
ECE 4750 Computer Architecture, Fall 2016

T13 Advanced Processors:
Branch Prediction

School of Electrical and Computer Engineering
Cornell University

revision: 2016-11-29-19-25

1 Branch Prediction Overview 2

2 Software-Based Branch Prediction 3

2.1. Static Software Hints . 4

2.2. Branch Delay Slots . 5

2.3. Predication . 6

3 Hardware-Based Branch Prediction 7

3.1. Fixed Branch Predictor . 7

3.2. Branch History Table (BHT) Predictor 9

3.3. Two-Level Predictor For Temporal Correlation 14

3.4. Two-Level Predictor For Spatial Correlation 16

3.5. Generalized Two-Level Predictors 18

3.6. Tournament Predictors . 20

3.7. Branch Target Buffers (BTBs) Predictor 21

1

1. Branch Prediction Overview

1. Branch Prediction Overview

Assume incorrect branch prediction in dual-issue I2OL processor.

bne

opA

opB

opC

opD

opE

opF

opG

opTARG

Assume correct branch prediction in dual-issue I2OL processor.

bne

opA

opTARG

opX

opY

opZ

Three critical pieces of information we need to predict control flow:

• (1) Is this instruction a control flow instruction?
• (2) What is the target of this control flow instruction?
• (3) Do we redirect control flow to the target or next instr?

2

2. Software-Based Branch Prediction

When do we know these critical pieces of information?

F D
1

X
1

Y0 Y1 Y2 Y3
PRF

I
1

SB ARF

W C
1 1

ROB

1

know if this instr is a jal, jr, bne know the target for jr
know if bne is taken or not takenknow the target for jal and bne

jal jr bne

(1) Is this instruction a control flow instruction? D D D
(2) What is the target of this control flow instruction? D X D
(3) Do we redirect ctrl flow to the target or next instr? D D X

What do we need to predict in F stage vs. D stage?

jal jr bne

F stage predict 1,2,3 predict 1,2,3 predict 1,2,3
D stage no prediction predict 2 predict 3

2. Software-Based Branch Prediction

• Static software hints
• Branch delay slots
• Predication

3

2. Software-Based Branch Prediction 2.1. Static Software Hints

2.1. Static Software Hints

Software provides hints about whether a control flow instruction is
likely to be taken or not taken. These hints are part of the instruction
and thus are available earlier in the pipeline (e.g., in the D stage).

bne.t

opA

opTARG

bne.nt

opY

opZ

What if the hint is wrong?

bne.t

opA

opTARG

bne.nt

opA

opB

4

2. Software-Based Branch Prediction 2.2. Branch Delay Slots

2.2. Branch Delay Slots

Without branch delay slots must squash fall through instructions if
branch is taken.

bne

opA

opB

targ

With branch delay slots compiler can put useful work in the slots.
Instructions in the delay slots are always executed regardless of branch
condition.

bne

opA

opB

targ

5

2. Software-Based Branch Prediction 2.3. Predication

2.3. Predication

Not really “prediction”. Idea is to turn control flow into dataflow
completely eliminating the control hazard.

Conditional move instructions conditionally move a source register to
a destination register.

movn rd, rs1, rs2 if (R[rs2] ! = 0) R[rd]← R[rs1]

movz rd, rs1, rs2 if (R[rs2] == 0) R[rd]← R[rs1]

Pseudocode

if (a < b)
x = a

else
x = b

w/o Predication

slt x1, x2, x3
beq x1, x0, L1
addi x4, x2, x0
jal x0, L2

L1:
addi x4, x3, x0

L2:

w/ Predication

slt x1, x2, x3
movz x4, x2, x1
movn x4, x3, x1

Full predication enables almost all instructions toe be executed under a
predicate. If predicate is false, instruction should turn into a NOP.

Pseudocode

if (a < b)
opA
opB

else
opC
opD

w/ Predication

slt.p p1, x2, x3
(p1) opA
(p1) opB
(!p1) opC
(!p1) opD

• What if both sides of branch have many instructions?
• What if one side of branch has many more than the other side?

6

3. Hardware-Based Branch Prediction 3.1. Fixed Branch Predictor

3. Hardware-Based Branch Prediction

• Fixed branch predictor
• Branch history table (BHT) predictor
• Two-level predictor for temporal correlation
• Two-level predictor for temporal correlation
• Generalized two-level predictors
• Tournament predictor
• Branch target buffer (BTB) predictor

3.1. Fixed Branch Predictor

• Always predict not taken

– What we have been assuming so far
– Simple to implement and can perform prediction in F
– Poor accuracy, especially on very important backwards branch in loops

• Always predict taken

– Difficult to implement: we don’t know if this is a branch until D
– Difficult to implement: we don’t know target until at least D
– Could predict not taken in F, and then adjust in D
– Poor accuracy, especially on if/then/else

• Predict taken for backward branches
and predict not taken for forward branches

– Difficult to implement: we don’t know if this is a branch until D
– Difficult to implement: we don’t know target until at least D
– Could predict not taken in F, and then adjust in D
– Better accuracy

7

3. Hardware-Based Branch Prediction 3.1. Fixed Branch Predictor

loop: <------------------.
lw x1, 0(x2) | backward
lw x3, 0(x4) | branches
slt x5, x1, x3 | taken on avg
beq x5, x0, L1 --. forward | 90%
addi x6, x1, x0 | branches |
jal x0, L2 | taken on avg |

