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Abstract

An emerging class of distributed applications such as
graph processing and key-value store require fine grained
non-uniform memory access and communication, which
commodity networking infrastructure is ill-equipped to
handle. By batching messages on the end host we can
increase bandwidth utilization at the cost of latency and
memory. However, by batching messages in the network
instead of exclusively at the end hosts, it is possible to
reduce these memory and latency penalties. We introduce
a 10G NetFPGA prototype that performs in-network mes-
sage aggregation which for commodity systems can offer
increased throughput at minimal latency and memory
increases.

1 Introduction

Data center networks face unprecedented challenges as
network architects struggle to scale bisection bandwidth
for emerging applications [1], and end host systems
struggle to maximize the gains of faster network inter-
connects [5]. Link level bandwidth performance has
seen great improvements in recent years with 10, 40,
and even 100 Gigabit transceiver technology. These
increases in network interconnect performance naturally
result in better bisection bandwidth. At the same time,
increased network bandwidth capacity has created new
challenges for commodity interconnects and network
stacks to maximize impact of these gains. With the
end of silicon scaling, compute and memory budgets for
standard networking stacks and systems have struggled to
operate at line rate.

Commodity systems and network stacks have been
traditionally optimized to move large packets and ac-
celerate TCP and UDP offloads, not small packets and
custom workloads. For applications which require fine
grained non-uniform memory access (NUMA) patterns
such as distributed graph processing, and key-value store,
commodity systems fare poorly. One solution is to batch
small messages together on the end hosts of the network
into larger messages which achieves higher bandwidth
utilization and overall throughput [4]. Unfortunately,
end host aggregation generates its own set of challenges;
batching messages necessarily requires both a latency
increase and larger memory footprint. In the worst case,
when each end host allocates an aggregation buffer to
communicate with every other end host in the system, the
memory footprint scales quadratically.

Instead, we propose an alternate solution, in-network
aggregation which offloads the routing and reaggregation
into the network fabric similar to the techniques proposed
by L. Mai et al. [3]. Under this approach, messages
are batched regardless of destination at the end host for
each outgoing network interface in the system; each hop
in the network then unbundles, routes, and reaggregates
messages bound for the same destination interface. By
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offloading aggregation into the network, we can reduce
the latency, and memory footprint on end hosts since the
buffer count now scales with the number of network ports
in the system. In the worst case, a naive all-to-all network
topology with full bisection bandwidth incurs a quadratic
memory footprint, but for other network topologies such
as a fat tree, in-network aggregation can achieve sub-
quadratic memory scaling.

2 Hardware 10G NetFPGA Prototype

We have built a prototype router on a 10G NetFPGA to
evaluate the benefits of in-network aggregation [2]. The
10G NetFPGA platform provides 4 x 10 Gigabit Eth-
ernet SFP+ interfaces which are operated by AEL2005
PHYs, and two Samtec expansion connectors which are
operated by 20 GTX dual transceivers. The PHYs are
connected to a Xilinx Virtex-5 TX240T and communicate
to XGMAC cores on the FPGA in full duplex mode. To
minimize packet overhead, our design operates directly
on raw ethernet frames carrying a custom header. Each
ethernet frame payload contains a batch of application
level messages which have a message destination field,
message size field, and message payload (Figure 1).

We bootstrapped our prototype design from the ex-
ample reference router project in the NetFPGA-10G-
live Github repository. Our design replaced most of the
data plane routing logic in the reference design with our
aggregation core but reused the XGMAC core peripherals
and board configuration files. Each data bus in our design
is 64 bits wide and operates at 156.25 MHz offering 10
Gbps of throughput and full bisection bandwidth. To
simplify the packet processing, we align payload data to
8 byte boundaries.

Our router prototype follows a virtual output queue
switch architecture supplemented with our aggregator
and deaggregator cores (Figure 2). Each receiving data
bus from the XGMAC cores passes frames into a Deag-
gregator core; frames are then stripped of their headers
and have their payloads split into applications messages.
Application messages are then routed by a programmable
routing table into the Virtual Output Queues based on
their destination field. An Aggregator Queue for each
outbound XGMAC bus then collects the application mes-
sages from the Virtual Output Queues and reaggregates
them. A Transmission Module then generates a eth-
ernet header and initiates a transmission when the size
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Figure 2: Router Prototype Architecture

of aggregated data in the Aggregator Queue reaches a
programmable threshold or a timeout occurs.

A Microblaze soft processor handles any control sig-
nals required to initialize the system and any user re-
configuration. Our prototype supports reconfiguring the
routing tables, aggregation thresholds, timeout period,
and egress MAC address. All reconfiguration is commu-
nicated over a serial port to a Microblaze soft processor
which issues reconfiguration commands to our design.

Our design took 6 months to implement, test, and
validate by a single student. A notable portion of
the development time was devoted to set up costs and
negotiating project infrastructure. We have also built
an extended design which also supports communication
over the NetFPGA’s two Samtec connectors using Aurora
transceivers. We envision these connectors to be used as
inter-board links to overcome the four port limitation of
a single NetFPGA board, effectively extending our in-
network aggregator prototype to 12 x 10G interfaces.

3 Challenges Operating at 10G

Operating at 10 Gigabit line rate is a challenge for
standard commodity interfaces and Linux networking
stacks. Using standard Linux sockets today for a 10
Gigabit Ethernet interface, we can achieve transmission
rates shown in Figure 3 and find for small packets we
are limited by packet injection rate. Even at these limited
transmission rates, we find that we cannot receive packets
from the network interface card (NIC) using standard
Linux sockets without using higher level protocol NIC
accelerators such as UDP offloads. To operate at higher
line rates, we are looking at custom networking stacks
and drivers such as PF_RING which can operate in kernel
bypass mode to eliminate kernel overhead to evaluate our
design.

4 Project Status and Future Work

We have completed a preliminary simulation using
the Omnet++ network simulator to validate the potential
benefits of in-network aggregation. In order to im-
prove the fidelity of the simulation, we have designed
and prototyped a router that can perform in-network
aggregation. To evaluate our prototype, we plan to
benchmark Gigaupdates Per Second (GUPS) throughput
which randomly issues updates across nodes. We chose
the GUPS benchmark because it approximates the same
communication patterns as more complex applications

Figure 3: Maximum network transmission bandwidth
for Linux raw 10G Ethernet sockets for various frame
payload sizes with end host aggregation (black) and in-
network aggregation (grey)

such as distributed key-value store, and graph processing.
As a comparison point, a standard commodity switch will
be used to measure end host aggregation performance
baselines with and without aggregation enabled. We will
then evaluate our design with and without aggregation en-
abled on our prototype in place of the commodity switch.
To evaluate the design at scale, we will use our prototype
results to build a simulation model for larger network
topologies, and different levels of oversubscription.
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