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Abstract— Microprocessor power dissipation is a growing
concern, so much so that it threatens to limit future per-
formance improvements. A major consumer of micropro-
cessor power is the issue queue. Many microprocessors,
such as the Compaq Alpha 21264 and IBM POWER4TM
use a compacting latch-based issue queue design which has
the advantage of simplicity of design and verification. The
disadvantage of this structure, however, is its high power
dissipation.

In this paper, we propose a new selection logic implemen-
tation in conjunction with a non-compacting issue queue.
This scheme achieves comparable delays to the existing
position-based selection approach used for compacting issue
queues, yet results in far less power with a small perfor-
mance loss.

I. INTRODUCTION

Power dissipation is a serious constraint for designers
of high-end microprocessors [2], [6], [12]. Many complex
trade-offs must be made to achieve the goal of power-
efficient, yet high performance design. As more proces-
sor performance is needed with the given power dissipation
constraints, it becomes important to consider how these
different areas affect one another in order to find the opti-
mum design. This overlap is particularly noticeable in the
issue queues of microprocessors.

Modern dynamic super-scalar microprocessors use out-
of-order issue and execution in order to extract greater
instruction-level parallelism (ILP) from common programs
[8], [11], [14]. A key hardware structure in out-of-order de-
signs is the issue queue. Figure 1 shows a pipeline overview
of the dynamic scheduling path as well as the issue queue
organization and operation. Here, each functional unit has
its own dedicated issue queue, although in some designs,
some of the functional units may share the same issue
queue. The issue queue holds decoded and renamed in-
structions until they issue to appropriate functional units.
The size of the issue queue represents the window of in-
structions that may be eligible for issue (or woken up) when
both of its source operands have been produced and an ap-
propriate functional unit has become available. The selec-
tion logic determines which instructions (up to the max-
imum issue width of processor) should issue out of these
woken up in a given cycle. Wake-up and select together
constitute an atomic operation. Atomic implies that the
entire operation must finish before the wake-up and select
operations for dependent instructions can begin. Thus, if
dependent instructions are to be executed in consecutive
cycles (necessary for achieving the highest performance)
the issue queue logic (scheduling) performs this operation

in one cycle. After an instruction is chosen for execution,
a tag associated with the instruction destination register
is broadcast over the tag buses to all entries in the issue
queues. This tag broadcast signals dependent instructions
that the instruction’s result will be available soon (wake-
up logic). After an instruction completes its execution, it
broadcasts its result over the result bus to the register file
and to any dependent instructions starting execution. The
dependent instructions read register values from the regis-
ter file or receives them from the bypass path.
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Fig. 1. Pipeline overview of the dynamic scheduling path and issue
queue organization and operation.

Although crucial for achieving high performance in out-
of-order processors, the issue queues are often a major con-
tributor to the overall power consumption of the chip, po-
tentially affecting both thermal issues related to hot spots
and energy issues related to battery life. Figure 2 shows
the power breakdown for the Compaq Alpha 21264 and
also depicts the power breakdown of the Ibox unit within
this processor. According to these figures, 50% of the Ibox
power is consumed in the queue whereas 23% is consumed
in the mapper and early datapath [13].

Current generation high-end processors like the IBM
POWERA [11] are performance-driven designs where power
limits are still below the 0.5 watts/mm? power density limit
afforded by the package/cooling solution of choice in the
server markets targeted by such processors. Figure 3 shows
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Fig. 2. Compaq Alpha 21264 and Ibox power breakdown.
CBOX:BIU, Data & Control Busses; DBOX: Dcache, EBOX: Inte-
ger Units; IBOX: Integer Mapper & Queue, FP Mapper & Queue,
Instruction Data Path; JBOX: Instruction Cache; MBOX: Memory
Controller.

the power density across some of the major units of a sim-
ulated processor that is similar to a POWER4 core [1]. We
note that although on a unit basis the power density num-
bers are under 0.5 watts/mm?, there are smaller hot-spots,
like the issue queues that are above the limit without any
clock-gating assumptions.
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Fig. 3. IBM POWERA4 power density profile across major units
and sub-units. IDU: Instruction Decode Unit; FXU: Fixed Point
Unit; IFU: Instruction Fetch Unit; ISU: Instruction Sequencing Unit;
LSU:Load-Store Unit: includes Levell (L1) Data Cache; FPU: Float-
ing Point Unit; L2: Level2 (L2) Cache; L3 Cntrl: Level3 (L3) Cache
Control; BHT: Branch History Table; Icache: Instruction Cache;
FXQ: Fixed-Point Issue Queue.

