The six step Hungarian Algorithm

Figure 1 outlines the six steps of the Hungarian
Algorithm as described in [23]. The algorithm takes the

cost matrix as input and proceeds by manipulating rows
and columns through addition and subtraction to find a
set of starred zero elements that represent the optimal
assignment. During the algorithm, rows and columns
are covered and zeroes are starred and primed to
indicate special status. When the algorithm completes,
there are N starred zeroes. A starred zero at location
(i,j) means that the optimal solution to the Assignment
Problem schedules application i to run on core j. The
Hungarian scheduler then uses the best assignment for
the simplified problem as the schedule for the steady-
state phase.

Table 1: Scheduling algorithms
Algorithm Exploration Phase

(in cycles)
Complexity

Randomized none O(N)
Round Robin none O(N)

Hungarian 8 intervals of 12.5M O(N3)
Global Search 25 intervals of 4M O(N)
Local Search 25 intervals of 4M O(N)

3.2. Iterative Optimization Algorithms

Our other approach is to use iterative optimization
algorithms inspired by artificial intelligence research
[25,27]. These algorithms are highly suited to this
scheduling task because they are generally simple to
implement, have low computational requirements, and
yet are extremely effective in practice. The simplest
search algorithms are greedy: they avoid searching in
directions that initially appear to have performance
slowdowns or power inefficiencies even if they may
hold promise in the future. Therefore, these greedy
algorithms may get stuck in local minima. However, in
practice, greedy algorithms are quite effective in
certain problem domains and are often used due to their
simplicity. In this paper, we study global search and
local search.

Figure 2: The global search algorithm

In global search (Figure 2), the processor is
configured into a new random schedule in each interval
of the exploration phase of the algorithm. The
operating system keeps track of the best configuration
thus far and employs this configuration during the
longer, steady-state phase. Figure 2 illustrates how
global search operates on a sample four core chip
multiprocessor. Global search has the advantage of
rapidly exploring a broad range of configurations in a
large search space such as a CMP with many cores.
However, it may not arrive at a near-optimal solution.

Local search defines a neighborhood of assignment
options that are closely related to the current
configuration. During each exploration interval, a
member in the neighborhood of the current assignment
is selected as the next assignment. If this new
assignment performs better than the original, then it is
kept and local search proceeds from this new
configuration. If the new assignment does not function
as well as the original, then local search reverts to
searching further in the neighborhood of the original
solution. We define the neighborhood of a scheduling
configuration as all schedules that can be derived from
the original schedule through some fixed number of
pair-wise swaps.

Figure 3: The one swap local search algorithm

In our results, we explore how many pair-wise
swaps the algorithm should make per interval to
determine the best setting. The advantage of selecting
among a neighborhood of configurations that are
derived from a few or even just one swap is that
assignments in close proximity to the original are likely
to have quite similar performance. This will lead to a
more gradual search that steadily improves the solution
and avoids the large changes which could lead to poor
results. On the other hand, increased swapping more
rapidly explores the search space of assignments.
Figure 3 demonstrates how local search works when
one swap is performed per iteration. Figure 4 shows a
two swap version of local search and highlights a key

improvement in our algorithm which allows some of
the swaps from an interval to be retained while others
are discarded. We also implemented a version of local
search that uses hill climbing [27] to escape local
minima. We found, however, that the improvements
over greedy search were minimal, indicating that the
algorithms were not greatly impacted by local minima.

Figure 4: The two swap local search algorithm

4. Methodology

Our simulation infrastructure is based on the SESC
simulator [26]. We improved the power and thermal
modeling by augmenting SESC with Cacti 4.0 [35], an
improved version of Wattch [6], the block model of
Hotspot 3.0 [31], and an improved version of
HotLeakage [36]. We extended Wattch and
HotLeakage to model the dynamic and static power of
all the units not addressed in Cacti 4.0, including logic
structures such as the decoder, dependency check logic,
issue queue selection logic, and ALUs. We assume a
nominal clock frequency of 4.0 GHz and a supply
voltage of 1.0V.

