
ECE 4750 Computer Architecture, Fall 2016

T14 Advanced Processors:
Speculative Execution

School of Electrical and Computer Engineering
Cornell University

revision: 2016-11-21-07-35

1 Speculative Execution with Late Recovery 2

2 Speculative Execution with Early Recovery 4

2.1. Adding Speculative Bits . 4

2.2. Adding Rename-Table Snapshots . 6

3 Complete Out-of-Order Superscalar TinyRV2 Processor 8

1

1. Speculative Execution with Late Recovery

1. Speculative Execution with Late Recovery

• Every instruction is actually speculative because an older in-flight
instruction might cause an exception

• We recover from exceptions at the commit point (C-stage) which is
late in the pipeline

• With out-of-order load/store issue, loads (and dependent
instructions) are also speculative

• We recover from incorrect speculation in the C stage which is late in
the pipeline

2

1. Speculative Execution with Late Recovery

• Branches also require speculative execution

• Recover mispredictions late in the pipeline?

a : lw x1, 0(x2)

b : mul x3, x1, x4

c : sw x3, 0(x5)

d : addi x2, x2, 4

e : addi x5, x5, 4

f : addi x6, x6, -1

g : bne x6, x0, loop

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

• Branches are far more common than exceptions and
memory-dependence violations

• Accurate branch prediction helps, but some branches are just
inherently difficult to predict

• Key Idea: Recover from branch mispredictions as soon as possible

3

2. Speculative Execution with Early Recovery 2.1. Adding Speculative Bits

2. Speculative Execution with Early Recovery

We will explore early recovery in two steps:

• Adding speculative bits
• Adding rename-table snapshots

2.1. Adding Speculative Bits

F D
1

X

Y0 Y1 Y2 Y3

I
11 1

IQ

L0

S

L1
1
W C

ROB

FSB

FLB

URF ARTBTB RTRTFL

BHT

S

• Add a speculative bit to the IQ, ROB, FSB, FLB, and functional units
• Add a speculative mode bit in the D stage

• In D stage for a branch

– Set speculative mode bit
– All inst after branch carry speculative bit into IQ, ROB, FSB, LB, func units

• In X stage for a correctly predicted branch

– Broadcast clear speculative bit from X stage to all data structures

• In X stage for a incorrectly predicted branch

– Broadcast squash signal from X stage to all of these data structures
– Each data structure invalidates entry/inst for which speculative bit is set
– Start fetching from correct address

• Multiple speculative bits enable multiple spec branches in flight

– Given instruction can be squashed by multiple branches
– Treat multiple speculative bits as “branch mask”

4

2. Speculative Execution with Early Recovery 2.1. Adding Speculative Bits

Do not copy ARF into PRF on branch misprediction recovery

a : addi x1, x2, 1

b : branch L1

c : addi x1, x3, 1

d : opA

e : opB

f : opC

g : opD

h : L1:addi x4, x1, 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Copy ARF into PRF on branch misprediction recovery

a : addi x1, x2, 1

b : addi x1, x3, 1

c : addi x4, x1, 1

d : branch L1

e : opA

f : opB

g : opC

h : opD

i : L1:addi x5, x6, 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

• Need to make copy of “precise” ARF in D on every branch ...
• ... but ARF is not precise in D
• Need “view” of what precise ARF would be in D on every branch ...
• ... this is the rename table!

5

2. Speculative Execution with Early Recovery 2.2. Adding Rename-Table Snapshots

2.2. Adding Rename-Table Snapshots

F D
1

X

Y0 Y1 Y2 Y3

I
11 1

IQ

L0

S

L1
1
W C

ROB

FSB

FLB

URF ARTBTB RTRTFL

BHT

S

• Add a speculative bit to the IQ, ROB, FSB, FLB, and functional units
• Add a speculative mode bit in the D stage
• Add a rename table snapshot in the D stage

• In D stage for a branch

– Set speculative mode bit
– All inst after branch carry speculative bit into IQ, ROB, FSB, LB, func units
– Create a RT snapshot to save “view” of precise ARF for branch

• In X stage for a correctly predicted branch

– Broadcast clear speculative bit from X stage to all data structures

• In X stage for a incorrectly predicted branch

– Broadcast squash signal from X stage to all of these data structures
– Each data structure invalidates entry/inst for which speculative bit is set
– Restore RT from snapshot
– Start fetching from correct address

• Need multiple speculative bits and multiple snapshots to support
multiple speculative branches in flight

6

2. Speculative Execution with Early Recovery 2.2. Adding Rename-Table Snapshots

RT snapshots squash speculative state

a : addi x1, x2, 1

b : branch L1

c : addi x1, x3, 1

d : opA

e : opB

f : opC

g : opD

h : L1:addi x4, x1, 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

RT snapshots prevent overwriting non-speculative state

a : addi x1, x2, 1

b : addi x1, x3, 1

c : addi x4, x1, 1

d : branch L1

e : opA

f : opB

g : opC

h : opD

i : L1:addi x5, x6, 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

7

3. Complete Out-of-Order Superscalar TinyRV1 Processor

3. Complete Out-of-Order Superscalar TinyRV1 Processor

F D
2

X

Y0 Y1 Y2 Y3

I
22 2

IQ

L0

S

L1
2
W C

ROB

FSB

FLB

URF ARTBTB RTRTFL

BHT

S

• Superscalar execution: two-way every stage, aligned fetch blocks

• Out-of-order execution: IO2L with IQ and ROB

• Register renaming: pointer-based scheme with URF and ART

• Memory disambiguation: OOO load/store issue with FSB and FLB

• Branch prediction: BTB with generalized two-level BHT

• Speculative execution: speculative bits with rename table snapshots

Vector-Vector Add Microbenchmark

actual actual peak
Microarchitecture cycles/itr CPI IPC IPC

In-Order Single-Issue TinyRV1 12 1.33 0.75 1
In-Order Dual-Issue TinyRV1 10 1.11 0.90 2
Out-of-Order Dual-Issue TinyRV1 5 0.55 1.80 2

8

