
CURIE Academy, Summer 2014
Lab 3: “Smart Door” IoT System

Sign-Off Sheet

NAME:

NAME:

NAME:

NAME:

NAME:

NAME:

DATE:

Sign-Off Milestone TA Initials

Part 1.A IoT Input Device: Button to LCD

Part 1.B IoT Input Device: Button to Cloud

Part 2.A IoT Output Device: Blinking LED

Part 2.B IoT Output Device: Cloud to LED

Part 2 “Smart Door” IoT System

CURIE Academy, Summer 2014
Lab Handout 3: “Smart Door” IoT System

Prof. Christopher Batten
School of Electrical and Computer Engineering

Cornell University

In this (short) lab assignment, you will build your first IoT system, and this system will serve as the
foundation for your design project. For this lab assignment you will work in your design project
group of 5–6 students. The lab includes three required parts. To complete the lab you should first
divide into two subgroups with 2–3 students in each subgroup. One subgroup will focus on the first
part, while the other subgroup focuses on the second part. Then the entire group will work on the
final part together. In Part 1, you will build an IoT input device that monitors a button in the spirit
of a door switch and uploads the door status to the cloud. In Part 2, you will build an IoT output
device that periodically checks the cloud and displays the door status using an LED. In the final part
you will put the IoT input and output devices together to create the full IoT system as illustrated in
Figure 1.

Feel free to consult the lab notes as you work through the lab. For each part and various subparts
you will need to have a teaching assistant observe the desired outcome and initial the appropriate
line on the sign-off sheet. Turn in your sign-off sheet at the end of the lab session.

Before beginning, take a look at the materials on the lab bench which you will be using to complete
the lab:

• Two Arduino-based IoT devices
• Push button for input IoT device
• LED and resistor for output IoT device
• Two screwdrivers for assembling/disassembling IoT devices
• Two wire cutter and strippers
• Two Arduino cheat sheets
• Two “Introduction to Arduino” booklets
• Workstation with black USB cable
• Flash drive for storing your code

You will also need to log into Xively and create three channels in your group’s workspace. The
channels should be named “door_status”, “door_status_in”, and “door_status_out”. Consult the lab
notes for more details on how to do this.

IoT Cloud IoT Output
Device

IoT Input
Device

Push Button LED

Figure 1: Diagram of “Smart Door” IoT System

1

CURIE Academy, Summer 2014 Lab Handout 3: “Smart Door” IoT System

1
1

5
5

1
0

1
0

1
5

1
5

2
0

2
0

2
5

2
5

3
0

3
0

A A

B B

C C

D D

E E

F F

G G

H H

I I

J J

WiFi Board

Cable to
LCD
Panel

To Digital Input 3

Cable for
Push

Button

Figure 2: Breadboard Diagram for Wiring Push Button

1. IoT Input Device

You should divide into two subgroups. The first subgroup with 2–3 students should focus on this
part of the lab where you will build an IoT input device that monitors a button in the spirit of a
door switch and uploads the door status to the cloud. We will start by simply reading the button
and displaying its status on the LCD panel, before moving onto uploading the door status to the
cloud. Note that in this part, you will be using a different channel (“door_status_in”) from what the
other subgroup is using (“door_status_out”). This will enable you to test both parts of the system in
isolation before combining them together.

1.A IoT Input Device: Button to LCD

As a first step, wire the push button to your IoT input device as shown in Figure 2. Then enter the
code shown in Figure 3 to display the status of the push button on the LCD panel.

Sign-Off Milestone: Once you have verified that the door status is displayed correctly, demonstrate
the system for an instructor.