In order to efficiently simulate large multi-core
architectures, we developed a parallel simulation
framework. For this study, we focus on workloads of
single-threaded applications chosen from the SPEC
CPU2000 benchmarks. Multi-threaded workloads will
present a unique set of additional challenges when run
on a heterogeneous CMP and we leave this added
dimension to future work.

With these workloads, direct interaction among
applications executing on different cores is limited.
While heat from one core conducted across the silicon
die can cause inter-core heating effects, in our design,
private L2 caches surround each core. These large
caches have low and relatively uniform activity and
thus act as heat sinks preventing much of the heating
from another core from affecting its neighbors. The
second major interaction among cores is their

contention for off-chip memory bandwidth. We assume
the bandwidth is statically partitioned among the cores.
This avoids further complicating our already large
search space of thread scheduling and core
configuration options.

With these assumptions, we simulate a multi-core
processor using single-core simulations to obtain
performance, power, and thermal statistics that are then
combined by a higher level chip-wide simulator that
performs the role of the operating system scheduler.
The chip-wide simulator is responsible for setting up
the proper application assignments for each interval in
the sampling phase, gathering and interpreting the
individual core results, and applying the algorithms to
determine the best schedule for the steady-state phase.
A major advantage of this approach is its scalability to
CMPs with a large number of cores.

Table 2: Core architectural parameters
Front-End Parameters

Branch Predictor

Hybrid of gshare and
bimodal with 4K entries in

the bimodal, gshare 2nd

level, and meta predictor
Branch Target Buffer 512 entries, 4-way assoc.
Return Address Stack 64 entries, fully assoc.
Front-End Width 3-way
Fetch Queue Size 18 entries
Re-Order Buffer 100 entries
Retire Width 3-way

Back-End Parameters
Integer Issue Queue 32 entries, 2-way issue
Integer Register File 80 registers
Integer Execution
Units

2 ALUs and 1 mult/div unit

FP Issue Queue 24 entries, 1-way issue
FP Register File 80 registers
FP Execution Units 1 adder and 1 mult/div unit

Memory Hierarchy

L1 Instruction Cache
8KB, 2-way assoc., 1 port,

1 cycle latency
Instruction TLB 32 entry, fully assoc., 1 port
Load Queue 32 entries, 2 ports
Store Queue 16 entries, 2 ports

L1 Data Cache
8KB, 2-way assoc., 2 ports,

1 cycle latency
Data TLB 32 entry, fully assoc., 2 ports

L2 Cache
1MB, 8-way assoc., 1 port,

10 cycle latency
Main memory 1 port, 200 cycle latency

Our baseline architecture consists of an eight core
homogeneous chip multiprocessor with no degradation

due to hard failures or variations. Each core is a single-
threaded, 3-way superscalar, out-of-order processor.
The main architectural parameters are listed in Table 2.
In order to model temperature-dependent leakage
power, we created a core floor plan. Each core is
surrounded by its L2 cache modeled as four banks and
illustrated in Figure 5.

Figure 5: Processor core floor plan

The task of modeling faults and variations in an
architectural simulation is quite challenging. Much of
the effect from errors and variability on a chip is highly
device and circuit dependent and such low level details
are not available at the time of initial architectural
design. In this work, we focus on the architecturally
visible effects of faults and variations. We study
processor configurations that have become degraded
from the nominal design through manufacturing
inconsistencies as well as wear-out over the lifetime of
the device. For this study, the specific source of the
degradation – manufacturing or wear-out – is not
important because we focus on adapting the OS thread
scheduling and core configuration ex post facto.

We focus on three forms of processor degradation.
First, we model errors that cause the system to disable
part of a pipeline component such as an ALU, load
queue port, or set of ROB entries. We focus on large
granularity errors that damage significant portions of
the structure. Prior work has shown that when only a
few entries in structures, such as an issue queue or
register file, are damaged, the performance impact
(assuming graceful degradation) is negligible, and thus
adaptation is unnecessary [17]. Second, we assume
core frequency degradation from manufacturing

process variations that result in slow transistors in
critical circuit paths [17,22]. Prior work has found that
these variations can increase processor cycle time by as
much as 30%, eliminating an entire technology
generation’s worth of frequency improvement [4].
Third, we assume leakage current variations, which are
also caused by process variations that diminish the
quality of the transistors, magnifying sub-threshold and
gate leakage currents.

