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Abstract—Resizable caches can trade-off capacity for ac-

cess speed to dynamically match the needs of the workload.

In Simultaneous Multi-Threaded (SMT) cores, the caching

needs can vary greatly across the number of threads and

their characteristics, offering opportunities to dynamically

adjust cache resources to the workload. In this paper we

propose the use of resizable caches in order to improve

the performance of SMT cores, and introduce a new

control algorithm that provides good results independent

of the number of running threads. In workloads with a

single thread, the resizable cache control algorithm should

optimize for cache miss behavior because misses typically

form the critical path. In contrast, with several independent

threads running, we show that optimizing for cache hit
behavior has more impact, since large SMT workloads

have other threads to run during a cache miss. Moreover,

we demonstrate that these seemingly diametrically opposed

policies can be simultaneously satisfied by using the har-

monic mean of the per-thread speedups as the metric to

evaluate the system performance, and to smoothly and

naturally adjust to the degree of multithreading.

I. INTRODUCTION

S
IMULTANEOUS Multi-Threading (SMT) [1], [2]
designs enable multiple threads to simultaneously

share many of the major hardware resources, thereby
making use of resources that may lie partially unused
when running a single thread. However, the threads
sharing the resources compete for those resources. De-
pending on the needs of each thread, this competition
might cause thread resource starvation; that is, one thread
may monopolize the resources, not allowing the others
to progress through the pipeline. This fairness problem
has tipically been addressed by avoiding resource mo-
nopolization due to long latency operations. Static re-
source allocation policies [3], [4] split critical processor
resources among all threads, ensuring that no thread
monopolizes a resource. Dynamic resource allocation
uses a pool of common resources that are shared among
all active threads and a resource allocation policy that

dynamically assigns resources to threads according to
their requirements. In [5], [6], [7] the allocation of fetch
bandwidth is carefully controlled, since this influences
the sharing of resources further down the pipeline. A
different approach is Dynamically Controlled Resource
Allocation (DCRA) [8] that explicitly controls shared
SMT resources such as the issue queue and register file.

We propose the use of phase-adaptive reconfig-
urable caches in a Globally Asynchronous, Locally
Synchronous (GALS) design that, in conjunction with
a cache control strategy, reduces the average latency of
cache operations for the active threads. Our approach
tackles the problems related with long-latency operations
at the source by reducing the average latency of cache
accesses. Our approach makes size/frequency cache
tradeoffs to fit varying SMT cache behavior through the
use of an MCD processor. Therefore our technique is
orthogonal to previously proposed fetch and dynamic
resource allocation policies.

Using a GALS design approach, we place the re-
configurable caches into an independent clock domain
within which frequency can change in conjunction with
the cache configuration. The configuration for any given
period of execution is established by a control algorithm
that makes a decision based on the cache behavior of the
different active threads.

Our work builds on prior efforts in both phase-
adaptive re-sizable caches and GALS processor microar-
chitectures in order to improve performance or save
power consumption in single-threaded cores [9], [10],
[11], [12], [13], [14]. Of these, only our previous work
[14] addresses SMT workloads. We demonstrate that the
cache control strategy of [14] is not as effective for dual
and four thread SMT workloads as it is for single thread
ones. If we take into account fairness (the harmonic
mean of the per thread speedups [15]), the performance
of the four thread workloads degrades significantly.

The intuition behind the limited scalability of this
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prior strategy is that it is constructed on the assumption
that cache misses are on the critical path of a thread’s
computation. Thus, the original strategy attempts to
minimize the total access time to reduce the cost of
the cache misses. However, when there are multiple
active threads in an SMT core, the overall performance
is affected less from cache misses because other threads
can run in the shadow of the miss. In this scenario, a
better cache control strategy is one that selects cache
configurations that greedily maximize the near term
cache access rate to favor threads that use the cache
efficiently. Since the number of active threads on a given
core may vary at runtime, the desired control strategy
should behave effectively without regard to the degree
of multithreading, both minimizing the total access time
when there are few threads, and maximizing the access
rate when there are many threads. We propose and
evaluate such an approach in this paper.