The Compaq Alpha 21264 and IBM POWER4 imple-
ment a compacting latch-based issue queue in which each
entry consists of a series of latches [1], [5]. Figure 4 shows a
general latch-based issue queue design similar to that used
in these processors. Each bit of each entry consists of a
latch and a multiplexer as well as comparators (not shown
in this figure) for the source operand IDs. Each entry feeds-
forward to the next queue entry, with the multiplexer used
to either hold the current latch contents or load the latch
with the contents of the next entry. The design shown in
Figure 4 can load up to four dispatched instructions in a
cycle into the uppermost unused queue entries. The queue
is compacting in that the outputs of each entry feed-forward
to the next entry to enable the filling of holes created by
instruction issue. New instructions are always added to
the tail position of the queue. In this manner, the queue
maintains an oldest to youngest program order within the
queue. This simplifies the implementation of an oldest-first
issue priority scheme as well as the squashing of queued in-
structions that are in the shadow of a mis-predicted branch.
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Fig. 4. Queue insertion and detail of queue entry.

However, the high price of this approach is its power con-
sumption. Compaction entails moving instructions around
in the queue every cycle and depending on instruction word
width may therefore be a source of considerable power con-
sumption. Each time an instruction is issued, all entries
are shifted down to fill the hole, resulting in all of these
latches being clocked. Because lower entries have issue pri-
ority over upper entries, instructions often issue from the
lower positions, resulting in a large number of shifts and
therefore, a large amount of power dissipation.

To eliminate these power-hungry operations, we can
make the issue queue non-compacting. In a non-
compacting queue, holes that result from an instruction
issue from a particular entry are not immediately filled.
Rather, these holes remain until a new entry is dispatched
into the queue. At this point, the holes are filled in priority
order from bottom to top. The obvious disadvantage of a
non-compacting queue is that oldest to youngest priority
order of instructions in the queue is lost. So, although a
compaction strategy is unsuitable for low power operation,
it may be critical to achieving good performance with a
simple position-based selection logic.

In this paper, we propose a new oldest-first selection logic
implementation for overcoming the drawback (lost instruc-
tion order) of non-compacting queues. This implementa-
tion relies on the instruction sequence numbers, or the re-
order buffer (ROB) numbers that typically tag each dis-
patched instruction. Our analysis with this circuit struc-
ture suggests that comparable delays with existing selec-
tion logic implementations can be achieved, while still pro-
viding the power savings of a non-compacting queue, with
a small cycles per instruction (CPI) performance degrada-
tion.

II. NON-COMPACTING ISSUE QUEUE

The obvious disadvantage of a non-compacting queue is
that the oldest to youngest priority order of the instructions
in the queue is lost. Thus, the use of a simple position-
based selection mechanism like that described in [10] will
not give priority to older instructions as in the compact-
ing design. Figure 5 shows a simple example of a four-
entry issue queue from which a single instruction can issue
each cycle and in which lower instructions have priority
over upper ones. Initially, both the compacting and non-
compacting queues maintain the oldest to youngest order



(A, B, C, D). When instruction B issues from the com-
pacting queue, instructions C and D are shifted down and
a new instruction (E) is put into the uppermost location.
By contrast, in the non-compacting queue, instruction E
is placed in the position formerly occupied by instruction
B, giving E higher priority than instructions C and D. If
both of the operands for instruction E are ready when it is
inserted into the queue, then in the non-compacting queue
it will issue in the next cycle, ahead of the older instruc-
tion C. Thus, these older instructions C and D may stay
in the queue for a significant period of time, which may
have a non-negligible impact on CPI performance (shown
in Section V).
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Fig. 5. An example showing the differences between compaction and
non-compaction with position-based selection.

Yet another alternative to a latch-based non-compacting
issue queue is a CAM/RAM-based issue queue which does
not support compaction. The baseline latch-based issue
queue is redesigned as a CAM/RAM structure in which the
source operand numbers are placed in the CAM structure
and the remaining instruction information is placed in the
RAM structure (shown in Figure 6). Because of the lower
power of CAM/RAM logic relative to random logic, the
CAM/RAM-based issue queue has the potential to reduce
the average power dissipation of the queue.

LATCH-BASED

CAM/RAM-BASED

Fig. 6. Latch-based (with compaction) and CAM/RAM-based issue
queues.

III. PosSITION-BASED SELECTION LOGIC

Since the number of ready instructions in the issue queue
may be greater than the number of functional units avail-
able, some form of selection logic is required to select the
instructions for execution from a ready pool of instructions.
A position-based selection policy based on a mix of static
and domino gates is proposed in [10]. Figure 7 shows the ar-
bitration logic which is structured as a decision tree which
must be traversed both ways. The inputs to the selection
logic are the request signals, each of which is raised when
all operands of the corresponding instruction are available.
The outputs of the selection logic are the grant signals, one
per request signal. Once an instruction is granted, it can
be issued to the functional unit and the issue queue entry
it occupies is freed.