Past research concluded that excessive leakage
currents will be a very serious problem, with some [4]
saying that leakage variability across dies could be as
high as 20X. Others [10] suggest that even at 45nm
within-die variations alone could cause leakage
differences among cores of as much as 45%. Following
the arguments of [10,11], we focus on leakage
variations that can be attributed to systematic
variability. Thus, we consider leakage variations that
affect an entire core as in [10] as well as those that
affect a group of architectural blocks in close
proximity.

Table 3: Degraded CMP configuration
Core Structural Faults Frequency

Degradation
Leakage
Increase

1 2x normal memory
latency (100 ns)

– 2x in the
L1 caches

2 half the nominal
size integer

issue queue (16)

20%
 (3.2 GHz)

2x for the
whole core

3 half the nominal
size load queue (16)

10%
(3.6 GHz)

2x in the
store and

load queues
4 one integer ALU is

disabled
20%

(3.2 GHz)
–

5 integer issue queue
can only issue one

instruction per cycle

– –

6 half the L2 cache is
broken leaving

500KB

10%
(3.6 GHz)

2x in the
integer
cluster

7 half the nominal
ROB entries (50)

– 2x in the
FP cluster

8 half the nominal
size store queue (8)

– 2x in the
front-end

In a CMP where cores could be affected in a
multitude of ways, there are numerous heterogeneous
core configurations that could arise. In this study, we
assume the degraded CMP configuration shown in
Table 3. We assumed each core experienced some form
of faults or variation but each processor was only
affected by at most a few problems.

To test the effectiveness of our scheduling
algorithms, we created the four eight-threaded
workloads of SPEC CPU2000 applications shown in
Table 4. Each benchmark was used evenly among the
four workloads. For each simulation, we fast forwarded
every benchmark five billion instructions, and then
executed one billion cycles in SESC, or 0.25 seconds at
a nominal frequency of 4 GHz. Cores that run at lower
frequencies execute for proportionally fewer cycles.

Table 4: Workloads
Workload 1 applu, bzip2, equake, gcc, mcf, mesa,

parser, swim
Workload 2 ammp, apsi, art, crafty, twolf, vortex,

vpr, wupwise
Workload 3 mesa, ammp, applu, crafty, vortex, gcc,

wupwise, mcf
Workload 4 swim, parser, vpr, bzip2, art, apsi,

twolf, equake

The OS scheduler periodically switches between the
exploration and steady-state phases of the algorithm.
During the exploration phase, which constitutes 10% of
the total execution time, the algorithm adapts to
workload changes to find the best assignment of
threads to cores. During the longer steady-state phase,
the CMP runs with this best configuration. The
performance of the algorithm is based on both the
exploration and steady-state phases. The length and
number of the sampling intervals are algorithm
dependent parameters and are chosen to the best
advantage of each technique. For each workload, we
performed five different runs with different application-
to-core starting assignments, and report the average,
best, and worst results.

For the simpler randomized and round robin
algorithms, we modeled 10 million cycle operating
system time slices, the equivalent of 2.5 milliseconds.
These algorithms do not require exploration and
instead they use each time slice interval to perform
their reassignments.

5. Results and Discussion

In this section, we present the results of the various
scheduling algorithms on our degraded eight core
CMP. All comparisons are made using the energy-
delay squared (ED2) metric against a baseline with no
errors or variations and an oracle scheduler which uses
a priori knowledge to derive the best schedule among
all possible options. We chose ED2 as the metric in
order to balance performance with power dissipation
[19]. Section 5.1 discusses how simple schedulers

compare to the non-degraded baseline. Section 5.2
shows how the Hungarian and AI search algorithms
fare against the offline oracle. Finally, Section 5.3
provides an overall comparison of the scheduling
algorithms.