To demonstrate the effectiveness of our proposed
cache control strategy, we implement a quad-threaded
core in the Simplescalar simulator. The core is opti-
mized to run with a small, fast cache that can adjust
to greater demands by dynamically upsizing. We adopt
the Accounting Cache design of [13] for our resizable
caches, but implement a new cache control algorithm
that better balances multi-threaded needs compared to
the original algorithm designed for the single threaded
case.

Our technical contributions above our previous work
are: (1) A detailed explanation of the behavior of our
previous control algorithm (which we call AMAT) in
architectural and mathematical terms; (2) We demon-
strate that AMAT is not effective for dual and four
thread SMT workloads; (3) An explanation of the diffi-
culties presented with adaptive caches as the number of
threads varies; (4) The introduction of the HAMAT algo-
rithm; and (5) A detailed comparison, both mathematical
and simulation-based, between the two algorithms. We
demonstrate that the new HAMAT algorithm performs
much more consistently than AMAT as the SMT load
changes, and that it achieves strong speedups over a
conventional fixed cache.

The rest of this paper is organized as follows. Sec-
tion II discusses the adaptive microarchitecture, includ-
ing the adaptive cache organizations. Section III presents
the adaptive cache control algorithms. Our simulation in-
frastructure and benchmarks are described next, followed
by our results, and finally our conclusions in Section VI.

II. ADAPTIVE SMT MCD MICROARCHITECTURE

The adaptive SMT Multiple Clock Domain (MCD)
microarchitecture highlighted in Fig. 1 has five inde-
pendent clock domains, comprising the front end (L1
ICache, branch prediction, rename and dispatch); in-
teger processing core (issue queue, register file and
execution units); floating-point processing core (issue
queue, register file and execution units); load / store unit
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Fig. 1: Adaptive SMT MCD microarchitecture. Boxes demar-
cated by dotted lines (L1 DCache and L2 Cache) illustrate the
adaptive capability of these structures.

(load / store queue, L1 DCache and unified L2 cache);
and ROB (Reorder Buffer). The load / store domain
varies its frequency based on the cache configuration.
The other domains run at fixed frequency at all times
and since there is little interaction between them (and
thus their interface introduces negligible synchronization
cost), they are effectively one fixed-frequency execution
core domain. External main memory operates at the same
fixed base frequency as the processing core and is also
non-adaptive.

The focus of this study is the load / store domain
having reconfigurable L1/L2 caches; moreover, only the
L1 DCache and L2 cache of the load / store domain are
adapted under the direction of control algorithms that we
introduce later. This adaptive SMT MCD architecture has
a base configuration that uses small cache sizes running
at a high clock rate, but the caches can be upsized
with a corresponding reduction in the clock rate of the
load / store domain. In this study, all the non-adaptive
domains – front end, integer, floating point, and main
memory – run at a base frequency of 1.0 GHz. The L1
DCache and L2 cache are resized in tandem with the fre-
quency of the load / store domain varied accordingly. The
dynamic frequency control circuit within the load / store
domain is a PLL clocking circuit based on industrial
circuits [16], [17]. The lock time in our experiments is
normally distributed with a mean time of 15 µs and a
range of 10–20 µs. As in the XScale processor [16],
we assume that a domain is able to continue operating
through a frequency change.

Data generated in one domain and needed in another
must cross a domain boundary, potentially incurring
synchronization costs. Our SMT MCD simulator models
synchronization circuitry based on the work of Sjogren
and Myers [18]. It imposes a delay of one cycle in the
consumer domain whenever the distance between the
edges of the two clocks is within 30% of the period of the
faster clock. Further details on the baseline MCD model,
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including a description of the inter-domain synchroniza-
tion circuitry, can be found in prior papers [9], [19],
[20], [21]. We have extended this model to include SMT
support, the details of which are provided in Section IV.