The selection logic shown in Figure 7 works in two
phases. In the first phase, the request signals are prop-

agated up the tree. Each cell raises the anyreq signal if
any of its input request signals is high. This also raises the
input request signal of its parent arbiter cell. It is there-
fore possible that at the root cell one or more input request
signals are high if there are one or more instructions that
are ready. The root cell then grants the functional unit
to one of its children by raising one of its grant outputs.
This triggers the second phase in which the grant signal is
propagated down the tree to the instruction that will be se-
lected. The selection policy implemented in this structure
is static and is strictly based on location of the instruction
in the queue. Due to compaction, the bottom entries which
are older instructions have the highest priority in selection.

The approach uses static arbitration gates in segments
of four queue entries. The arbitration gate is structured
as an AND function with a maximum fan-in of five for the
lowest priority grant output signal. Domino OR gates are
used to propagate request signals up the tree to provide the
root node with information of which segments of the queue
have ready instructions in them. The static arbitration
gates then propagate the root nodes decision back to the
queue entries.

[TY2YIY]]

o o ARBITER | o o
CELL

Instruction Selection

reqO+eqL+req2+req3 = AnyReq

ARBITER CELL o o
2§ o

d E

ey S

Y1 vy BEBEE8EER
or |[PRIORITY SEEEEECE
ENCXJDER ROOT CELL

v l
ANYREQ ENABLE 4\

grant0 = req0 . enable

grantl =req0. reql . enable

grant2=reg0 . reql. req2. enable

grant3= reqQ. regl. reg2. req3. enable

Fig. 7. Position-based selection logic.

IV. OLDEST-FIRST SELECTION LOGIC

To solve the problem of lost instruction ordering while
maintaining much of the power-efficiency advantages of a
non-compacting queue, the reorder buffer (ROB) numbers
(sequence numbers) that typically tag each dispatched in-
struction can be used to identify oldest to youngest order.
(The ROB commits instructions in program order by per-
mitting an instruction to commit only if all the preceding
instructions have committed.) However, a problem arises
with this scheme due to the circular nature of the ROB
which may be implemented as a RAM with head and tail
pointers. For example, assume for simplicity an 8-entry
ROB where the oldest instruction lies in location 111 and
the youngest in 000. When an instruction commits, the
head pointer of the ROB is decremented to point to the
next entry. Similarly, the tail pointer is decremented when
an instruction is dispatched. With such an implementa-
tion, the oldest instruction may no longer lie in location
111 in our working example, but in any location. In fact,
the tail pointer may wrap around back to entry 111 such



that newer entries (those nearest to the tail) may occupy a
higher-numbered ROB entry than older entries [7]. When
this occurs, the oldest-first selection scheme will no longer
work properly.

This problem can be solved by adding an extra high-
order sequence number bit which we call the sorting bit
that is kept in the issue queue. As instructions are dis-
patched, they are allocated a sequence number consisting
of their ROB entry number appended to a sorting bit of
0. These sequence numbers are stored with the entry in
the issue queue. Whenever the ROB tail pointer wraps
around to entry 111 in our example, all sorting bits are
flash set to 1 in the issue queue. Newly dispatched in-
structions, however, including the one assigned to ROB
entry 111, continue to receive a sorting bit of 0 in their
sequence numbers. These steps, which are summarized in
Figure 8, guarantee that these newly dispatched instruc-
tions will have a lower sequence number than prior (older)
instructions already residing in the queue.

N o N
pointer 0 sorting bit update criteria
° V start point 0 when tail pointer hits the start
@y o point, all sorting bitsin the queue
o) areflashsetto 1
0
(©)
o o
° I o o
head pointer ——
sorting bit
ROB 1Q

Fig. 8. Mechanism for updating the sorting bit in the issue queue.

Once the sorting bit adjustment is in place, older instruc-
tions can properly be selected from the ready instructions
as follows. The most significant bit of the sequence num-
bers of all ready instructions are OR-ed together. If the
result of the OR is 1, all ready instructions whose most
significant bits are 0 will be removed from consideration.
In the next step, the second most significant bit of the se-
quence numbers of all ready instructions that are still under
consideration are OR-ed together. If the result of the OR
is 1, all ready instructions still under consideration whose
second most significant bits are 0, will be removed from
consideration. The Nth step is the same as step 2, except
the least significant bit of the sequence number is used. At
the end of this step, all ready instructions will have been
removed from consideration except for the oldest.

