
ECE 4750 Computer Architecture

Topic 10: Advanced Processors – Branch Prediction

http://www.csl.cornell.edu/courses/ece4750
School of Electrical and Computer Engineering

Cornell University

revision: 2022-11-30-12-30

List of Problems

1 Short Answer 2

1.A Implementing Conditional Moves in IO2L Microarchitecture 2

1.B Branch Prediction for Count Nonzeros . 3

2 Branch Prediction 5

2.A Two-Bit Saturating Counter Branch History Table . 7

2.B Two-Level Adaptive Branch Predictor to Exploit Temporal Correlation 8

2.C Two-Level Adaptive Branch Predictor to Exploit Spatial Correlation 9

2.D Branch Predictor Comparison . 10

A TinyRV1 Canonical Microarchitectures 11

ECE 4750 Computer Architecture Topic 10: Advanced Processors – Branch Prediction

Problem 1. Short Answer

Part 1.A Implementing Conditional Moves in IO2L Microarchitecture

Consider the complete quad-issue IO2L microarchitecture with an in-order front-end and out-of-
order issue/writeback with late commit (see Figure A.7 in Appendix A). This microarchitecture
includes pointer-based register renaming and branch prediction.

In lecture, we discussed conditional moves as a simple form of predication to help turn control
flow into data flow. For example, the following conditional move instruction (movz) only copies the
source register to the destination register if a second source register is zero.

movz rd, rs1, rs2 if (R[rs1] == 0) R[rd]← R[rs2]

Study the instruction semantics for movz very carefully before continuing. Assume movz instruc-
tions use the X-pipe and perform the comparison in the X stage. Assume we make any additional
modifications to the quad-issue IO2L microarchitecture that are necessary to enable correct execu-
tion of movz instructions. Consider the following assembly instruction sequence.

1 addi x1, x0, 13
2 addi x2, x0, 1
3 mul x3, x4, x5 # assume R[x4] is 2, R[x5] is 3
4 mul x3, x3, x6 # assume R[x6] is 3
5 movz x3, x1, x2
6 addi x7, x3, 1

What should be the correct value of register x7 after executing this assembly sequence? ________

Draw a pipeline diagram illustrating how this instruction sequence executes on the modified
IO2L microarchitecture. Ensure that your pipeline diagram will produce the correct value of
register r7 as deteremined above. Use arrows on the pipeline diagram to illustrate RAW depen-
dencies through registers.

— Remember that this microarchitecture is quad-issue! —

addi x1, x0, 13

addi x2, x0, 1

mul x3, x4, x5

mul x3, x3, x6

movz x3, x1, x2

addi x7, x3, 1

2

ECE 4750 Computer Architecture Topic 10: Advanced Processors – Branch Prediction

Part 1.B Branch Prediction for Count Nonzeros

Consider the C code shown below which counts the number of non-zero elements in an array. This
code will generate two branches: one forward branch to check if the element is non-zero (let’s call
this branch B1) and one backward branch for the loop (let’s call this branch B2). Assume that branch
B1 is taken when aptr[i] is zero. Part of the input array data is shown on the right and the rest of the
array continues in a similar pattern.

1 int count_nonzeros(int* aptr, int size)
2 {
3 int count = 0;
4 for (int i = 0; i < size; i++)
5 if (aptr[i] != 0)
6 count++;
7 return count;
8 }

int A[1000]
= { 0, 1, 0, 2, 0, 3,

0, 4, 0, 5, 0, 6,
... };

Consider the branch predictor shown below. This predictor is the same as one of the predictors
we described in lecture; there is one predictor in the system that is used for all branches. Assume
the entries in all BHTs contain two-bit saturating counter finite state machines and that they are
initialized to the weakly taken state. Assume that there are enough entries in the BHT to avoid
aliasing. Fill in the table on the next page to illustrate how the branch predictor performs for
branch B1.

BHSR

PC

4b

BHT0 BHT15

16

2b 2b

3

ECE 4750 Computer Architecture Topic 10: Advanced Processors – Branch Prediction

Branch B1

i aptr[i] BHSR BHT Predicted Actual Correct?

0 0 0000 WT T T y

1 1

2 0

3 2

4 0

5 3

6 0

7 4

8 0

9 5

Estimate the misprediction rate for branch B1 over the entire loop: _____________

Answer these two multiple-choice questions and justify your answers below.

Branch B1 exhibits:
temporal

correlation
spatial

correlation

This predictor is generally capable (i.e., not just for
branch B1 but for any arbitrary branch) of exploiting:

temporal
correlation

spatial
correlation

4

ECE 4750 Computer Architecture Topic 10: Advanced Processors – Branch Prediction

Problem 2. Branch Prediction

Consider the C code shown in Figure 1. This function processes an input signal (stored in array
src), which for example, might represent a sampled audio signal. The function performs two
operations on the input signal to produce a processed output signal (stored in array dest). First,
the function “saturates” the signal such that any input sample greater than the given limit is set
to the limit value. Second, the function counts the number of non-zero input samples and returns
this count.