L1: <-’ 50% |
addi x6, x3, x0 |

L2: |
sw x6, 0(x7) |
addi x2, x2, 4 |
addi x4, x4, 4 |
addi x7, x7, 4 |
addi x8, x8, -1 |
bne x8, x0, loop -------------------’

• For now let’s focus on conditional branches as opposed to
unconditional jumps

• Let’s assume we always predict not-taken in the F stage

• In the D stage, we know if the instruction is a branch and we know
the target of the branch

• So key goal is to predict whether or not we need to redirect the
control flow, i.e., to predict the branch outcome in the D stage
instead of waiting until the X stage

• By doing this prediction in the D stage we can reduce the branch
misprediction penalty by several cycles although it is still not zero if
we predict the branch is taken

8

3. Hardware-Based Branch Prediction 3.2. Branch History Table (BHT) Predictor

3.2. Branch History Table (BHT) Predictor

How can we do better? Exploit structure in the program, namely
temporal correlation: the outcomes of specific static branch in the past
may be a good indicator of the outcomes of future dynamic instances of
the same static branch.

One-Bit Saturating Counter

Remember the previous outcome of a specific static branch and predict
the outcome will be the same for the next dynamic instance of the same
branch.

3. Hardware-Based Branch Prediction 3.2. One-Level Branch History Table

3.2. One-Level Branch History Table

6

Consider how this saturating counter would be have for a backwards
branch in a loop with four iterations. Assume the entire loop is
executed several times.

Iteration Prediction Actual Mispredict?

1

2

3

4

1

2

3

4

9

3. Hardware-Based Branch Prediction 3.2. Branch History Table (BHT) Predictor

Exploiting temporal correlation works well, but a one-bit saturating
counter will always mispredicts the backwards branch in a loop twice.
Loops are very common!

Two-Bit Saturating Counter

Remember the last two outcomes of a specific static branch. Require two
consecutive “counter examples” before changing the prediction.

3. Hardware-Based Branch Prediction 3.2. One-Level Branch History Table

7

Consider how this saturating counter would be have for a backwards
branch in a loop with four iterations. Assume the entire loop is
executed several times.

Iteration Prediction Actual Mispredict? ST WT WNT SNT

1

2

3

4

1

2

3

4

What if start state is strongly taken?

10

3. Hardware-Based Branch Prediction 3.2. Branch History Table (BHT) Predictor

Other Two-Bit FSM Branch Predictors

11

3. Hardware-Based Branch Prediction 3.2. Branch History Table (BHT) Predictor

Branch History Table

• So far we have focused on a simple FSM that exploits temporal
correlation to make a prediction for a specific static branch

• To make predictions for many different static branches, we need to
keep track of a dedicated FSM per static branch

• A branch history table (BHT) is a table where each entry is the state
of the FSM for a different static branch.

3. Hardware-Based Branch Prediction 3.2. One-Level Branch History Table

9

• Two PC’s can “alias” to the same entry
in BHT

• Aliasing is similar to a cache conflict

• We could store the PC as a tag along
with the FSM state to make sure we
don’t mix up the FSM state across two
static branches

• Storing the PC is too expensive though,
so we can just let branches alias and
this just reduces the branch prediction
accuracy

• Can reduce aliasing with larger BHT

BHT with 4k entries and 2bits/entry = 80–90% accuracy

How do we continue to improve prediction accuracy? Exploit even
more complicated temporal correlation.

12

3. Hardware-Based Branch Prediction 3.2. Branch History Table (BHT) Predictor

3. Hardware-Based Branch Prediction 3.2. One-Level Branch History Table

9

13

3. Hardware-Based Branch Prediction 3.3. Two-Level Predictor For Temporal Correlation

3.3. Two-Level Predictor For Temporal Correlation

3. Hardware-Based Branch Prediction 3.3. Two-Level Predictor For Temporal Correlation

3.3. Two-Level Predictor For Temporal Correlation

14

When a branch is taken or not taken we shift in either a one (taken) or a
zero (not taken) into the least significant bit of the corresponding BHSR.

Index Value

...

0111 ST

1000 WT

1001 WT

1010 WT

1011 ST

1100 WT

1101 ST

1110 ST

1111 SNT

• BHSR captures temporal pattern for that branch

• We use the BHSR to index into the PHT. A BHT
has an entry per branch, but a PHT has an entry
per branch pattern.

• The PHT says for a given pattern over the past n
executions of a branch, should I take or not take
the next execution of this branch?

• Once the two-level predictor is warmed up for
previous nested loop example, the state of the
PHT would be what is shown on the left

• Need at least four bits of “history” to learn this
pattern and perfectly predict this branch

14

3. Hardware-Based Branch Prediction 3.3. Two-Level Predictor For Temporal Correlation

15

3. Hardware-Based Branch Prediction 3.4. Two-Level Predictor For Spatial Correlation

3.4. Two-Level Predictor For Spatial Correlation

16

3. Hardware-Based Branch Prediction 3.4. Two-Level Predictor For Spatial Correlation

17

3. Hardware-Based Branch Prediction 3.5. Generalized Two-Level Predictors

3.5. Generalized Two-Level Predictors

18

3. Hardware-Based Branch Prediction 3.5. Generalized Two-Level Predictors

19

3. Hardware-Based Branch Prediction 3.6. Tournament Predictors

3.6. Tournament Predictors

20

3. Hardware-Based Branch Prediction 3.7. Branch Target Buffers (BTBs) Predictor

3.7. Branch Target Buffers (BTBs) Predictor

21

3. Hardware-Based Branch Prediction 3.7. Branch Target Buffers (BTBs) Predictor

22

