
ECE 4750 Computer Architecture, Fall 2016

T15 Advanced Processors:
VLIW Processors

School of Electrical and Computer Engineering
Cornell University

revision: 2016-11-28-17-10

1 Motivating VLIW Processors 2

2 TinyRV1 VLIW Processor 6

3 VLIW Compilation Techniques 8

3.1. Loop Unrolling . 8

3.2. Software Pipelining . 12

3.3. Loop Unrolling and Software Pipelining 14

3.4. Other Compiler Techniques . 16

1

1. Motivating VLIW Processors

1. Motivating VLIW Processors

We will use a simple vector-scalar multiply (VSMUL) kernel to explore
both VLIW and SIMD processors, so we first need to establish the
baseline performance of this kernel on our canonical TinyRV1 in-order
single-issue processor and TinyRV1 out-of-order superscalar processor.

for (int i = 0; i < n; i++)
dest[i] = src[i] * coeff;

For all problems
we will assume n is 64.

loop:
lw x1, 0(x2)
mul x3, x1, x4
sw x3, 0(x5)
addi x2, x2, 4
addi x5, x5, 4
addi x7, x7, -1
bne x7, x0, loop

Calculate the performance of this loop on the canonical TinyRV1
in-order single-issue processor with a four-cycle iterative multiplier.

lw

mul

sw

addi

addi

addi

bne

opA

opB

lw

2

1. Motivating VLIW Processors

Calculate performance of VSMUL on the canonical TinyRV1 OOO
quad-issue processor with register renaming, OOO memory
disambiguation, perfect branch prediction, and speculative execution.

F D
4

X

Y0 Y1 Y2 Y3

I
44 4

IQ

L0

S

L1
4
W C

ROB

FSB

FLB

4

URF ARTBTB RTRTFL

BHT

S

lw x1, 0(x2)

mul x3, x1, x4

sw x3, 0(x5)

addi x2, x2, 4

addi x5, x5, 4

addi x7, x7, -1

bne x7, x0, loop

opA

lw x1, 0(x2)

mul x3, x1, x4

sw x3, 0(x5)

addi x2, x2, 4

addi x5, x5, 4

addi x7, x7, -1

bne x7, x0, loop

opA

3

1. Motivating VLIW Processors

Superscalar Control Logic Scaling

Issue Group

Previously
Issued

Instructions

Lifetime
(L)

Issue Width (W)

MIPS R10K
Out-of-Order
~Quad-Issue

Processor

• Each issued instruction must somehow check against W × L other
instructions, i.e., hardware scaling ∝ W × (W × L)

• For in-order issue

– L is related to pipeline latencies
– Check is done in the I stage (potentially using a scoreboard)

• For out-of-order issue

– L is related to pipeline latencies and time spent waiting in the IQ/ROB
– Check is done by broadcasting tags to waiting instructions at completion
– As W increases, we need more instructions in-flight (i.e., waiting in

IQ/ROB) to find enough ILP to keep functional units busy
– Out-of-order control logic scales faster than W2 (more like W3)

4

1. Motivating VLIW Processors

VLIW = Very Long Instruction Word

Key Idea: Replace a traditional sequential ISA with a new ISA that
enables the compiler to encode instruction-level parallelism (ILP)
directly in the hardware/software interface

for(i=0;i<n;i++)

 dest[i]

 = src[i]*coeff;

Find
independent
operations

Schedule
operations

Check instruction
dependencies

Schedule
execution

Sequential
ISA

Superscalar Compiler OOO Superscalar ProcessorSequential
Source Code

Find
independent
operations

Schedule
operations

Direct
execution

VLIW
ISA

VLIW Compiler VLIW Processor

for(i=0;i<n;i++)

 dest[i]

 = src[i]*coeff;

Sequential
Source Code

• Multiple “sub-instructions” packed into one long instruction

• Each “slot” in a VLIW instruction for a specific functional unit

• Sub-instructions within a long instruction must be independent

5

2. TinyRV1 VLIW Processor

• Compiler is responsible for avoiding all hazards!