In the load / store domain, the adaptive L1 DCache
and L2 cache are up to eight-way set associative, and
reconfigured by ways [13], [22]. This adaptive cache is
divided into two partitions, A and B, each one containing
a subset of the total ways. The number of ways contained
in each partition depends on the cache configuration, and
ranges from one to eight. We restrict the resizing to 1/7,
2/6, 4/4, and 8/0 ways in the A/B partitions to reduce
the state space of possible configurations to four options:
D0, D1, D2 and D3, respectively. The base configuration
(smallest size and highest clock rate) is a 32 KB direct-
mapped L1 DCache and a 256 KB direct-mapped L2
cache. Both caches are upsized in tandem by increasing
their associativity.

Table I shows the characteristics of the A partition of
each configuration. We use version 3.1 of the CACTI
modeling tool [23] to obtain timings for all plausi-
ble cache configurations at a given size. The Optimal
columns in Table I list the configurations that provide
the fastest access time for the given capacity and as-
sociativity, without the ability to resize. The number of
sub-banks per way in the Adapt columns were chosen
by adopting the fastest configuration of the minimal-size
structure and then replicating this configuration at higher
levels of associativity to obtain the larger configurations.
This strategy ensures the fastest clock frequency at
the smallest configuration, which we found from our
earlier work to be critical for good performance, but
may not produce the fastest possible configuration when
structures are upsized. Since CACTI configures a 32 KB
direct-mapped cache as 32 sub-banks, each additional
way in the adaptive L1 DCache is an identical 32 KB
RAM. The reconfigurable L2, similarly, has eight sub-
banks per 256 KB way. In contrast, the number of sub-
banks in an optimal fixed L1 varies with total capacity,
and the optimal L2 structure has four sub-banks per way
for all sizes larger than the minimum. In our evaluation,
we account for the additional access latency incurred due
to this sub-optimal sub-banking for the configurations
with larger A partitions (D1, D2, D3).

Because of its design, a cache with a small A partition
runs at a higher frequency than one with a larger A
partition and the B partition access latency is an integral
number of cycles at the clock rate dictated by the size
of the A partition. At runtime, the cache control algo-
rithm attempts to continually maintain the best balance
between the speed of an A access and the number of
slower B accesses.

III. PHASE ADAPTIVE CACHE CONTROL
ALGORITHMS

To control the reconfigurable caches, we employ an
Accounting Cache design similar to that in [13] but

tailored to an SMT processor. With this approach, since
the smaller configurations are proper subsets of the larger
ones, a single set of counters can be used to collect statis-
tics (i.e., hits and misses) that identify the performance of
every possible cache configuration during the monitored
period. This permits the calculation of the number of hits
and misses that would have occurred over that span of
time for any of the possible configurations.

As described in detail in [13], the Accounting Cache
maintains full most-recently-used (MRU) state on cache
lines. Simple counts of the number of blocks accessed in
each MRU state are sufficient to reconstruct the precise
number of hits and misses to the A and B partitions for all
possible cache configurations, regardless of the current
configuration.

The control algorithm resets the counts at the end of
every 15K instruction interval, choosing a configuration
for the next interval that would have optimized the
interval that just ended (i.e., the assumption is the next
interval will be similar).

A. Minimizing Aggregate Cache Access Delay
The original Accounting Cache design uses a phase

adaptive control algorithm that configures the cache to
minimize the total access delay for the set of references
made over the interval [13]. Implicit in this algorithm is
the treatment of the set of references as a unit of work
that must be completed before the next unit of work can
begin. Under this model of the workload, minimizing the
total delay of each unit of work results in minimizing
total execution time. This model precisely describes the
behavior for a single-threaded application where control
flow and data dependencies limit overall ILP, and where
long memory stalls are on the critical path and stall the
pipeline.