5.1. Simple Scheduling Algorithms

We first evaluate the effectiveness of two simple
scheduling algorithms – round robin and randomized –
that are suitable for homogeneous CMPs and statically
designed heterogeneous CMPs, on the degraded CMP
of Table 3. The round robin scheduler rotates the
threads on the cores at the beginning of each OS
interval. This approach avoids a worst case assignment
by limiting how long an application runs on any given
core. The even assignment of applications to
processors also avoids high power density scenarios
and uneven wear-out of a core through over-activity or
high temperature.

The randomized scheduler randomly assigns threads
to cores every operating system interval. This approach
avoids degenerate behavior that might occur with round
robin such as destructive interference with program
phases.

Figure 6 shows the results of these schedulers on the
degraded CMP relative to a baseline with no
degradation. Both approaches degrade ED2 by over
22% on average. The final bar on the graph, the worst-
case schedule, shows that an arbitrary assignment of
threads to cores can degrade ED2 by almost 45%
compared to the baseline. Clearly, naïve policies can
result in an unacceptable loss in power/performance
that may render the degraded microprocessor unusable.

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

45.00%

50.00%

Workload 1 Workload 2 Workload 3 Workload 4 Average

Benchmark Group

In
cr

ea
se

 in
 E

ne
rg

y
x

D
el

ay
2
R

el
at

iv
e

to

B
as

el
in

e
w

it
h

N
o

D
eg

ra
da

ti
on

Round Robin Randomized Worst Case

Figure 6: Comparison of simple schedulers

5.2. Hungarian Policy and Search Algorithms

The Hungarian scheduling policy samples each
benchmark on each core during the exploration phase,

and then computes the best assignment among all
permutations (assuming no interactions or phase
behavior). For the Hungarian policy, the exploration
phase is divided into eight intervals, each 12.5 million
cycles long, during which the eight applications are
executed once on each core, by starting with an initial
assignment and then rotating the threads in a round
robin fashion seven times. This allows the scheduler to
generate the 8×8 cost matrix of ED2 values to use as
input to the algorithm.

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

45.00%

50.00%

Workload 1 Workload 2 Workload 3 Workload 4 Average

Benchmark Group

In
cr

ea
se

 in
 E

ne
rg

y
x

D
el

ay
2 R

el
at

iv
e

to

O
ff

lin
e

O
ra

cl
e

Sc
he

du
le

r

Hungarian Policy Global Search Local Search 1 Local Search 2 Local Search 4

Figure 7: Comparison of advanced schedulers

Figure 7 shows the ED2 of the Hungarian scheduling
algorithm compared to the oracle scheduler. The solid
bar represents the average of the five runs, and the
error bars show the best and worst results. The
algorithm performs well, suffering only a 7.3%
increase in ED2 relative to the oracle. The performance
and power characteristics of the benchmarks during the
initial 100 million cycle exploration phase are quite
reflective of the overall traits of the benchmarks. Thus,
using the Hungarian Algorithm to calculate the best
solution among all possible scheduling permutations
based on this sampling information yields a good
assignment over the whole run, regardless of the
starting assignment.

While effective, the Hungarian scheduling algorithm
has O(N3) complexity, while the other algorithms are of
O(N). We simulated the Hungarian Algorithm on our
baseline core configuration and found it takes
approximately 200K cycles to solve a cost matrix with
eight cores, a non-trivial cost that may not scale well to
larger-scale CMPs. Since the number of sampling
intervals scales linearly with the number of cores, a
large amount of online profiling will also be required
for chips with tens or hundreds of cores. Moreover, the
algorithm may not work well when there are significant
interactions among applications or rapid phase
changes.

The global and local search algorithms divide the
exploration phase into 25 intervals of four million
cycles. Both start with the initial configuration and try
other configurations, greedily pursuing paths that
improve on the best schedule to date. Global search
simply tries the initial configuration and 24 other
randomly chosen ones and then selects the best among
them for the steady-state phase. This strategy
sometimes works quite well but can perform poorly
depending on the 25 configurations pursued. Overall,
global search degrades ED2 by 19.5% over the oracle
scheduler.