1.B IoT Input Device: Button to Cloud

Now that we know the push button works, we will upload the door status to the cloud. Figure 4
illustrates how we can send the door status to the cloud using the send_int routine. Note that you
must use your group number instead of N when initializing curie_cloud!. To verify that the door
status is being upload to the cloud correctly, watch the “door_status_in” channel in Xively. Since we
have a four second delay to avoid overloading the Xively servers, you will need to keep the button
pressed for ten seconds or so to ensure that the system correctly uploads the new door status. If you
would like to make your IoT input device more responsive, you could modify the code to wait until
the button changes and then immediately upload the new value.

As mentioned in the lab notes, you must limit how fast you access the Xively servers to avoid being
blocked. See the lab notes for more details.

Sign-Off Milestone: Once you have verified that the door status is being uploaded to the cloud cor-
rectly, demonstrate the system for an instructor.

2

CURIE Academy, Summer 2014 Lab Handout 3: “Smart Door” IoT System

1 // We need to include three libraries
2

3 #include <Curie.h>
4 #include <Wire.h>
5 #include <SPI.h>
6

7 // Global constants for pin assignments
8

9 int pin_button = 3;
10

11 // The setup routine runs once when you press reset
12

13 void setup()
14 {
15 curie_lcd.begin(); // Initialize LCD panel
16 pinMode(pin_button, INPUT); // Configure pin_button as input
17 }
18

19 // The loop routine runs over and over again
20

21 void loop()
22 {
23 // Read the push button’s current value
24 int door_status = digitalRead(pin_button);
25

26 // Output door status to LCD panel
27 curie_lcd.setCursor(0,0);
28 curie_lcd.print("Door Status: ");
29 curie_lcd.print(door_status);
30 }

Figure 3: Program to Update LCD Based on Push Button

3

CURIE Academy, Summer 2014 Lab Handout 3: “Smart Door” IoT System

1 // We need to include three libraries
2

3 #include <Curie.h>
4 #include <Wire.h>
5 #include <SPI.h>
6

7 // Global constants for pin assignments
8

9 int pin_button = 3;
10

11 // The setup routine runs once when you press reset
12

13 void setup()
14 {
15 curie_cloud.begin(CURIE_CLOUD_GROUP(N)); // Setup the cloud
16 curie_lcd.clear(); // Clear the LCD panel
17 pinMode(pin_button, INPUT); // Configure pin_button as input
18 }
19

20 // The loop routine runs over and over again
21

22 void loop()
23 {
24 // Read the current door status
25 int door_status = digitalRead(pin_button);
26

27 // Output door status to LCD panel
28 curie_lcd.setCursor(0,0);
29 curie_lcd.print("Door Status: ");
30 curie_lcd.print(door_status);
31

32 // Send door status to the cloud
33 curie_cloud.send_int("door_status_in", door_status);
34

35 // Wait 4 seconds to avoid overloading Xively servers
36 delay(4000);
37 }

Figure 4: Program to Send Door Status To Cloud

4

CURIE Academy, Summer 2014 Lab Handout 3: “Smart Door” IoT System

2. IoT Output Device

You should divide into two subgroups. The second subgroup with 2–3 students should focus on
this part of the lab where you will build an IoT output device that periodically checks the cloud and
displays the door status using an LED. We will start by simply blinking the LED, before moving onto
downloading the door status from the cloud. Note that in this part, you will be using a different
channel (“door_status_out”) from what the other subgroup is using (“door_status_in”). This will
enable you to test both parts of the system in isolation before combining them together.

2.A IoT Output Device: Blink LED

As a first step, wire the LED as shown in Figure 5. Then enter the code shown in Figure 6 to blink
both the LED and the LCD panel.

Sign-Off Milestone: Once you have verified that the LED and LCD panel are blinking correctly,
demonstrate the system for an instructor.

2.B IoT Output Device: Cloud to LED

Now that we know the LED works, we will receive the door status from the cloud. Figure 7 illus-
trates how we can receive the door status from the cloud using the recv_int routine. Note that
you must use your group number instead of N when initializing curie_cloud!. To verify that the
door status is being received from the cloud correctly, you can directly modify the current value of
the “door_status_out” channel in Xively. After modifying the current value, your IoT output device
should reflect the change within a few seconds.