Dividing the total access delay by the number of
references we arrive at the arithmetic mean of the cache
access delay for a given configuration, which we term the
Arithmetic Mean Access Time (AMAT

i) of the cache at
configuration i. Let there be a set of N references with
reference r requiring tir time at configuration i (cache
configuration dependent). Then AMAT

i is defined as:

AMAT
i =

1
N

�

r∈Refs

tir (1)

The total access time at configuration i can be ex-
pressed as,

�

r

tir = hits
i
A ∗ cost

i
A + hits

i
B ∗ cost

i
B+

+ misses ∗ costmisses

where hits
i
A and hits

i
B are the number of hits on the A

and B partitions, cost
i
A and cost

i
B are the cost (in time,

normalized to the frequency of the load / store domain
at configuration i) to access the A and B partitions, and
misses and costmisses are the number of, and the cost of,
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TABLE I: Adaptive L1 DCache and L2 Cache configurations. The A Size and A Assoc columns refer to the size and associativity
of the A partition selected by the cache control algorithm, as discussed in Section III. The column Adapt provides the number
of sub-banks per way for the adaptive cache, while Optimal gives the number that produces the fastest access time at that size
and associativity.

L1 DCache Sub-banks/Way L2 Cache Sub-banks/Way

Configuration A Size A Assoc Adapt Optimal A Size A Assoc Adapt Optimal

D0 32 KB 1 32 32 256 KB 1 8 8
D1 64 KB 2 32 8 512 KB 2 8 4
D2 128 KB 4 32 16 1 MB 4 8 4
D3 256 KB 8 32 4 2 MB 8 8 4

misses to both partitions. Hence, measuring the number
of hits and misses to the A and B partitions for all
possible cache configurations permits the estimation of
AMAT for all possible configurations.

The control algorithm circuitry to maximize the total
access delay (which avoids doing the division by N )
requires 5K equivalent gates. A complete reconfiguration
decision requires approximately 32 cycles, based on
binary addition trees and the generation of a single
partial product per cycle [12].

B. Maximizing Cache Access Rate

With SMT, if one thread stalls due to cache misses,
other threads may likely make use of the available
resources of the processor. Thus, this algorithm that
minimizes the total delay of the set of accesses over
an interval is, in fact, prioritizing for the slower, least
cache-efficient threads to the detriment of the faster,
more cache-efficient threads.

A more circumspect control algorithm should take
into account the degree of SMT in the system and
optimize for total access delay when the degree of SMT
is low (e.g., one or two threads) but exploit thread-level
parallelism to maximize access rate when the degree of
SMT is high.

First, we define needed terms. Let nj be the number
of references of the thread j and tirj

be the required time
for each reference of the thread j under configuration i.
Then N =

�
j nj and the Arithmetic Mean Access Time

of the thread j under configuration i, AMAT
i
j , is

AMAT
i
j =

1
nj

�

rj

tirj
(2)

It can easily be shown that

AMAT
i =

1
N

�

r

tir =
1
N

�

j

�

rj

tirj
=

+
1
N

�

j

nj · AMAT
i
j

(3)

where AMAT
i
j can be calculated as

AMAT
i
j = hits

i
jA ∗ cost

i
A + hits

i
jB ∗ cost

i
B+

+ missesj ∗ costmisses

In this case, hits
i
jA and hits

i
jB are the number of hits

of thread j on the A and B partitions, and missesj is the
number of misses of thread j.

The Arithmetic Mean Access Rate for a thread j of
the cache at configuration i, AMAR

i
j , is

AMAR
i
j =

1
AMAT

i
j

(4)

The Average Access Rate of a cache at configuration
i (AAR

i) is the number of memory access per unit of
time and thread, weighted according to the number of
accesses per thread:

AAR
i =

1
N

�

j

nj

AMAT
i
j

(5)

Those threads with a higher number of accesses
should have a higher weight in AARi. Hence, the
Average Access Rate for a cache configuration i is the
weighted access rate across all threads for that configura-
tion. In this way, the pattern access of the set of threads
is taken into account.