Three versions of the local search method were
implemented which vary in the number of pair-wise
swaps performed to explore a neighboring
configuration. Local Search N uses N pair-wise swaps
such that two benchmarks are involved in each switch
for Local Search 1, while all benchmarks are swapped
for Local Search 4. Local Search 1 makes a swap and
then runs that schedule for the next 4 million cycle
interval. If performance improves, it keeps that new
configuration; otherwise, it selects another neighbor of
the original solution. The comparison is made using the
average of the normalized ED2 (with respect to the ED2

of the previous interval) of the two threads involved in
the swap. Local Search 2 and Local Search 4 have an
additional feature to improve their performance.
Instead of collectively accepting or rejecting all the
swaps made in an interval, beneficial pair-wise swaps
are kept and others discarded. From the results in
Figure 7, the additional pair-wise swaps of Local
Search 2 and Local Search 4 significantly improves the
algorithm; the ED2 increase achieved with one, two,
and four pair-wise swaps each interval is 15.0%,
12.6%, and 7.8%, respectively. Moreover, Local
Search 4 significantly outperforms global search. The
error bars show that Local Search 4 is also less
sensitive to the initial assignment due to its ability to
more rapidly search the space of possible assignments.

5.3. Overall Comparison

In Figure 8, we compare all the scheduling
algorithms to the non-degraded chip multiprocessor.
The offline oracle scheduler achieves 3.1% better ED2

than the CMP without degradation. This occurs due to
the fact that some of the some of the degraded cores
operate at lower power, due to lower frequency or
failed components that are power gated. Consequently,
an omniscient scheduler can find an assignment that is
more power/performance efficient than the baseline.

Moreover, both the Hungarian and Local Search 4
scheduling algorithms achieve ED2 values very close to
the non-degraded baseline – higher only by 3.2% and

3.7%, respectively – compared to the over 22%
degradations with naïve schedulers. Thus, intelligent
scheduling will be critical to maintaining acceptable
levels of power/performance efficiency on future CMPs
degraded by wear-out and variations.

-10.00%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

Workload 1 Workload 2 Workload 3 Workload 4 Average

Benchmark Group

In
cr

ea
se

 in
 E

ne
rg

y
x

D
el

ay
2 R

el
at

iv
e

to
 B

as
el

in
e

w
it

h
N

o
D

eg
ra

da
ti

on

Offline Oracle Round Robin Randomized
Worst Case Hungarian Policy Local Search 4

Figure 8: Overall comparison

6. Conclusions

In future CMPs, variations and hard errors will
conspire to create dynamic heterogeneity among the
cores. Unlike statically designed heterogeneous CMPs,
the unpredictability of manufacturing defects, wear-out
mechanisms, and variations will require self-tuning
scheduling techniques that efficiently find a near-
optimal schedule given any degraded CMP scenario,
thereby making the chip degradation imperceptible to
the user. In this paper, we devise a number of different
scheduling algorithms for finding near-optimal thread
to core assignments in a degraded CMP.

We first demonstrate that simple policies, such as
round robin scheduling, degrade ED2 to the point that
the chip may be rendered unusable. Under the
assumption of limited core-to-core interaction, we
observe that the scheduling problem reduces to the
Assignment Problem and can be addressed through the
Hungarian Algorithm. We devise a scheduler based on
this algorithm that achieves an ED2 close to that of an
oracle scheduler. We further develop schedulers based
on AI search techniques that obviate the requirement of
limited core-to-core interaction, and that better scale to
large CMP organizations. The most scalable and
effective of these policies rapidly arrives at a near-
optimal solution that degrades ED2 by only 3.7% over a
non-degraded architecture, compared to over 22% for
simple approaches.

For future work, we plan to investigate algorithms
for CMPs with tens to hundreds of cores, and those that
address workloads containing a mix of parallel and
sequential applications.