However, this OR-based arbitration mechanism requires
a final linear O(N) chain from the highest order to the
lowest order bit. This significantly increases the delay of
the selection logic compared to the selection logic described
by Palacharla [10] after 4 bits with a 32 entry queue. Note
that for a processor that has up to 128 instructions (ROB
of 128 entries) in flight, a full sequence number consists of 7
bits and a sorting bit. The lack of full age ordering with 4-
bit sequence numbers results in a CPI degradation (shown
in Section V), although it is an improvement over the CPI
degradation incurred with no age ordering (position-based
selection with non-compaction).

Figure 9 shows the 4-bit implementation of the oldest-
first selection logic for a 32 entry queue. These four bits
consist of three low order bits of the sequence number in

addition to the sorting bit. (In Figure 9, A4 is the sorting
bit and A3-A1 are the three least significant bits.) 32-input
OR gates are implemented as 32-input domino logic. So for
each stage the corresponding logic (OR gate, mux and AND
gate) makes the decision of passing all the entries to the
next stage (if they have the same age) or filter them (by
passing only the greatest ones according to the comparison
up to that point). In the scenario where ready instructions
each have the same four bit value (tie situation), a priority
encoder described in [5], [9] is used to grant one of those
instructions. This priority encoder is an array of kill signals
in which the one in a lower row discharges all upper row
grants (not shown in Figure 9).
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Fig. 9. Oldest-first selection logic.

V. EVALUATION
A. Methodology

We perform circuit-level delay analysis and energy es-
timation using the IBM AS/X circuit simulator and next
generation process parameters. The baseline latch-based
issue queue and other circuit designs borrow from existing
circuit libraries where appropriate. Both position-based
selection logic and oldest-first selection logic implementa-
tions are optimized for speed, and then the corresponding
energy measurements are performed. For the microarchi-
tectural simulations, we used SimpleScalar-3.0 [3] to simu-
late an aggressive out-of-order super-scalar processor. The
simulator has been modified to model separate integer and
floating point queues. We focus on an integer issue queue
with 32 entries in this paper.

B. Results

The trade-offs between a compacting and non-
compacting issue queue are complex, as a degradation
in CPI performance can potentially occur with non-
compaction due to the lack of an oldest-first selection
scheme. We modified SimpleScalar to model the holes cre-
ated in a non-compacting issue queue, the filling of these
holes with newly dispatched instructions, and a selection
mechanism strictly based on location within the queue
(rather than the oldest-first mechanism used by default).
With such a scheme, older instructions may remain in the
queue for a long time period, thereby delaying the comple-
tion of important dependence chains. The left-most bar in
Figure 10 shows the CPI degradation for our six SPEC2000
integer benchmarks. The degradation is significant, around
8% for mcf and parser and 5.5% overall. The right-most bar



shows the CPI degradation when the described oldest-first
selection scheme is implemented by using four bit sequence
number (including the sorting bit). On average, the partial
oldest-first selection scheme reduces the CPI degradation
from 5.5% to 2.3%.
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Fig. 10. CPI degradation incurred via non-compaction with position-
based selection, and non-compaction with partial oldest-first selec-
tion.

One drawback with our selection scheme is that it dis-
sipates 2.2 times more energy compared to the position-
based selection logic under worst-case switching activity.
However, depending on the number of ready instructions
that are candidates for selection each cycle, the selection
logic dissipates between 1.6%-5.1% of the total issue queue
energy. Under such circumstances, the extra energy over-
head of the proposed selection logic is well compensated
by the extra energy savings. Figure 11 shows the over-
all energy savings with the proposed oldest-first selection
logic for non-compacting issue queues (latch-based and
CAM/RAM-based). The results are averaged over the six
SPEC2000 benchmarks shown in Figure 10, with the rel-
ative energy calculations of different issue queue alterna-
tives gathered from [4] and the extra energy overhead of
oldest-first selection logic factored in. Latch-based and
CAM/RAM-based designs with no compaction save con-
siderable energy (30% for the latch-based design with the
selection logic overhead at 5.1%) compared with the latch-
based compacting issue queue with a small performance
degradation and no cycle time impact.

Latch-based
Latch-based no compaction
CAM/RAM-based no compaction

Relative Energy

6%
Percentage of selection logic energy (o the issue queue energy

Fig. 11.  Overall energy savings with latch-based no-compaction
strategy and CAM/RAM-based issue queues compared to latch-based
compacting issue queue with the proposed oldest-first selection logic.

VI. CONCLUSION

In this paper, we present a new selection logic scheme
for non-compacting issue queues that achieves consider-
able power savings with a small performance degradation.
Through a detailed quantitative comparison of our cir-
cuit technique with the well-known position-based selection
logic used for compacting issue queues, we determine that
this new selection logic meets the cycle time constraints of
high clock rate microprocessors.
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