
ECE 4750 Computer Architecture, Fall 2016

T07 Fundamental Network Microarchitecture

School of Electrical and Computer Engineering
Cornell University

revision: 2016-10-26-13-59

1 Buffer Microarchitecture 2

1.1. Normal Queues . 3

1.2. Pipe Queues . 5

1.3. Bypass Queues . 6

1.4. Composing Queues . 7

2 Channel Microarchitecture 8

2.1. On-Off Flow-Control . 9

2.2. Elastic Buffer Flow-Control . 14

2.3. Store-and-Forward Flow-Control . 15

2.4. Virtual-Cut-Through Flow-Control 16

3 Router Microarchitecture 17

3.1. Pipelined Router . 18

3.2. Arbitration . 19

1

1. Buffer Microarchitecture

1. Buffer Microarchitecture

Input
Term 3

Input
Term 2

Output
Term 3

Output
Term 2

Channel

Router Router

0

1

2

3

0

1

2

3

Buffer microarchitecture focuses on how we
implement the many queues that are used in
the network terminals, channels, and routers.
We will use “network buffer” and “network
queue” interchangeably.

• Network queues are usually one read, one write port

• Network queues implemented with either register files or SRAMs

• Total buffering can be a critical technology constraint, especially in
on-chip networks where wires are cheap but buffers are expensive

• We will study three kinds of buffers:

– Normal Queues : no combinational paths
– Pipe Queues : combinational path from deq ready to enq rdy
– Bypass Queues : combinational path from enq val to deq val

2

1. Buffer Microarchitecture 1.1. Normal Queues

1.1. Normal Queues

Normal queues have no combinational connections between the
val/rdy signals. This means we cannot enqueue a new message if the
queue is full, even if we are dequeuing a message on the same cycle.

Full/Empty Bits

enq_msg deq_msg

enq_val deq_val

enq_rdy deq_rdy

Stage A Stage B

pkt0

pkt1

pkt2

pkt3

pkt4

pkt5

pkt6

0 1 2 3 4 5 6 7 8 9 10 11

cyc A (|) B

0 (|)

1 (|)

2 (|)

3 (|)

4 (|)

5 (|)

6 (|)

7 (|)

8 (|)

9 (|)

10 (|)

11 (|)

Assume the dequeue interface is not ready on cycles 4–6

3

1. Buffer Microarchitecture 1.1. Normal Queues

A single-element normal queue cannot sustain full throughput. The
cycle after we enqueue a message, the queue is full preventing us from
enqueing a new message even if we are dequeuing a message on that
same cycle.

Full/Empty Bit

enq_msg deq_msg

enq_val deq_val

enq_rdy deq_rdy

Stage A Stage B

pkt0

pkt1

pkt2

pkt3

pkt4

pkt5

pkt6

0 1 2 3 4 5 6 7 8 9 10 11

cyc A () B

0 ()

1 ()

2 ()

3 ()

4 ()

5 ()

6 ()

7 ()

8 ()

9 ()

10 ()

11 ()

Assume the dequeue interface is not ready on cycles 4–6

4

1. Buffer Microarchitecture 1.2. Pipe Queues

1.2. Pipe Queues

Pipe queues have a combinational connection from the deq_rdy to
enq_rdy. This means we can now enqueue a new message even if the
queue is full, as long as we are dequeuing a message on the same cycle.

Full/Empty Bit

enq_msg deq_msg

enq_val deq_val

enq_rdy deq_rdy

Stage A Stage B

pkt0

pkt1

pkt2

pkt3

pkt4

pkt5

pkt6

0 1 2 3 4 5 6 7 8 9 10 11

cyc A () B

0 ()

1 ()

2 ()

3 ()

4 ()

5 ()

6 ()

7 ()

8 ()

9 ()

10 ()

11 ()

Assume the dequeue interface is not ready on cycles 4–6

5

1. Buffer Microarchitecture 1.3. Bypass Queues

1.3. Bypass Queues

Bypass queues have a combinational connection from the
enq_val/enq_msg to deq_val/deq_msg. This means if the queue is
empty, the message will “bypass” the queue and be sent
combinationally from the enqueue interface to the dequeue interface.

enq_msg deq_msg

enq_val deq_val

enq_rdy deq_rdy

Stage A Stage B

pkt0

pkt1

pkt2

pkt3

pkt4

pkt5

pkt6

0 1 2 3 4 5 6 7 8 9 10 11

cyc A () B

0 ()

1 ()

2 ()

3 ()

4 ()

5 ()

6 ()

7 ()

8 ()

9 ()

10 ()

11 ()