– Must use nops to avoid RAW hazards
– Must use branch delay slots to avoid control hazards
– Must use “slots” in VLIW instruction to avoid structural hazards
– Must use extra architectural registers to avoid WAW/WAR name hazards

2. TinyRV1 VLIW Processor

F D
4

X0
W

4

Y0 Y1 Y2 Y3

4
L0 L1

S0 S1

Y-pipe X-pipe L-pipe S-pipe
mul x1, x2, x3 add x4, x1, x5 lw x6, 0(x7) sw x6, 0(x8)

TinyRV1
VLIW Instruction

• TinyRV1 VLIW ISA

– Sub-instructions in VLIW instruction must be independent
– 4-cycle Y-pipe, 1-cycle X-pipe, 2-cycle L-pipe, 2-cycle S-pipe
– No hazard checking, assume ISA enables setting bypass muxing
– Branch delay slot with two VLIW instructions
– Early commit point in D
– Stores go into memory system in S1

6

2. TinyRV1 VLIW Processor

loop:
lw x1, 0(x2)
mul x3, x1, x4
sw x3, 0(x5)
addi x2, x2, 4
addi x5, x5, 4
addi x7, x7, -1
bne x7, x0, loop

Y-pipe X-pipe L-pipe S-pipe

7

3. VLIW Compilation Techniques 3.1. Loop Unrolling

3. VLIW Compilation Techniques

We will explore several compiler techniques that are critical for
achieving high-performance on VLIW processors (note that some of
these techniques can help improve performance on traditional
processors too!):

• Loop unrolling
• Software pipelining
• Loop unrolling + software pipelining
• Other techniques: trace scheduling, instruction encoding

3.1. Loop Unrolling

int j = 0;
for (int i = 0; i < n; i += 4) {

dest[i+0] = src[i+0] * coeff;
dest[i+1] = src[i+1] * coeff;
dest[i+2] = src[i+2] * coeff;
dest[i+3] = src[i+3] * coeff;
j += 4;

}
for (; j < n; j++)

dest[j] = src[j] * coeff;

• Loop unrolling amortizes loop overhead

• Loop unrolling requires many arch regs for
sw renaming; increases static code size

• Need to carefully handle cases where n is
not divisible by 4; add extra “fix-up code”
after unrolled loop

loop:
lw x1, 0(x2)
lw xA, 4(x2)
lw xB, 8(x2)
lw xC, c(x2)
mul x3, x1, x4
mul xD, xA, x4
mul xE, xB, x4
mul xF, xC, x4
sw x3, 0(x5)
sw xD, 4(x5)
sw xE, 8(x5)
sw xF, c(x5)
addi x2, x2, 16
addi x5, x5, 16
addi x7, x7, -4
bne x7, x0, loop

8

3. VLIW Compilation Techniques 3.1. Loop Unrolling

loop:
lw x1, 0(x2)
lw xA, 4(x2)
lw xB, 8(x2)
lw xC, c(x2)
mul x3, x1, x4
mul xD, xA, x4
mul xE, xB, x4
mul xF, xC, x4
sw x3, 0(x5)
sw xD, 4(x5)
sw xE, 8(x5)
sw xF, c(x5)
addi x2, x2, 16
addi x5, x5, 16
addi x7, x7, -4
bne x7, x0, loop

Y-pipe X-pipe L-pipe S-pipe

9

3. VLIW Compilation Techniques 3.1. Loop Unrolling

Unroll by factor of eight?

