
ECE 4750 Computer Architecture

Topic 11: Advanced Processors – Speculative Execution

http://www.csl.cornell.edu/courses/ece4750
School of Electrical and Computer Engineering

Cornell University

revision: 2022-11-30-12-41

List of Problems

1 Short Answer 2

1.A Speculative Execution in IO2E Microarchitecture . 2

1.B Exceptions in an IO2L Microarchitecture . 4

1.C Out-of-Order Superscalar Processors . 5

A TinyRV1 Canonical Microarchitectures 7

ECE 4750 Computer Architecture Topic 11: Advanced Processors – Speculative Execution

Problem 1. Short Answer

Part 1.A Speculative Execution in IO2E Microarchitecture

Consider the canonical single-issue IO2E microarchitecture with an in-order front-end and out-
of-order issue/writeback and early commit (see Figure A.4 in Appendix A). Recall that this basic
microarchitecture does not have an ROB, register renaming, nor memory disambiguation. Assume
we wish to add support for executing a single branch in IO2E with speculative execution: branches
are resolved in the X stage, and we add speculative bits so that speculative instructions after the
branch can issue/execute/writeback but can also be squashed on a mispredicted branch. Since
there is no register renaming we cannot snapshot the rename table. Unfortunately, adding support
for executing a branch in IO2E with speculative execution can lead to an incorrect value being used
in a non-speculative arithmetic instruction.

Create a sequence of assembly instructions and corresponding pipeline diagram which clearly
illustrates what can go wrong. Briefly explain the problem. You do not need to craft dependencies to
force instructions to stall or issue on a specific cycle; simply have instructions fetch, decode, and then
arbitrarily wait in the issue queue until you want them to issue. Please note, that since we are assum-
ing no register renaming your instruction sequence should not include any WAW or WAR dependencies!
Your example should be as simple as possible to illustrate the problem. Your assembly sequence
obviously needs to include a branch; assume that we incorrectly predict this branch as not-taken, and
thus we must redirect control flow in the X stage to the branch target and squash all speculative instructions.
You should include the execution of the branch target in your pipeline diagram. Draw a clearly
labeled arrow illustrating the problem: the arrow should end at the stage that reads the incorrect
value and the arrow should start at the stage where that value was written.

2

ECE 4750 Computer Architecture Topic 11: Advanced Processors – Speculative Execution

Explain what modifications need to be made to the IO2L microarchitecture to enable the pipeline
diagram on the previous page and thus enable correct execution of movz instructions. If possible,
your modifications should fit within the mechanisms already provided in the complete quad-issue
IO2L microarchitecture shown in Figure A.7 (e.g., your modifications should not require any new
data structures). If you need to modify a data structure, feel free to sketch the modified data struc-
ture below to more clearly indicate what changes need to be made.

3

ECE 4750 Computer Architecture Topic 11: Advanced Processors – Speculative Execution

Part 1.B Exceptions in an IO2L Microarchitecture

Consider the complete single-issue IO2L microarchitecture with an in-order front-end and out-of-
order issue/writeback with late commit (see Figure A.7 in Appendix A). This microarchitecture
includes pointer-based register renaming, memory disambiguation with out-of-order load/store
issue, branch prediction, and speculative execution.

Assume that we modify the semantics of the TinyRV2 integer multiply instruction. The new se-
mantics are such that when the result of an integer multiply overflows (i.e., the result is larger than
what can be held in a 32-bit register) it causes a hardware exception. The overflow condition is
detected in stage Y3.

Draw a pipeline diagram that illustrates the execution of the assembly code sequence below if
instruction 4 experiences a multiplication overflow exception in stage Y3. Clearly indicate which
instructions are killed and when they are killed by using a forward slash symbol (/) on the cycle
an instruction is killed. Your pipeline diagram should end with the decode of opA. Draw a control
dependency arrow to indicate the control flow. Clearly label what stage exceptions are handled
in.

1 mul x1, x2, x3
2 mul x4, x1, x5
3 addi x9, x10, 1
4 mul x6, x7, x8 # experiences a multiplication overflow exception
5 addi x11, x12, 1
6 addi x13, x14, 1
7 addi x15, x16, 1
8 addi x17, x18, 1
9 ...