The cache configuration chosen is the one with the
maximum AAR. In other words, the cache configuration
is the one that maximizes the access rate for the actual
access pattern. Equivalently, if we choose to minimize
the reciprocal of the AAR then we have the Harmonic
Mean of the per thread weighted arithmetic mean access
times in cache configuration i, HAMAT

i:

HAMAT
i =

1
1
N

�
j∈Threads

nj

AMAT i
j

(6)

Interestingly, the harmonic mean is naturally related
to maximizing the access rate. In the case of having
only one thread, N = n0, AMAT

i = AMAT
i
0, and

HAMAT
i = AMAT

i.
To implement this algorithm as per Eq. (5) (again

ignoring the division by N ), per thread accesses must
be captured by the Accounting Cache which requires
customization of the Accounting Cache design to the
SMT environment. To do so, the total MRU state of the
original design is increased by the number of simulta-
neous threads that can run. For a four thread SMT pro-
cessor, implementing per-thread counters increases the
overhead from 0.3% to 1.2% of the total cache [12]. In
addition, four times the original number of calculations
are needed to generate the arithmetic mean delay for
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each thread. However, adding four additional circuits at
5K gates apiece maintains the total calculation time of
32 cycles per configuration decision for the arithmetic
mean values. The four required reciprocal calculations
can leverage the capability of the arithmetic unit via
PALcode-type mechanisms.

On each cache access, we update the MRU and miss
counters and after 15K instructions we select the cache
configuration with the lowest value of HAMAT.

IV. EVALUATION METHODOLOGY

The simulation environment is based on the Sim-
pleScalar toolset [24] with MCD processor [9] and SMT
extensions. The time management code has been re-
written to emulate separate clocks for each domain,
complete with jitter, and to account for synchronization
delays on all cross-domain communication.

The SMT processor extensions include independent
program counters for each thread; thread IDs for queues,
caches and predictor history tables; and per-thread
ROBs. Our fetch policy is ICOUNT2.8 from [2], i.e.,
up to eight instructions are fetched from each of up to
two threads per cycle. Table II contains a summary of
the simulation architectural parameters. These have been
chosen to match the characteristics of the Alpha 21264,
but with additional resources for four threads.

TABLE II: Architectural parameters for simulated processor

Processor Configuration
Fetch queue : 16 entries
Issue queue : 32 Int, 32 FP
Load/store queue : 32 entries
Physical register file (per th.): 100 integer, 100 FP
Reorder buffer (per th.): 256 entries
Decode, issue, and retire widths: 8, 11, and 24 instructions
Integer ALUs: 6 + 1 mult/div unit
FP ALUs: 4 + 1 mult/div/sqrt unit
Number of threads fetch: 2
Fetch (per th.), Issue and Commit width: 8, 11, 24 instr.

Branch Predictor Configuration
Combined gshare & 2-level PAg

Level 1 1024 entries, history 10
hspace1emLevel 2 4096 entries

Bimodal predictor size 2048
Combining predictor size 4096
BTB 4096 sets, 2-way

Branch mispredict penalty: 10 front-end + 9 integer cycles
Memory Configuration

Static L1 Data Cache: 128KB, 4-way set associative
Static Instruction Cache: 32KB, 2-way set associative
Static L2 Unified Cache: 1MB, 4-way set associative
Static L1 Data Cache latency: 2 ns
Static Instruction Cache latency: 1 ns
Static L2 Unified Cache latency: 15 ns
Main Memory latency: 80 ns (1st access), 2 ns (subsequent)