Assume the dequeue interface is not ready on cycles 4–6

6

1. Buffer Microarchitecture 1.4. Composing Queues

1.4. Composing Queues

A B C D

Normal Bypass Normal

pkt0

pkt1

pkt2

pkt3

pkt4

pkt5

pkt6

pkt7

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

cyc A (|) B () C (|) D

0 (|) () (|)

1 (|) () (|)

2 (|) () (|)

3 (|) () (|)

4 (|) () (|)

5 (|) () (|)

6 (|) () (|)

7 (|) () (|)

8 (|) () (|)

9 (|) () (|)

10 (|) () (|)

11 (|) () (|)

7

2. Channel Microarchitecture

2. Channel Microarchitecture

Input
Term 3

Input
Term 2

Output
Term 3

Output
Term 2

Channel

Router Router

0

1

2

3

0

1

2

3

Channel

Channel microarchitecture focuses on how we
pipeline the channel and thus how the sender
and receiver coordinate to manage the buffer at
the receiver. Often called flow control.

• Start by assuming single phit packets, study two low-level
flow-control schemes:

– On-Off Flow Control
– Elastic-Buffer Flow Control

• Then assume multi-phit packets, study two higher-level
flow-control schemes:

– Store-and-Forward Flow Control
– Virtual-Cut-Through Flow Control

• Note that all of these flow-control schemes are non-dropping, but
dropping flow-control schemes are also possible

– Reduces buffering requirements
– Requires nacks or timeouts
– Can be expensive under high-load due to retries

8

2. Channel Microarchitecture 2.1. On-Off Flow-Control

2.1. On-Off Flow-Control

• Use a single on-off signal to indicate whether or not the receiver
queue is full: on means still space, off means queue is full

• On-off signal is essentially the same as a stall signal

• May need to send this signal ahead of time to ensure that by the time
we can actually stall the channel we don’t have to drop packets

• We will use the following example to explore three different ways of
implementing on-off flow control:

– Combinational stall signal
– Combinational partial stall signal
– Pipelined partial stall signal

A B C D

Normal
Queue

Channel
Register

ReceiverSender

Channel
Register

Key Question: When should we notify the sender that the receiver
queue is filling up to avoid dropping packets?

9

2. Channel Microarchitecture 2.1. On-Off Flow-Control

On/off flow-control with combinational stall signal

Assume we can combinationally stall all pipeline registers in the
channel as well as the sender itself.

A B C D

Normal
Queue

Channel
Register

ReceiverSender

Channel
Register

stall

pkt0

pkt1

pkt2

pkt3

pkt4

pkt5

pkt6

pkt7

• When do we need to send the stall signal?
• What is the minimum number of entries in the receiver queue that

will guarantee we will not need to drop a packet?

10

2. Channel Microarchitecture 2.1. On-Off Flow-Control

On/off flow-control with combinational partial stall signal

Assume we can combinationally stall the sender, but we cannot stall the
pipeline registers in the channel. This might be because we have
multiple bits in flight on a cable or wire at the same time, or the
overhead for stalling all pipeline registers is too high.

A B C D

Normal
Queue

Channel
Register

ReceiverSender

Channel
Register

stall

pkt0

pkt1

pkt2

pkt3

pkt4

pkt5

pkt6

pkt7

• When do we need to send the stall signal?
• What is the minimum number of entries in the receiver queue that

will guarantee we will not need to drop a packet?
• Required extra buffering in receiver queue is called “skid buffering”

11

2. Channel Microarchitecture 2.1. On-Off Flow-Control

On/off flow-control with pipelined partial stall signal

Assume that we cannot stall the pipeline registers and we must pipeline
the stall signal for the sender. This might because we have multiple bits
in flight on a cable or wire at the same time, and it takes some number
of cycles to send the stall signal back to the sender.

A B C D

Normal
Queue

Channel
Register

ReceiverSender

Channel
Register

stall

pkt0

pkt1

pkt2

pkt3

pkt4

pkt5

pkt6

pkt7

pkt8

pkt9

• When do we need to send the stall signal?
• What is the minimum number of entries in the receiver queue that

will guarantee we will not need to drop a packet?
• Credit-based flow-control has better buffer utilization

12

2. Channel Microarchitecture 2.1. On-Off Flow-Control

Activity: Flow control in a pipelined multiplier

Consider the following four-stage pipelined multiplier with a val/rdy
input/output interface.

Assume the stall signal is on the critical path and so we pipeline the
stall signal in the X1 stage. Draw a pipeline diagram illustrating how
this multiplier executes a stream of multiply transactions. Assume the
output interface is not ready on cycles 5–7. What modifications do we
need to avoid dropping transactions?

