Scaling Silicon Nanophotonic Interconnects

using compact, high speed, multi-wavelength devices

Sasikanth Manipatruni, Michal Lipson

Cornell University College of Engineering

Silicon Nanophotonics: Opportunities

High Performance Computing

Evolution of telecommunications; E. Desurvire, 2006

Scalable Devices for Web 3.0

IBM, Oracle-Sun, HP, Intel, Alcatel, Corning, Sandia Labs,Fujitsu, NTT, Hitachi, A*STAR, IMEC-Belgium, Luxtera, Kotura

Cornell University College of Engineering

Silicon Photonic Devices : Interconnect Integrated Devices

Silicon Microring Modulator

3D Poly Modulator OE '09 Broadband Switch OE '09

Wavelength Divison Multiplexing using Silicon Micro-rings, OE'2010

Complete Interconnect OE '09

Cornell University College of Engineering

Resonant Silicon Electro-optic Modulators

Cornell University College of Engineering - Cornell Nanophotonics Group - nanophotonics.ece.cornell.edu

Δ

Resonant Silicon Electro-optic Modulators

Cornell University College of Engineering

Micro-ring Silicon Electro-optic Modulator_{ON}

- Index changes are translated into large modulations in output power.
- The modulated light can be switched on and off at a high speed.

Cornell University College of Engineering

18 Gb/s micro-ring Silicon Electro-optic Modulator

18 Gbps, Mar 2007

Fastest Modulation Rate on Silicon using Micro-rings

S. Manipatruni, M. Lipson et al LEOS 2007

S. Manipatruni, Q.Xu, M. Lipson Opt. Express Vol. 15, No. 20, (2007)

Cornell University College of Engineering

Scaling the Modulation Bandwidth

Cornell University College of Engineering

50 Gbit/s Wavelength Divison Multiplexing System

S. Manipatruni, L. Chen and M. Lipson, "Ultra Wide Band WDM using Silicon Micro-ring Modulators " Optics Express 2010

Cornell University College of Engineering

50 Gbit/s Wavelength Divison Multiplexing System

S. Manipatruni, L. Chen and M. Lipson, "Ultra Wide Band WDM using Silicon Micro-ring Modulators " Optics Express 2010

Cornell University College of Engineering

50 Gbit/s Wavelength Divison Multiplexing System

Highest Modulation Bandwidth on Silicon using Microrings

S. Manipatruni, L. Chen and M. Lipson, "Ultra Wide Band WDM using Silicon Micro-ring Modulators " Optics Express 2010

Cornell University College of Engineering - Cornell Nanophotonics Group - nanophotonics.ece.cornell.edu

11

Bandwidth Density : Data rate per micron pitch cross section

Cornell University College of Engineering

is a challenge with existing technologies.

Cornell University College of Engineering

Cornell University College of Engineering

Here, we show a bandwidth capacity of 33 Gbit/s.µm and ~ 100 Tbit/s ⋅ mm² modulation density.

Cornell University College of Engineering - Cornell Nanophotonics Group - nanophotonics.ece.cornell.edu

15

150 mV Silicon Electro-optic Modulator Towards Direct Digital Logic Driven Modulators

Cornell University College of Engineering

Voltage Scaling in Digital CMOS

Stringent conditions on voltage swing can be expected for future CMOS integration

Cornell University College of Engineering

Analog Driver Complexity

Analog drivers significantly1. Decrease the bandwidth density2. Increase the energy/bit

Luxtera 2005

Analog drivers limit the bandwidth density and the minimum energy achievable.

Cornell University College of Engineering

Scaling Micro-ring Modulators

Silicon Micro-ring modulator with a modal volume of 2 Micron³

$$D_{optical} \equiv \frac{f}{Area} < \frac{V_{sat}}{nk} \left(\frac{\lambda}{2N}\right)^{-3}$$

Cornell University College of Engineering

Optimum Driving Conditions for Carrier Injection Modulators

$$V(I) = V_t + IR + \frac{kT}{e\alpha} \log_e \left[\frac{I}{I_0} + 1\right]$$

Cornell University College of Engineering

Optimum Driving Conditions for Carrier Injection Modulators

Cornell University College of Engineering

Optimum Driving Conditions for Carrier Injection Modulators

Cornell University College of Engineering

150 mV peak-peak voltage operation

S.Manipatruni, K.Preston, L.Chen, M.Lipson, " Ultra Low Drive Voltage, Ultra Small Silicon Electro-optic Modulator", Optics Express 2010