Table III provides timing parameters for adaptive L1
and L2 caches, as well as the clock domain frequencies
for each configuration. The four configurations (D0-D3)
of the load / store domain are shown. Listed for each
configuration are the frequency of the domain and the

cache access times, also known as latency (in cycles) at
that frequency. The first access time is for A partition
accesses and the second for B partition access. For
comparison, the baseline processor (described in detail
below) runs at a frequency of 1.0 GHz and has an L1
DCache access time of two (pipelined) cycles, L2 access
time of 15 (pipelined) cycles. Note that larger adaptive
cache configurations have over double the access latency
(in ns) of the baseline design. Thus, the control algo-
rithms only upsize the A partition if the greater capacity
reduces misses sufficiently to compensate for this extra
delay on every access.

TABLE III: Cache latencies (in cycles) and domain frequency
for each cache configuration

Load/Store Domain
Configuration D0 D1 D2 D3
Frequency (GHz) 1.59 1.00 0.76 0.44
L1DCache Lat.(A/B) 2/7 2/5 2/2 2/-
L2Cache Lat.(A/B) 12/42 12/27 12/12 12/-

Our workloads consists of combinations of fifteen
programs from the SPEC2000 suite. Table IV specifies
the individual benchmarks along with the instruction
windows and input data sets. We combine these individ-
ual programs into fourteen dual thread and eleven quad
thread workloads, shown in Table V and Table VI.

In this paper, we measure performance improvements
with respect to a baseline conventional (non-adaptive)
fully synchronous processor whose architectural param-
eters have been chosen based on simulations we have
conducted. These simulations used the baseline non-
adaptive configuration in [12] as a starting point to select
the configuration that achieved best performance across
all workloads. This best conventional processor has a
128 KB four-way set associative L1 DCache with a two-
cycle latency, and a 1024 KB four-way set associative
L2 cache with a 15 cycle latency.

TABLE IV: SPEC2000 benchmarks, input datasets used, and
simulation windows

Benchmark Datasets Simulation window

Integer

bzip2 source 58 100M–600M
crafty ref 1000M–1500M

cc1 166.i 2000M–2500M
gzip source 60 100M–600M
mcf ref 1000M–1500M

parser ref 100M–600M
twolf ref 1000M–1500M
vpr ref 190M–690M

Floating-Point

art ref 300M–800M
equake ref 100M–600M
galgel ref 100M–600M
lucas ref 100M–600M
mesa ref 100M–600M
mgrid ref 100M–600M
swim ref 1000M–1500M
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TABLE V: SPEC2000 dual-thread workloads

Integer

vpr-bzip2, cc1-bzip2
crafty-vpr
Floating-Point

equake-art, equake-galgel
lucas-galgel

Combined Integer and Floating-Point

bzip2-art, galgel-bzip2
gzip-galgel, mcf-lucas,
mesa-twolf, mgrid-bzip2

vpr-art, vpr-swim

TABLE VI: SPEC2000 four-thread workloads

Integer

bzip2-cc1-gzip-mcf
twolf-mcf-vpr-crafty

Floating-Point

art-equake-galgel-lucas
mesa-mgrid-swim-art
mesa-equake-swim-art

Combined Integer and Floating-Point

art-bzip2-equake-cc1
twolf-mesa-mgrid-swim,
cc1-bzip2-gzip-equake,
swim-vpr-art-crafty

galgel-gzip-mcf-lucas

V. PERFORMANCE RESULTS

In this section, we compare the performance of the
SMT MCD microarchitecture with adaptive caches with
that of the baseline fully synchronous design described in
Section IV, for single, dual, and quad thread workloads.
We compare the performance of the cache control al-
gorithms, AMAT and HAMAT, described in Section III.
For the dual and quad thread workloads, the reported
speedup results use the harmonic mean of the per thread
speedups in the mix. This metric rewards balancing
speedup improvements across all threads in the mix and
penalizes those cases in which one thread monopolizes
resources [15], thereby taking into account the fairness
of the execution.

