
ECE 4750 Computer Architecture

Topic 1: Fundamental Processor Concepts

http://www.csl.cornell.edu/courses/ece4750
School of Electrical and Computer Engineering

Cornell University

revision: 2022-09-28-00-11

List of Problems

1 Understanding Assembly Code 2

1.A Mystery Function #1 . 2

1.B Mystery Function #2 . 2

1.C Mystery Function #3 . 4

2 Comparing CISC, RISC, and Stack ISAs 5

2.A x86 CISC ISA . 5

2.B RISC-V ISA with Direct Translation . 6

2.C RISC-V ISA with Optimized Translation . 7

2.D Simple Stack-Based ISA . 7

2.E Comparison of ISAs . 9

ECE 4750 Computer Architecture NetID:

Problem 1. Understanding Assembly Code

In this problem, you will explore two different unknown functions implemented using TinyRV1
assembly. For both problems, you can assume the standard RISC-V calling convention. Recall that
this means that arguments are passed in registers x11–x17, the return value is stored to x10, and
the return address is stored in x1. x5–x7, x28– are used as temporary registers. The instruction
semantics for the TinyRV1 instruction set are included in an appendix for your reference. As in
lecture, you can assume that any array lengths given as an input to the function are greater than
zero.

Part 1.A Mystery Function #1

Consider the following unknown function. Write a C function that clearly represents the func-
tionality of this assembly sequence.

loop:
lw x5, 0(x12)
mul x5, x5, x15
lw x6, 0(x13)
add x6, x6, x5
sw x6, 0(x11)
addi x11, x11, 4
addi x12, x12, 4
addi x13, x13, 4
addi x14, x14, -1
bne x14, x0, loop

jr x1

Part 1.B Mystery Function #2

Consider the following unknown function. Write a C function that clearly represents the func-
tionality of this assembly sequence.

2

ECE 4750 Computer Architecture NetID:

loop:
lw x5, 0(x13)
slli x5, x5, 2
add x6, x12, x5
lw x7, 0(x6)
sw x7, 0(x11)
addi x11, x11, 4
addi x13, x13, 4
addi x14, x14, -1
bne x14, x0, loop

jr x1

3

ECE 4750 Computer Architecture NetID:

Part 1.C Mystery Function #3

Consider the following unknown function. Write a C function that clearly represents the func-
tionality of this assembly sequence.

addi x10, x0, 0

loop:
lw x6, 0(x12)
bne x6, x0, foo
jal x0, bar

foo:
sw x6, 0(x11)
addi x11, x11, 4
addi x10, x10, 1

bar:
addi x12, x12, 4
addi x13, x13, -1
bne x13, x0, loop

jr x1

4

ECE 4750 Computer Architecture NetID:

Problem 2. Comparing CISC, RISC, and Stack ISAs

In this problem, your task is to compare three different ISAs: x86 is an extended accumulator,
CISC architecture with variable-length instructions; MIPS32 is a load-store, RISC architecture with
fixed-length instructions; and we will also look at a simple stack-based ISA with variable-length
instructions.

Part 2.A x86 CISC ISA

Consider the following C code which takes an array pointer (aptr) and the number of elements
(size) as inputs, and then adds one to each of the elements in the array.

1 void array_increment(int* aptr, int size)
2 {
3 int i;
4 for (i = 0; i < size; i++)
5 aptr[i] = aptr[i] + 1;
6 }

The loop in the above C function might compile to the following assembly code. This assembly
fragment is just for the loop; it excludes the code required for managing the stack and for returning
from the function. On entry to this code, register edx contains aptr and register ecx contains size.

1 xor eax, eax
2 jmp L1
3 loop: inc [edx+eax*4]
4 inc eax
5 L1: cmp eax, ecx
6 jl loop

Spend some time understanding how the assembly code implements the C code. The meanings
and instruction lengths of the instructions used above are given in Figure 1. A register specifier
uses a r prefix, a register value is denoted as R[specifier] and a memory value is denoted as
M[address].

Notice that there are two versions of the inc instruction: a register-register version and a memory-
memory version with a more sophisticated addressing mode. The jl instruction implements a
conditional jump by using the SF and OF condition flags. These condition flags are set by the
instruction preceding the jump based on the result of the computation. Some instructions, such
as the cmp instruction, perform a computation and set the condition flags, but do not return any
result. The OF condition flag indicates overflow and is set if the result exceeds the positive or
negative limit of the number range. The SF condition flag indicates the sign of the result and is
set if the result is negative (less than zero). Thus the jl instruction implements a jump if less than
operation by checking to see if SF 6= OF.

How many bytes are in the x86 program? How many bytes of instructions need to be fetched
if size is 16? Assuming 32-bit data values, how many bytes of data need to be loaded from the
data memory? How many bytes need to be stored to the data memory? Show your work.