As mentioned in the lab notes, you must limit how fast you access the Xively servers to avoid being
blocked. See the lab notes for more details.

Sign-Off Milestone: Once you have verified that the LED and LCD panel are correctly displaying the
door status received from the cloud, demonstrate the system for an instructor.

1
1

5
5

1
0

1
0

1
5

1
5

2
0

2
0

2
5

2
5

3
0

3
0

A A

B B

C C

D D

E E

F F

G G

H H

I I

J J

WiFi Board

Cable to
LCD
Panel

From Digital Output 3

Figure 5: Breadboard Diagram for Wiring LED

5

CURIE Academy, Summer 2014 Lab Handout 3: “Smart Door” IoT System

1 // We need to include three libraries
2

3 #include <Curie.h>
4 #include <Wire.h>
5 #include <SPI.h>
6

7 // Global constants for pin assignments
8

9 int pin_led = 3;
10

11 // The setup routine runs once when you press reset
12

13 void setup()
14 {
15 curie_lcd.begin(); // Initialize LCD panel
16 pinMode(pin_led, OUTPUT); // Configure pin_led as output
17 }
18

19 // The loop routine runs over and over again
20

21 void loop()
22 {
23 digitalWrite(pin_led, HIGH);
24

25 curie_lcd.setCursor(0,0);
26 curie_lcd.print("LED is on ");
27

28 delay(1000);
29

30 digitalWrite(pin_led, LOW);
31

32 curie_lcd.setCursor(0,0);
33 curie_lcd.print("LED is off");
34

35 delay(1000);
36 }

Figure 6: Program to Blink LED and LCD

6

CURIE Academy, Summer 2014 Lab Handout 3: “Smart Door” IoT System

1 // We need to include three libraries
2

3 #include <Curie.h>
4 #include <Wire.h>
5 #include <SPI.h>
6

7 // Global constants for pin assignments
8

9 int pin_led = 3;
10

11 // The setup routine runs once when you press reset
12

13 void setup()
14 {
15 curie_cloud.begin(CURIE_CLOUD_GROUP(N)); // Setup the cloud
16 curie_lcd.clear(); // Clear the LCD panel
17 pinMode(pin_led, OUTPUT); // Configure pin_button as input
18 }
19

20 // The loop routine runs over and over again
21

22 void loop()
23 {
24 // Display "checking cloud" on LCD panel
25 curie_lcd.setCursor(0,1);
26 curie_lcd.print("checking cloud");
27

28 // Receive door status from the cloud
29 int door_status = curie_cloud.recv_int("door_status_out");
30

31 // Clear LCD panel
32 curie_lcd.setCursor(0,1);
33 curie_lcd.print(" ");
34

35 // Update LED and LCD panel based on door status
36 if (door_status == 1) {
37 digitalWrite(pin_led, HIGH);
38 curie_lcd.setCursor(0,0);
39 curie_lcd.print("Door is closed");
40 }
41 else {
42 digitalWrite(pin_led, LOW);
43 curie_lcd.setCursor(0,0);
44 curie_lcd.print("Door is open ");
45 }
46

47 // Wait 4 seconds to avoid overloading Xively servers
48 delay(4000);
49 }

Figure 7: Program to Receive Door Status From Cloud

7

CURIE Academy, Summer 2014 Lab Handout 3: “Smart Door” IoT System

3. IoT System

In this final part, you will now link the IoT input device to the IoT output device so the door status as
indicated by the push button is reflected by the LED. Assuming you have tested the input and output
devices in isolation this part should be relatively straight forward. All you need to do is modify the
code running on both devices to access the same “door_status” channel. Try running the two devices
off of the battery and move to opposite sides of the lab to verify that the system is working.

Sign-Off Milestone: Once you have verified that your system works, demonstrate the system for an
instructor.

8

