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Abstract—Over the past two years, a prototyping infrastruc-
ture has grown up around CHDL; a C++ library for designing
and simulating hardware, and HARP; a family of instruction
set architectures for data parallel computing. Among the fruits
of this effort are several processor cores, including a single-
instruction-multiple-thread implementation of HARP called Har-
monica and a variety of FPGA and simulation oriented memory
system components. Collectively, these pieces form Cymric, an
infrastructure for prototyping near-memory processor architec-
tures. Here, we report on the current status of our efforts,
enumerating the software and hardware components produced
and discussing the tools we have found indispensable in their
production.

Index Terms—FPGA; GPGPU; SIMT; data parallel; processor
near memory; C++

I. INTRODUCTION

Processing-near-memory (PNM) is becoming an attractive
solution to reduce energy consumption by reducing the volume
of data movement in computing systems. While research
in the 1990s addressed the idea of placing processing-in-
memory (PIM), the continued evolution of Moore’s Law and
related architectural advances precluded the need for such
architectures. However, the need of energy savings in the
big-data era drives shifting from processing-centric computing
to memory-centric computing. Understanding the energy and
time behavior of PNM architectures is essential to the design
of PNM architectures.

To explore the PNM architecture design space with detailed
evaluations of time and energy behavior, we have been de-
veloping a PNM prototype, Cymric, along with a toolchain
and ISA that allows us to explore various PNM architectures.
Our new parameterizable ISA, HARP, has been designed to
enable exploration of different architecture parameters. The
HARP ISA resembles GPGPU ISAs but supports dynamic
thread spawn, precise exceptions, and is deeply parameterized.
We also developed the CHDL tool chain, a hardware design
environment built around a C++ library enabling structured
hardware generation and simulation. The layered design of
CHDL allows the generation of architectural prototypes from
relatively high-level microarchitectural descriptions. We have
been developing a software stack that includes compilers,
run-time system, and an FPGA-oriented implementation of
HARP called Harmonica. Currently the Cymric system which

is shown in Figure 2, consisting of a RISC core, several HARP
cores, and an on-chip network, runs on Altera Stratix V system
and a part of Cymric is currently being tested on a Micron
EX-800 board.

II. CYMRIC SYSTEM

1) HARP: The basis of Cymric is the HARP (Heteroge-
neous Architecture Research Prototype) family of instruction
set architectures. HARP instructions sets are GPGPU-like;
inherently SIMT, and any instruction stream can represent
multiple threads of execution with independent register values
for any period during which the program counters for all of
the threads are the same. When program counters become
different, control flow divergence has occurred, which is
handled using the IPDOM stack-based algorithm. This is a
parameterized family of architectures enabling unprecedented
flexibility in the implementation of SIMT cores. The flexibility
of HARP is in the number of design decisions left to the
implementation, including register and datapath width, number
of SIMD lanes, which instructions to implement, how many
general-purpose registers and predicate registers to provide,
and how to encode the instructions and data. To support these
instruction sets, we have created a toolchain including an
assembler, linker, and emulator, as well as a set of example
programs. The HARP ISAs allow the use of a short string
to describe the SIMD width, number of general-purpose and
predicate registers, and instruction encoding used. Using this
string, the toolchain targets the assembly and linking of input
programs to the appropriate core type.

2) Harmonica: Current soft cores come in many sizes, from
microcontrollers to superscalar, often providing some level of
configurability. It is likely that the range of sizes demanded
from current soft cores will also be seen in the demand for
SIMT soft cores. To answer the need in the research com-
munity for soft GPGPU-like cores of many sizes and feature
sets, we have developed Harmonica, a configurable SIMT
soft-core with a parameterized instruction set architecture,
to run GPGPU applications. The current Harmonica core is
composed of a configurable number of SIMT lanes and has
a 6-stage in-order-scheduled execution pipeline. This core is
configurable in the sense that dimensions such as SIMD width
and word size can be configured as well as the set of and



types of functional units present. This not only saves space
by allowing the removal of unnecessary functional units, but
also allows the development of functional units using vendor-
provided IP for performance-critical operations like arithmetic.

A. HARP Compiler

The HARP compiler is implemented as a back end for
the LLVM/Clang compiler system. The compiler currently
supports a subset of OpenCL APIs as well as simple C/C++
programs, with growing support. In its current state, the
compiler can translate some simple OpenCL kernels and
C programs to HARP assembly. The majority of our test
programs, however, are still written in assembly language.

B. Run-time System

The run-time system supports the following two main func-
tionalities: (1) communication between the host core (MIPS)
and accelerators (Harmonica). This includes triggering the
execution at harmonica cores and also sending its results
back to the host cores. (2) Multi-threaded program support:
The HARP compiler generates implementations of procedures
with no consideration of parallelism and it is the run-time
system which spawns multiple SIMT threads. Thread spawn
and register initialization prior to program execution are done
by the run-time system.

C. CHDL

Harmonica is implemented using CHDL, an open-source
C++-based hardware design library partially influenced by
JHDL and Chisel [2] [1]. CHDL provides a way to describe the
structure of hardware using a common programming language.
This structural description can then be either simulated or used
to produce netlists in several formats, including Verilog, which
can then be parsed by traditional FPGA tool flows. Interfaces
within CHDL designs and between them can be described in
terms of structured, parameterized signals. This capability has
proved invaluable in specifying our designs clearly, enabling
e.g. a standard request/response interface format for processor-
to-memory interfaces. The modularity enabled by CHDL
has enabled a wide variety of memory format interfacing
and memory networking functions to be implemented. These
provide a high level of flexibility at the top level of design,
reducing the assembly of the platform to a few lines of
code describing the connectivity of devices attached to the
memory system. The use of CHDL enables configurability at
compile time with C++ template metaprogramming, ultimately
improving performance during elaboration and simulation. The
use of C++ also allows CHDL designs to be incorporated into
other programs, allowing expansion of simulation and CAD
features.

D. Simulation

The availability of FPGA prototypes does not obviate simu-
lation. Given the size of our designs, hour-long compile times
are not uncommon, so even with software simulation speeds in
the tens of hertz, only runtimes of millions of cycles or more
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Fig. 1. Harmonica Architecture Pipeline

Fig. 2. Overview of Cymric

benefit from the speed of FPGA execution. Our simulation
infrastructure is built around the CHDL component for the
Structural Simulation Toolkit (SST) [3]. By integrating CHDL
with SST, we have enabled the incorporation of CHDL designs
into higher-level simulators of memory system components,
enabling software validation of our prototype and faster design
space exploration than would be available with only FPGA-
based design evaluation.

E. FPGA Prototype

Modules interfacing the CHDL memory request/response
format to the Avalon bus used by Altera’s vendor-supplied
memory controllers have been created, enabling a range of
DRAM-connected prototypes to be created. In addition to this,
there is an ongoing effort to add support for interfacing with
Micron’s Hybrid Memory Cube stacked DRAM devices.
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