Fig. 2 shows the speedups from resizing the caches
for the single, dual and quad thread workloads. The three
bars show the baseline synchronous processor (speedup
of 1.0 by definition), the AMAT algorithm, and the
HAMAT algorithm. For the single thread workloads, the
two control algorithms behave the same, so their per-
formance is identical, as shown in Fig. 2(a) and proven
in Section III. The adaptive caches outperform the syn-
chronous processor in all applications except mgrid,
and achieve an average performance improvement of
16.9% over all applications. The low performance of
mgrid is explained in more detail at the end of this
section.

The dual thread runs in Fig. 2(b) show the AMAT
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Fig. 2: Speedups using cache reconfiguration AMAT and
HAMAT control algorithms relative to the best synchronous
baseline processor.

algorithm performing below that of the baseline in a
number of cases, while HAMAT outperforms both the
synchronous baseline processor and the AMAT algo-
rithm in all instances. In particular, AMAT has difficulty
when threads are combined with art (bzip2_art,
equake_art, and vpr_art). The benchmark art
has a large number of cache misses which cause the
AMAT algorithm to upsize the caches. While upsizing
effectively reduces the total run-time when art is run
alone (Fig. 2(a)), with two threads, the slower access
time of a larger cache on every access significantly
degrades the thread paired with art, to the detriment
of the overall speedup. HAMAT better balances the
needs of the two threads and performs as well or better
than AMAT on every mix. We illustrate this in Table
VII, which shows the speedup for each thread in each
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TABLE VII: Per thread speedup for the dual thread workloads.
AMAT Alg. HAMAT Alg.

Th. 1 Th. 2 Th. 1 Th. 2
bzip2 art 0.9228 1.0501 1.0699 1.0216
cc1 bzip2 1.1739 1.2082 1.2079 1.2516
crafty vpr 1.2040 1.1292 1.2236 1.1445
equake art 0.8910 1.0869 1.0242 1.0068

equake galgel 1.0638 1.0793 1.1501 1.1695
galgel bzip2 1.0083 1.1535 1.0788 1.2490
gzip galgel 1.1344 1.0629 1.1936 1.1035
lucas galgel 1.0584 1.0794 1.0876 1.1491
mcf lucas 1.3802 1.3486 1.3802 1.30098

mesa twolf 1.2246 1.2095 1.2284 1.2164
mgrid bzip2 0.9481 1.0085 1.0746 1.1547

vpr art 0.8891 1.0591 1.0538 1.0175
vpr bzip2 1.1908 1.2284 1.2092 1.2481
vpr swim 1.1462 1.0688 1.2047 1.002

TABLE VIII: Per thread speedup for the four thread workloads.
AMAT Alg. HAMAT Alg.

Th. 1 Th. 2 Th. 3 Th. 4 Th. 1 Th. 2 Th. 3 Th. 4
art bzip2 equake cc1 1.1375 0.7745 0.9309 0.5697 1.2983 1.0986 1.3271 0.6457

art equake galgel lucas 0.9329 0.9063 0.7211 1.4612 1.0610 1.3175 0.9854 2.0736
bzip2 cc1 gzip mcf 1.1804 1.1893 1.1869 1.09964 1.2177 1.2104 1.2249 1.1358

bzip2 equake cc1 art 0.8363 0.7696 1.0097 1.0065 1.1876 1.0982 1.1456 1.1507
cc1 bzip2 gzip equake 1.1964 1.1708 1.1828 1.1314 1.2160 1.2089 1.2206 1.1692
galgel gzip lucas mcf 1.0472 1.1319 1.0029 1.0182 1.1554 1.2412 1.0968 1.1302
mesa equake swim art 0.8465 0.8486 0.8315 1.0264 1.2751 1.3187 1.1559 1.1808
mesa mgrid swim art 0.7994 0.9044 0.8049 1.0305 1.1301 1.1264 1.0455 1.1574
swim vpr art crafty 0.8111 0.8214 1.0102 0.8913 1.0518 1.0889 1.1664 0.9693
twolf mcf vpr crafty 1.0492 1.0289 1.0227 1.0708 1.0905 1.0718 1.0630 1.3070