Y-pipe X-pipe L-pipe S-pipe

10

3. VLIW Compilation Techniques 3.1. Loop Unrolling

Calculate performance of VSMUL on the canonical TinyRV1 OOO
quad-issue processor with register renaming, OOO memory
disambiguation, perfect branch prediction, and speculative execution.
Assume we unroll the loop by a factor of four.

lw x1, 0(x2)

lw xA, 4(x2)

lw xB, 8(x2)

lw xC, c(x2)

mul x3, x1, x4

mul xD, xA, x4

mul xE, xB, x4

mul xF, xC, x4

sw x3, 0(x5)

sw xD, 4(x5)

sw xE, 8(x5)

sw xF, c(x5)

addi x2, x2, 16

addi x5, x5, 16

addi x7, x7, -4

bne x7, x0, loop

11

3. VLIW Compilation Techniques 3.2. Software Pipelining

3.2. Software Pipelining

Take instructions from multiple iterations to create new loop that can
run at higher peak throughput.

• Start with original loop and focus on core computation
• Create “software” pipeline diagram
• Create prologue to fill the pipeline
• Create main loop body
• Create epilogue to drain the pipeline

12

3. VLIW Compilation Techniques 3.2. Software Pipelining

lw x1, 0(x2)
mul x3, x1, x4
addi x2, x2, 4
lw x1, 0(x2)
addi x2, x2, 4

loop:
sw x3, 0(x5)
mul x3, x1, x4
lw x1, 0(x2)
addi x2, x2, 4
addi x5, x5, 4
addi x7, x7, -1
bne x7, x0, loop

sw x3, 0(x5)
addi x5, x5, 4
mul x3, x1, x4
sw x3, 0(x5)

Y-pipe X-pipe L-pipe S-pipe

• Software Pipelining vs Loop Unrolling

– Produces more compact code
– Uses less registers
– Can better handle irregularly sized input arrays
– Quickly get up to peak throughput, one epilogue/prologue per loop
– Software pipelining does not reduce loop overhead

13

3. VLIW Compilation Techniques 3.3. Loop Unrolling and Software Pipelining

3.3. Loop Unrolling and Software Pipelining

• Use loop unrolling to amortize loop overhead

• Use software pipelining to quickly reach full throughput (and also
reduce code size, register pressure)

14

3. VLIW Compilation Techniques 3.3. Loop Unrolling and Software Pipelining

Y-pipe X-pipe L-pipe S-pipe

15

3. VLIW Compilation Techniques 3.4. Other Compiler Techniques

3.4. Other Compiler Techniques

ECE 4750 T12: VLIW Processors

Trace Scheduling

•  Pick string of basic blocks, a trace, that
represents most frequent branch path

•  Use profiling feedback or compiler heuristics
to find common branch paths

•  Schedule whole “trace” at once
•  Add fixup code to cope with branches

jumping out of trace

ECE 4750 T12: VLIW Processors

Problems with “Classic” VLIW

•  Object-code compatibility
–  have to recompile all code for every machine, even for two machines in

same generation

•  Object code size
–  instruction padding wastes instruction memory/cache
–  loop unrolling/software pipelining replicates code

•  Scheduling variable latency memory operations
–  caches and/or memory bank conflicts impose statically unpredictable

variability

•  Knowing branch probabilities
–  Profiling requires an significant extra step in builw process

•  Scheduling for statically unpredictable branches
–  optimal schedule varies with branch path

• Problem: What if there are no loops?

– Branches limit basic block size in control-flow
intensive irregular code

– Only one branch per VLIW instruction
– Difficult to find ILP in individual basic blocks

• Trace scheduling

– Use predication to create larger basic blocks
– Use profiling feedback or compiler heuristics to

find common branch paths
– Pick trace of basic blocks along common path
– Schedule whole trace at once
– Add “fix-up code” to cope with branches

jumping out of trace

VLIW Instruction Encoding

• Problem: VLIW encodings require many NOPs which waste space
• Compressed format in memory, expand on instruction cache refill
• Provide a single-op VLIW instruction
• Create variable sized “instruction bundles”

Memory Latency Register (MLR)

• Problem: Loads have variable latency
• Compiler schedules code for maximum load-use distance
• Compiler sets MLR to latency that matches code schedule
• Hardware ensures that loads take exactly MLR cycles

– Hardware buffers loads that return early
– Hardware stalls processor if loads return late

16