Acknowledgements

The authors thank Ken Birman for his valuable
feedback, Paula Petrica for her help with the
submission, and the anonymous referees for their useful
comments. This research is supported by NSF grants
CCF-0732300 and CCF-0541321.

References

[1] N. Aggarwal, P. Ranganathan, N.P. Jouppi, and J. E.
Smith. Configurable Isolation: Building High Availability
Systems with Commodity Multi-Core Processors.
International Symposium on Computer Architecture (ISCA),
2007.

[2] S. Balakrishnan, R. Rajwar, M. Upton, and K. Lai. The
Impact of Performance Asymmetry in Emerging Multicore
Architectures. International Symposium on Computer
Architecture (ISCA), 2005.

[3] M. Becchi and P. Crowley. Dynamic Thread Assignment
on Heterogeneous Multiprocessor Architectures. ACM
International Conference on Computing Frontiers (CF),
2006, pp. 29-39.

[4] S. Borkar, T. Karnik, S. Narendra, J. Tschanz, A.
Keshavarzi, and V. De. Parameter Variations and Impact on
Circuits and Microarchitecture. Design Automation
Conference (DAC), 21.1, 2003, pp. 338-342.

[5] F. A. Bower, D. J. Sorin, and S. Ozev. A Mechanism for
Online Diagnosis of Hard Faults in Microprocessors.
International Symposium on Microarchitecture (MICRO),
2005.

[6] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A
Framework for Architectural-Level Power Analysis and
Optimizations. International Symposium on Computer
Architecture (ISCA), 2000, pp. 83-94.

[7] P. Chaparro, J. González, G. Magklis, Q. Cai, and A.
González. Understanding the Thermal Implications of Multi-
Core Architectures. IEEE Transactions on Parallel and
Distributed Systems (TPDS), 18, 8, 2007, pp. 1055-1065.

[8] J. Donald and M. Martonosi. Techniques for Multi-Core
Thermal Management: Classification and New Exploration.
International Symposium on Computer Architecture (ISCA),
2006.

[9] S. Ghiasi, T. Keller, and F. Rawson. Scheduling for
Heterogeneous Processors in Server Systems. ACM
International Conference on Computing Frontiers (CF),
2005, pp. 199-210.

[10] E. Humenay, D. Tarjan, and K. Skadron. Impact of
Parameter Variations on Multi-Core Chips. Workshop on
Architectural Support for Gigascale Integration (ASGI),
2006.

[11] E. Humenay, D. Tarjan, and K. Skadron. Impact of
Process Variations on Multi-Core Performance Symmetry.
Design, Automation and Test in Europe (DATE), 2007.

[12] C. Isci, A. Buyuktosunoglu, C-Y. Cher, P. Bose, and M.
Martonosi. An Analysis of Efficient Multi-Core Global
Power Management Policies: Maximizing Performance for a
Given Power Budget. International Symposium on
Microarchitecture (MICRO), 2006.

[13] P. Juang, Q. Wu, L-S. Peh, M. Martonosi, and D. W.
Clark. Coordinated, Distributed, Formal Energy Management
of CMP Multiprocessors. International Symposium on Low
Power Electronics and Design (ISLPED), 2005.

[14] R. Kumar, D. M. Tullsen, and N.P. Jouppi. Core
Architecture Optimization for Heterogeneous Chip
Multiprocessors. International Symposium on Parallel
Architectures and Compilation Techniques (PACT), 2006,
pp. 23-32.

[15] R. Kumar, D.M. Tullsen, P. Ranganathan, N.P. Jouppi,
and K. I. Farkas. Single-ISA Heterogeneous Multi-Core
Architectures for Multithreaded Workload Performance.
International Symposium on Computer Architecture (ISCA),
2004.

[16] J. Li and J.F. Martínez. Dynamic Power-Performance
Adaptation of Parallel Computation on Chip
Multiprocessors. International Symposium on High-
Performance Computer Architecture (HPCA), 2006.

[17] X. Liang and D. Brooks. Microarchitecture Parameter
Selection To Optimize System Performance Under Process
Variation. International Conference on Computer-Aided
Design (ICCAD), 2006, pp. 429-436.