twolf mesa mgrid swim 1.0615 1.0140 1.0644 0.9779 1.1182 1.0851 1.1214 1.0034

dual-threaded workload for both algorithms. We shade
those cases with per-thread speedup below one, i.e., that
thread performs worse than the same thread in the same
workload executed on the baseline processor. For AMAT,
those threads paired with art and mgrid degrade in
performance relative to the baseline. However, all threads
experience a performance improvement using HAMAT
since it balances the needs of both threads and it does
not unduly benefit one at the expense of the other.
Despite the three cases of degradation, the average per-
formance improvement for AMAT is significant (11.2%),
yet HAMAT performs much better, reaching 16.2% on
average.

The differences between the two algorithms are accen-
tuated in the quad thread workloads shown in Fig. 2(c).
Under a higher SMT load, AMAT performs worse than
the synchronous baseline processor in many cases. On
the other hand, HAMAT outperforms both the syn-
chronous baseline processor and the AMAT algorithm
for all workloads, averaging 14.2% over the set of
quad thread workloads. From Table VIII, we observe
many shaded cells for the AMAT algorithm, one for
every thread that performs worse than its counterpart
in the conventional baseline, and far fewer for HAMAT.
Just three threads perform worse than the baseline for
HAMAT, two marginally worse. In the one case where
performance degrades non-trivially, overall performance
still improves due to the speedups for the other threads.

The differences in cache configuration decisions be-
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1,5

2

2,5

3

3,5

4

4,5

1 thread 2 threads 4 threads

AMAT HAMAT

Fig. 3: Average A partition associativity across all benchmarks
using AMAT and HAMAT algorithms.

tween the two algorithms are shown in Fig. 3 as the
overall average A partition associativity across the runs
of single, dual, and quad thread workloads. Again, the
algorithms are identical for single thread workloads, as
are the configuration decisions. However, with dual and
quad thread workloads, HAMAT tends to choose smaller
cache configuration (that is, those with lower associativ-
ity). The smaller A partition cache configuration runs at
a higher clock rate which improves the access rate to the
cache for cache-efficient threads, possibly at the expense
of a thread that would normally select a larger cache if
run as a single thread (e.g., art).

Fig. 4 summarizes the differences in speedup between
the two algorithms. The performance of AMAT falls
sharply beyond two threads, while HAMAT balances
per thread needs with overall throughput to maintain its
benefits nearly independent of the number of threads.
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Fig. 4: Average speedup across all benchmarks usinusingg
AMAT and HAMAT over the best synchronous baseline pro-
cessor.

VI. CONCLUSIONS

Compared to a single-threaded processor, an SMT
processor increases the variability in cache demand due
to varying numbers of threads, in addition to phases
within the threads themselves. Adaptive caches offer an
attractive solution for dynamically tuning the configura-
tion to the instantaneous needs of the workload and to
ensure a fair competition for the resources.

We show that the control of adaptive caches under
a heavy SMT workload differs significantly than when
running only one or two threads. Under light SMT loads,
caches should be configured to minimize the impact of
misses through judicious upsizing for additional capac-
ity, whereas under heavy SMT loads, the rate of access to
the cache should be maximized through judicious down-
sizing for additional speed. Our hybrid algorithm gives
consistent performance improvements over a wide range
of SMT workloads, specifically, 17%, 16%, and 14.2%
on one, two, and four thread workloads, respectively,
over the best fixed-size cache design. The algorithm
gives much more consistent results than the arithmetic
mean algorithm for varying numbers of threads. We also
show that the new algorithm treats all the running threads
in a more fair manner, attending to the needs of the entire
workload.
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