The corresponding assembly code is shown in Figure 2. Assume that when the assembly code
begins, the destination array pointer is stored in x1, the source array pointer is stored in x2, the
size of the two arrays is stored in x3, the limit value is stored in x4, and the return value should
ultimately be written to x5. Note that this function requires the following three branches:

• Branch B0 – Used to saturate the input signal. Branch is taken if src[i] ≤ limit.

• Branch B1 – Used to count number of non-zero input samples. Branch is taken if src[i] = 0.

• Branch B2 – Used to implement the loop.

In this problem, we will explore how three different branch predictors perform on this assembly
code. For all parts, assume that there is no unwanted aliasing and that the branch predictors are
updated immediately after the branch is predicted. This is obviously unrealistic, since we need to
first resolve the branch before updating the predictor, but it simplifies our analysis. For all parts,
limit is 10 and the input signal includes the following 20 samples:

0, 0, 12, 15, 0, 0, 11, 17, 0, 0, 11, 13, 9, 0, 12, 15, 0, 8, 12, 18

This means the size input argument is 20.

5

ECE 4750 Computer Architecture Topic 10: Advanced Processors – Branch Prediction

1 int process_signal(int dest[], int src[], int size, int limit)
2 {
3 int num_non_zeros = 0;
4 for (int i = 0; i < size; i++) {
5 dest[i] = src[i]; // Ensure samples in destination array
6 if (src[i] > limit) // do not exceed limit
7 dest[i] = limit; //
8

9 if (src[i] > 0) // Count number of non-zero samples
10 num_non_zeros++; //
11 }
12 return num_non_zeros;
13 }

Figure 1: C Code for Signal Processing Function

1 # x1 = dest_ptr, x2 = src_ptr, x3 = size, x4 = limit
2 # x5 = return value
3

4 addi x5, x0, 0 # num_non_zeros = 0
5 loop:
6

7 # Ensure samples in destination array do not exceed limit
8

9 lw x6, 0(x2) # temp_a = *src_ptr
10 addi x7, x6, 0 # temp_b = temp_a
11 slt x8, x4, x6 # if (limit >= temp_a)
12 beq x8, x0, L1 # goto L1 Branch B0
13 addi x7, x4, 0 # temp_b = limit
14 L1: # L1:
15 sw x7, 0(x1) # *dest_ptr = temp_b
16

17 # Count number of non-zero samples
18

19 beq x6, x0, L2 # if (temp_a == 0) goto L2 Branch B1
20 addi x5, x5, 1 # num_non_zeros++
21 L2: # L2:
22

23 # Increment pointers and iterate
24

25 addi x1, x1, 4 # dest_ptr++
26 addi x2, x2, 4 # src_ptr++
27 addi x3, x3, -1 # size--
28 blt x0, x3, loop # if (size > 0) goto loop Branch B2

Figure 2: Assembly Code for Signal Processing Function

6

ECE 4750 Computer Architecture Topic 10: Advanced Processors – Branch Prediction

Part 2.A Two-Bit Saturating Counter Branch History Table

We begin with a basic two-bit saturating counter finite-state machine shown in Figure 3 imple-
mented with the simple one-level branch history table (BHT) shown in Figure 4. There are four
states in the finite-state machine:

• Strongly Taken – (ST) predict taken
• Weakly Taken – (WT) predict taken
• Weakly Not-Taken – (WNT) predict non-taken
• Strongly Not-Taken – (SNT) predict not-taken

Assume that all entries in the BHT are initialized to the weakly taken (WT) state.

Create a table similar to the one shown in Figure 5. There should be twenty rows, one for each
iteration of the loop. There are columns for the branch predictor state, prediction (column labelled
P), and actual resolution (column labelled A) for each of the three branches. In this table, the branch
predictor state should always reflect the state of the predictor that is used to make the prediction
(i.e., before we update the state for that branch resolution). So for example, the BHT entry for
branch B0 is initially WT and thus we predict taken for the first iteration of the loop when src[0]
is zero. The branch is indeed taken, and thus we update the BHT entry for branch B0 to strongly
taken (ST) as indicated by the BHT entry for the second iteration. Calculate the branch predictor
accuracy for each of the three branches individually, and then also for the entire function. Hint:
Fill in the actual resolution column for all rows and all branches first, then fill in the BHT state, and finally
fill in the prediction column.

ST WT

WNT SNT

NT

T

T

NT

NT

T

T
NT

Figure 3: Two-Bit Saturating Counter FSM

BHTPC

2b

Figure 4: BHT Implementation

Branch B0 Branch B1 Branch B2

i src[i] BHT P A BHT P A BHT P A

0 0 WT T T

1 0 ST T T

2 12 ...

...

Figure 5: Two-Bit Saturating Counter BHT Execution

7

ECE 4750 Computer Architecture Topic 10: Advanced Processors – Branch Prediction

Part 2.B Two-Level Adaptive Branch Predictor to Exploit Temporal Correlation

The input signal has interesting temporal correlation that we may be able to capture with a more
sophisticated two-level adaptive branch predictor. Consider the two-level BHT shown in Figure 6.
In this predictor, we use a branch history shift register table (BHSRT) to capture a local branch
history pattern for each branch. The patterns are used to choose between one of several BHTs.
Each entry in the BHT is a two-bit saturating counter initialized to the weakly taken (WT) state.
For this problem, assume that each entry in the BHSRT is three bits. This means that we need eight
BHTs. Assume that all entries in the BHSRT are initialized to zero.