[18] X. Liang and D. Brooks. Mitigating the Impact of
Process Variations on Processor Register Files and
Execution Units. International Symposium on
Microarchitecture (MICRO), 2006.

[19] A.J. Martin. Towards an Energy Complexity of
Computation. Information Processing Letters. 77, 2001, pp.
181-187.

[20] A. Merkel and F. Bellosa. Balancing Power
Consumption in Multiprocessor Systems. EuroSys, 2006, pp.
403-413.

[21] J. Munkres. Algorithms for Assignment and
Transportation Problems. Journal of the Society of Industrial
and Applied Mathematics. 5(1), 1957, pp. 32-38.

[22] S. Ozdemir, D. Sinha, G. Memik, J. Adams, and H.
Zhou. Yield-Aware Cache Architectures. International
Symposium on Microarchitecture (MICRO), 2006.

[23] R.A. Pilgrim. Munkres’ Assignment Algorithm.
http://csclab.murraystate.edu/bob.pilgrim/445/munkres.html,
2008.

[24] M.D. Powell, M. Gomaa, and T.N. Vijaykumar. Heat-
and-Run: Leveraging SMT and CMP to Manage Power
Density Through the Operating System. International
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2004, pp.
260-270.

[25] C.R. Reeves (Editor). Modern Heuristic Techniques for
Combinatorial Problems. McGraw-Hill Book Company,
London, UK, 1995.

[26] J. Renau, B. Fraguela, J. Tuck, W. Liu, M. Prvulovic, L.
Ceze, S. Sarangi, P. Sack, K. Strauss, and P. Montesinos.
SESC Simulator. http://sesc.sourceforge.net, 2005.

[27] S.M. Sait and H. Youssef. Iterative Computer
Algorithms with Applications in Engineering. IEEE
Computer Society, Los Alamitos, CA, 1999.

[28] E. Schuchman and T.N. Vijaykumar. Rescue: A
Microarchitecture for Testability and Defect Tolerance.
International Symposium on Computer Architecture (ISCA),
2005.

[29] P. Shivakumar, S.W. Keckler, CR. Moore, and D.
Burger. Exploiting Microarchitectural Redundancy for
Defect Tolerance. International Conference on Computer
Design (ICCD), 2003.

[30] S. Shyam, K. Constantinides, S. Phadke, V. Bertacco,
and T. Austin. Ultra Low-Cost Defect Protection for
Microprocessor Pipelines. International Conference on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2006.

[31] K. Skadron, M.R. Stan, W. Huang, S. Velusamy, K.
Sankaranarayanan, and D. Tarjan. Temperature-Aware
Microarchitecture. International Symposium on Computer
Architecture (ISCA), 2003, pp. 2-13.

[32] J. Srinivasan, S.V. Adve, P. Bose, and J.A. Rivers. The
Case for Lifetime Reliability-Aware Microprocessors.
International Symposium on Computer Architecture (ISCA),
2004.

[33] J. Srinivasan, S.V. Adve, P. Bose, and J.A. Rivers.
Exploiting Structural Duplication for Lifetime Reliability
Enhancement. International Symposium on Computer
Architecture (ISCA), 2005.

[34] K. Stavrou and P. Trancoso. Thermal-Aware Scheduling
for Future Chip Multiprocessors. EURASIP Journal on
Embedded Systems, 2007.

[35] D. Tarjan, S. Thoziyoor, and N.P. Jouppi. CACTI 4.0.
HP Laboratories Palo Alto Technical Report HPL-2006-86,
2006.

[36] Y. Zhang, D. Parikh, K. Sankaranarayanan, K. Skadron,
and M. Stan. HotLeakage: A Temperature-Aware Model of
Subthreshold and Gate Leakage for Architects. The
University of Virginia, Department of Computer Science,
Technical Report CS-2003-05, 2003.

http://sesc.sourceforge.net/
http://csclab.murraystate.edu/bob.pilgrim/445/munkres.html