10 exception_handler:
11 opA

mul x1, x2, x3

mul x4, x1, x5

addi x9, x10, 1

mul x6, x7, x8

addi x11, x12, 1

addi x13, x14, 1

addi x15, x16, 1

addi x17, x18, 1

...

opA

4

ECE 4750 Computer Architecture Topic 11: Advanced Processors – Speculative Execution

Part 1.C Out-of-Order Superscalar Processors

We wish to execute the following short assembly code sequence processing 64 elements. It would
probably be useful to make sure you thoroughly understand this code and the architectural depen-
dencies before continuing. Note that we have rescheduled the address base pointer increment and
the loop counter decrement before the store.

1 loop:
2 0x100 lw x1, 0(x2)
3 0x104 lw x3, 0(x1) # address depends on value loaded above
4 0x108 mul x4, x3, x5
5 0x10c addi x2, x2, 4 # ptr increment scheduled here to optimize performance
6 0x110 addi x6, x6, -1 # assume x6 initially is 64
7 0x114 sw x4, -4(x2) # negative offset because ptr increment is above
8 0x118 bne x6, x0, loop

Consider the canonical quad-issue IO2L microarchitecture with an in-order front-end and out-of-
order issue/writeback with late commit (see Figure A.7 in Appendix A). Note that there are four
functional units (Y-pipe for multiplies, X-pipe for short-latency integer ops, L-pipe for loads, and
S-pipe for stores); this microarchitecture only provides a single short-latency integer ALU (i.e., the
X-pipe). This microarchitecture includes support for register renaming and an aggressive memory
disambiguation scheme that enables loads and stores to issue out-of-order. Assume we use unified
stores such that both the store data and store address must be ready before we can issue a store.
Assume that we have an infinite number of entries in the various data structures (e.g., issue queue,
physical register file, reorder buffer, finished store buffer, etc). Assume that there are no instruction
nor data cache misses and assume perfect branch prediction (i.e., dynamic branch predictors always correctly
predict the right control flow path in the fetch stage resulting in no branch resolution penalty). Do not
assume that all of the instructions are waiting in the issue queue. You must explicitly fetch and
decode instructions in-order.

5

ECE 4750 Computer Architecture Topic 11: Advanced Processors – Speculative Execution

Draw a pipeline diagram illustrating the execution of two iterations of the given assembly loop
on this microarchitecture. Estimate the total execution time of the entire loop on this microar-
chitecture. The instructions for the first iteration are already filled in for you. Normally, we would
need to analyze many more iterations until we are sure that the loop has reached a steady state
execution. To simplify the problem assume all iterations execute the same as the second iteration
of the loop. You must show your work and explain your calculation.

— Remember that this microarchitecture is quad-issue! —

lw x1, 0(x2)

lw x3, 0(x1)

mul x4, x3, x5

addi x2, x2, 4

addi x6, x6, -1

sw x4, -4(x2)

bne x6, x0, loop

6

ECE 4750 Computer Architecture Topic 11: Advanced Processors – Speculative Execution

Appendix A: TinyRV1 Canonical Microarchitectures

F D
1

X0
1

W
1

Y0 Y1 Y2 Y3
ARF

I
1

X1 X2 X3

Figure A.1: I3L Microarchitecture for MUL, ADDU, ADDIU

F D
1

X
1

W
1

Y0 Y1 Y2 Y3
ARF

I
1

SB

Figure A.2: I2OE Microarchitecture for MUL, ADDU, ADDIU

F D
1

X
1

Y0 Y1 Y2 Y3
PRF

I
1

SB ARF

W C
1 1

ROB

1

Figure A.3: I2OL Microarchitecture for MUL, ADDU, ADDIU

F D
1

X

Y0 Y1 Y2 Y3
ARF

I
1

SB

W
1 1

IQ

1

Figure A.4: IO2E Microarchitecture for MUL, ADDU, ADDIU

F D
1

X

Y0 Y1 Y2 Y3
I

1

SB

1 1

IQ

1

PRF ARF

W C
1 1

ROB

Figure A.5: IO2L Microarchitecture for MUL, ADDU, ADDIU

7

ECE 4750 Computer Architecture Topic 11: Advanced Processors – Speculative Execution

F D
n

X

Y0 Y1 Y2 Y3

I
n

L0

S

L1
n
W C

ROB

FSB

nn

PRF ARFBTB BHT

Figure A.6: Complete I2OL Microarchitecture (single issue: n = 1; quad issue: n = 4)

F D
n

X

Y0 Y1 Y2 Y3

I
nn

IQ

L0

S

L1
n
W C

ROB

FSB

FLB

n

URF ARTBTB RTRTFL

BHT

S

Figure A.7: Complete IO2L Microarchitecture (single issue: n = 1; quad issue: n = 4)

8