Cornell University College of Engineering

Ultra Low Voltage Silicon Micro-ring Modulator

Applied Electrical Signal

Optical Modulation

1 Gbit/s Modulation using 150 mV peak-peak voltage swing

Smallest Swing Voltage for silicon electro-optic switching to date

S.Manipatruni, K.Preston, L.Chen, M.Lipson, " Ultra Low Drive Voltage, Ultra Small Silicon Electro-optic Modulator", Optics Express 2010

Cornell University College of Engineering

Towards Direct Digital Logic Drive

$$t_{sw} = 3 \frac{C_n V_n}{I_n} \cdot \frac{I_{mod \ ulator}}{I_n} + 1.5 \cdot \frac{C_n V_n}{I_n}$$

http://www.itrs.net/links/2005itrs/Linked%20Files/2005Files/SystemDrivers%20and%20Design/FO4Writeup.pdf http://www.itrs.net/Links/2009ITRS/2009Chapters_2009Tables/2009Tables_FOCUS_C_ITRS.xls

Cornell University College of Engineering

http://www.itrs.net/links/2005itrs/Linked%20Files/2005Files/SystemDrivers%20and%20Design/FO4Writeup.pdf http://www.itrs.net/Links/2009ITRS/2009Chapters_2009Tables/2009Tables_FOCUS_C_ITRS.xls

Cornell University College of Engineering

Modulators can be driven with 2 Micron sized transistors at $I_{d,sat}$ of 664 μ A/ μ m

Cornell University College of Engineering

Conclusion

Smallest swing voltage for silicon electro-optic modulation to date

Smallest micro-ring modulator to date

Cornell University College of Engineering

Silicon Electro-optic Modulators: Building Blocks for Optical Networks on Chip

Scalability : 50 Gbit/s Highest Modulation Capacity using microrings

Robustness : Stability over 15 K

Scaling Rules : Based on physical models & ITRS

Cornell University College of Engineering

Silicon Nanophotonic Device Requirements

Feature	Description	Target
Link Speed	Operating Speed (B)	> 25 Gbit/s
Clock Speed	System Clock (f _{clock})	5 GHz
Modulator Switching Energy	Switching Energy averaged per bit	10 fJ/bit
Detector	Effective Capacitance & Quantum Efficiency	10 fF, > -1 dB @ 25 Gbit/s
Operating Voltages, Current	Modulator Drive & Detector Out	< 1 V, 1 mA
Waveguide Losses	Single mode waveguide loss	< 1 dB/cm
Coupling Loss	Single Mode Fiber to Single Mode Waveguide Coupling	< 1dB
Laser Quantum Efficiency	Electrical to Optical Conversion	> -3 dB
Serilisation- Deserilaisation	For converting system data to high speed and back	< 20 fJ/bit
Tuning Power	Tuning power for low modal volume devices	250 μW/nm
Operating Range	Transient Tuning Range	20 K run-time

Table 1.3: Device Requirements for sub 100 fJ/bit Silicon Nanophotonic Interconnects*

* We provide one possible set of device parameters. A large range of devices can meet the requirement with appropriate tradeoffs.

- Cornell Nanophotonics Group nanophotonics.ece.cornell.edu

30

Compact, Multi-wavelength, High speed, CMOS Silicon Photonic Components

Property	Description	FOM Target
Compact	Size of modulators, detectors, switches	D > 500 Tbps/mm ² Modal Volume ~ 1 μ m ³ Detector C _d < 10 fF, QE> 80%
High Speed	Data rate per channel	f~ 10-40 Gbps
Multi-wavelength	Multiple wavelength networks	Interconnect Density (D) > 50 Gbps/ μm
CMOS compatible	Low voltage, low current, Low Temperature	Vdd, Id < 600 mV, 1 mA

- Cornell Nanophotonics Group nanophotonics.ece.cornell.edu

31

Silicon Photonics Impact So Far : Computing

Columbia, IBM Bergman, Kash et al C. Batten et al

Sun, HP Labs A. Krishnamoorthy, Beausolil et al

Most proposed multi-core network architectures are based on Silicon photonic building blocks.

Cornell University College of Engineering

Nanophotonics: Opportunities

High Performance Computing

Evolution of telecommunications; E. Desurvire, 2006

Scalable Devices for Web 3.0

Cornell University College of Engineering

Acknowledgements

Cornell University College of Engineering

END

Cornell University College of Engineering