Create a table similar to the one shown in Figure 7. Calculate the branch predictor accuracy for
each of the three branches individually, and then also for the entire function. Hint: Fill in the
actual resolution column for all rows and all branches first (should be the same as in the previous part), then
fill in the BHSRT state, then fill in the BHT state, and finally fill in the prediction column.

PC

BHSRT BHT0 BHT7

8

2b 2b3b

Figure 6: Two-Level BHT for Temporal Correlation

Branch B0 Branch B1 Branch B2

i src[i] BHSRT BHT P A BHSRT BHT P A BHSRT BHT P A

0 0 000 WT T T

1 0 001 WT T T

2 12 ...

...

Figure 7: Two-Level BHT for Temporal Correlation Execution

8

ECE 4750 Computer Architecture Topic 10: Advanced Processors – Branch Prediction

Part 2.C Two-Level Adaptive Branch Predictor to Exploit Spatial Correlation

The branches in the assembly sequence have spatial correlation that we may be able to capture with
a more sophisticated two-level adaptive branch predictor. Consider the two-level BHT shown in
Figure 8. In this predictor, we use a single branch history shift register (BHSR) to capture a global
branch history pattern across all branches. This pattern is used to choose between one of several
BHTs. Each entry in the BHT is a two-bit saturating counter initialized to the weakly taken (WT)
state. For this problem, assume that the BHSR is only one bit. This means that we need two BHTs.
Assume that the BHSR is initially zero.

Create a table similar to the one shown in Figure 9. Calculate the branch predictor accuracy for
each of the three branches individually, and then also for the entire function. Hint: Fill in the
actual resolution column for all rows and all branches first (should be the same as in the previous parts), then
fill in the BHSR state, then fill in the BHT state, and finally fill in the prediction column.

BHSR

BHT0 BHT1

PC

1b

2b 2b

Figure 8: Two-Level BHT for Spatial Correlation

Branch B0 Branch B1 Branch B2

i src[i] BHSR BHT P A BHSR BHT P A BHSR BHT P A

0 0 0 WT T T 1 WT T T 1 WT T T

1 0 1 WT T T 1 ST T T

2 12 ...

...

Figure 9: Two-Level BHT for Spatial Correlation Execution

9

ECE 4750 Computer Architecture Topic 10: Advanced Processors – Branch Prediction

Part 2.D Branch Predictor Comparison

Create a table similar to the one in Figure 10 to record the branch prediction accuracies for all three
branch predictors. For each predictor and each branch, discuss why the accuracy is better or worse
than the other predictors on the same branch. Your answer should reflect your understanding of
the temporal and spatial correlation in this example and how it impacts the various prediction
accuracies.

Two-Bit FSM Two-Level Temporal Two-Level Spatial

Accuracy Accuracy Accuracy

Branch B0

Branch B1

Branch B2

All Branches

Figure 10: Summary of Branch Predictor Accuracies

10

ECE 4750 Computer Architecture Topic 10: Advanced Processors – Branch Prediction

Appendix A: TinyRV1 Canonical Microarchitectures

F D
1

X0
1

W
1

Y0 Y1 Y2 Y3
ARF

I
1

X1 X2 X3

Figure A.1: I3L Microarchitecture for MUL, ADDU, ADDIU

F D
1

X
1

W
1

Y0 Y1 Y2 Y3
ARF

I
1

SB

Figure A.2: I2OE Microarchitecture for MUL, ADDU, ADDIU

F D
1

X
1

Y0 Y1 Y2 Y3
PRF

I
1

SB ARF

W C
1 1

ROB

1

Figure A.3: I2OL Microarchitecture for MUL, ADDU, ADDIU

F D
1

X

Y0 Y1 Y2 Y3
ARF

I
1

SB

W
1 1

IQ

1

Figure A.4: IO2E Microarchitecture for MUL, ADDU, ADDIU

F D
1

X

Y0 Y1 Y2 Y3
I

1

SB

1 1

IQ

1

PRF ARF

W C
1 1

ROB

Figure A.5: IO2L Microarchitecture for MUL, ADDU, ADDIU

11

ECE 4750 Computer Architecture Topic 10: Advanced Processors – Branch Prediction

F D
n

X

Y0 Y1 Y2 Y3

I
n

L0

S

L1
n
W C

ROB

FSB

nn

PRF ARFBTB BHT

Figure A.6: Complete I2OL Microarchitecture (single issue: n = 1; quad issue: n = 4)

F D
n

X

Y0 Y1 Y2 Y3

I
nn

IQ

L0

S

L1
n
W C

ROB

FSB

FLB

n

URF ARTBTB RTRTFL

BHT

S

Figure A.7: Complete IO2L Microarchitecture (single issue: n = 1; quad issue: n = 4)

12