. 0 . 1 . 2 . 3 . 4 . 5 . 6 . 7 . 8 . 9 . 10 . 11 . 12 . 13

mul A

mul B

mul C

mul D

mul E

mul F

mul G

13

2. Channel Microarchitecture 2.2. Elastic Buffer Flow-Control

2.2. Elastic Buffer Flow-Control

Instead of centralizing the buffering required to avoid dropping packets
at the receiver, we can also distribute that buffering along the channel.
In elastic-buffer flow-control, each pipeline register turns into a small
two-element normal queue. The head of the queue is effectively the
pipeline register, while the second element is skid-buffering.

C D

Normal
Queue

ReceiverSender

Elastic
Buffer

B

Elastic
Buffer

A

pkt0

pkt1

pkt2

pkt3

pkt4

pkt5

pkt6

pkt7

14

2. Channel Microarchitecture 2.3. Store-and-Forward Flow-Control

2.3. Store-and-Forward Flow-Control

So far we have assumed single-phit packets. How should we handle
multi-phit packets? Assume we always allocate buffers in units of a
complete packet (there are other schemes that do not require this). In
store-and-forward flow-control, once all phits in a packet have been
completely received in a queue, we can then forward the phits to the
next queue.

Assume four phits/packet, so each packet has one head phit (H), two
body phits (B), and one tail phit (T).

pkt0 H

pkt0 B

pkt0 B

pkt0 T

15

2. Channel Microarchitecture 2.4. Virtual-Cut-Through Flow-Control

2.4. Virtual-Cut-Through Flow-Control

Store-and-forward is common in large-scale data-center or multi-socket
networks, but the overhead of serializing/deserializing packets can be
significant in on-chip networks. Again, assume we always allocate
buffers in units of a complete packet. In virtual-cut-through
flow-control, we can start forwarding phits to the next queue
right-away.

Assume four phits/packet, so each packet has one head phit (H), two
body phits (B), and one tail phit (T).

pkt0 H

pkt0 B

pkt0 B

pkt0 T

In this course, always assume virtual-cut-through flow-control.

16

3. Router Microarchitecture

3. Router Microarchitecture

Input
Term 3

Input
Term 2

Output
Term 3

Output
Term 2

Channel

Router Router

0

1

2

3

0

1

2

3

Router Router

Router microarchitecture focuses on how we
do the routing and arbitration within each
router of the network. Although an FSM
microarchitecture is possible, on-chip
networks almost always use single-cycle or
pipelined microarchitectures.

17

3. Router Microarchitecture 3.1. Pipelined Router

3.1. Pipelined Router

Three-stage router pipeline suitable for simple 2-ary butterfly topology

• Router Computation (RC)

– Simple combinational logic for oblivious routing algorithm
– Duplicate per input port to avoid structural hazard

• Switch Allocation (SA)

– Two 2-input arbiters, one per output port
– Grant and hold, hold after head phit until tail phit

• Switch Traversal (ST)

– Cross the crossbar and write output buffer

18

3. Router Microarchitecture 3.2. Arbitration

Let’s use a pipeline diagram to illustrate a four-phit packet traversing
from input terminal 3 to output terminal 3.

0

1

2

3

0

1

2

3 Stage
I

Three Stages
RC, SA, ST

Stage
L0

Stage
L1

Stage
O

Three Stages
RC, SA, ST

pkt0 H

pkt0 B

pkt0 B

pkt0 T

• Only header phit does route computation
• Body/tail phits cannot bypass header phit, must wait in input queue

3.2. Arbitration

• Requesters set request signal high if need shared resource

• Arbiter sets a single grant signal high for winning requester

• Grant and hold arbiter allows requester to “hold on” to shared
resource until finished

19

3. Router Microarchitecture 3.2. Arbitration

Round-Robin Arbiter

In fixed-priority abritration, the same requester always has the highest
priority. In round-robin arbitration, the priority changes: winner on one
cycle has lowest priority on next cycle.

Reqs Priority Grants

0 1 2 3 0 1 2 3 0 1 2 3

0 0 0 0 1 0 0 0

1 0 0 0

1 0 1 1

1 0 0 1

1 0 0 0

Arbiter Fairness

20

3. Router Microarchitecture 3.2. Arbitration

Pipeline diagram with arbitration

Let’s use a pipeline diagram to illustrate a two four-phit packets
traversing through the network. Packet 0 is going from input terminal 2
to output terminal 2. Packet 1 is going from input terminal 3 to output
terminal 3. Both packets arrive at the first router at the same time.
Assume packet 0 wins arbitration.

0

1

2

3

0

1

2

3 Stage
I

Three Stages
RC, SA, ST

Stage
L0

Stage
L1

Stage
O

Three Stages
RC, SA, ST

pkt0 H

pkt0 B

pkt0 B

pkt0 T

pkt1 H

pkt1 B

pkt1 B

pkt1 T

21