5

ECE 4750 Computer Architecture NetID:

Instruction Operation Length

cmp rs1, rs2 temp← R[rs1] - R[rs2]
SF← sign bit of temp
OF← overflow of temp

2 bytes

inc rt R[rt]← R[rt] + 1 1 byte

inc [rs1+rs2*imm] temp← R[rs1] + (R[rs2] × imm)
M[temp]←M[temp] + 1

4 bytes

jl label if (SF 6= OF)
jump to the address specified by label

2 bytes

jmp label jump to address specified by label 2 bytes

xor rt, rs1 R[rt]← R[rt] ⊕ R[rs1] 2 bytes

Figure 1: x86 ISA Subset

Label x86 Instruction Equivalent TinyRV2 Instruction Sequence

xor eax, eax

jmp L1

loop: inc [edx+eax*4]

inc eax

L1: cmp eax, ecx

jl loop

Figure 2: Direct Translation from x86 to RISC-V

Part 2.B RISC-V ISA with Direct Translation

Create a table similar to the one in Figure 2, and translate each of the x86 instructions into one
or more TinyRV2 instructions. You should use the minimum number of instructions to translate
each x86 instruction, but you should not do any optimization across x86 instructions. Ultimately,
the direct translation of all of the x86 instructions should result in a TinyRV2 program that when
executed would achieve the same result as the original x86 code. This means that you need to use
the appropriate RISC-V registers in each translation so that the RISC-V program functions correctly.
On entry to the RISC-V code, assume register x10 contains aptr and register x11 contains size. If
necessary, use x5, x6, and x7 for temporaries. Do not use any RISC-V pseudo-instructions. For
example, do not use li, la, j since these pseudo-instructions can turn in a variable number of real
instructions based on the context. We want to better understand the cycle-level execution of the
code, and thus we need to focus on the real instructions that need to be executed.

How many bytes are in the TinyRV2 program using your direct translation? How many bytes of
instructions need to be fetched if size is 16? Assuming 32-bit data values, how many bytes of
data need to be loaded from the data memory? How many bytes need to be stored to the data
memory? Show your work.

6

ECE 4750 Computer Architecture NetID:

Part 2.C RISC-V ISA with Optimized Translation

Write an optimized TinyRV2 assembly program that implements the array_increment function
from the previous section. In lecture, we discussed how we will often assume that the length of
arrays is always greater than one. To be enable a fair comparison for this problem, we will not make
this assumption. Your assembly code will need to verify that the size is greater than zero before
starting to work on the input array. On entry to the RISC-V code, assume register x10 contains aptr
and register x11 contains size. If necessary, use x5, x6, and x7 for temporaries. You do not need
to worry about the instructions required to return from the function (i.e., the jr/jalr instruction).
As in the previous problem, you should not use pseudo-instructions.

Note that there are more efficient ways than simply translating each individual x86 instruction di-
rectly into TinyRV2 instructions. Try to optimize your code so that it minimizes register usage,
static instructions, and/or the number of instructions fetched. You can assume the microarchitec-
ture is fully bypassed. Obvious optimization approaches to consider are using software scheduling
to avoid load-use stalls and more efficiently managing the loop control and array addressing. The
arguments to the array_increment function are passed by value, which means that the values in
x10 and x11 do not need to be preserved; you are free to overwrite these values. Your solution
should contain commented assembly code and an explanation of your optimizations.

How many bytes are in your TinRV2 program? How many bytes of instructions need to be
fetched if size is 16? You do not need to count instructions which are fetched but then later
squashed! Assuming 32-bit data values, how many bytes of data need to be loaded from the data
memory? How many bytes need to be stored to the data memory? Show your work.

Part 2.D Simple Stack-Based ISA

In a stack-based architecture, all instructions operate on an architecturally visible hardware stack.
Some number of items at the top of the stack are kept in fast hardware registers, while the rest of the
conceptually infinite stack is kept in a special portion of memory. Stack-based architectures were
popular in the 1960’s with the Burroughs B5000 computer serving as a classic example. This kind of
architecture is convenient for expression evaluation, subroutine calls, recursion, and compiling for
some important high-level languages such as ALGOL. Stack-based architectures fell out of favor in
the late 1970’s, but there has a been some recent interest owing to the stack-based nature of Java’s
intermediate bytecode representation. Figure 3 defines a simple stack-based ISA that we will use
in this part. The semantics of each instruction are defined in terms of push and pop operations:
pop v means pop the top of the stack and store it in variable v, and push v means push the variable
v onto the stack. Note that v is not part of the architecture nor the microarchitecture – it is simply
a notational construct to help define the instruction semantics. A memory value is denoted as
M[address].

All values are 32-bit. In our simple stack-based ISA, only the pushm and popm instructions access
memory; all other instructions remove zero, one, or two operands from the stack and replace them
with the result (if there is one). The swap instruction is special since it essentially reads two values
from the top of the stack and writes two values onto the top of the stack in one instruction. The
opcodes are encoded in a single byte. Notice that in this ISA, pushi only handles an 8-bit immediate
that is sign extended to 32 bits when written to the top of the stack. The instruction and memory
addresses are four bytes.

7

ECE 4750 Computer Architecture NetID:

Instruction Operation Length

add pop v0; pop v1; push v1 + v0 1 byte

bgtz label pop v; if v > 0, jump to address specified by label;
else, continue with next instruction

5 bytes

dup pop v; push v; push v 1 byte

goto label jump to address specified by label 5 bytes

pushi imm push sext(imm) 2 byte

pushm pop addr; push M[addr] 1 byte

popm pop v; pop addr; M[addr]← v 1 byte

sub pop v0; pop v1; push v1 - v0 1 byte

swap pop v0; pop v1; push v0; push v1 1 byte

Figure 3: Simple Stack-Based ISA

Contents of Stack Access Stack
on First Iteration Memory? Label Instruction

aptr; size goto L1
aptr; size loop: ...

add rest of instrs here
...

aptr; size Y L1: dup
aptr; size; size Y bgtz loop

Figure 4: array_increment Loop Implemented with Stack-Based ISA

The microarchitecture assumed for this problem implements the top of the stack with two 32-bit
registers and the remainder of the stack is stored in a special stack memory. We call these two 32-bit
registers the top-of-stack (TOS) registers (the Burroughs B5000 also had two TOS registers). If there
are two or more items on the stack and the program pushes another item on the stack, then the
microarchitecture will take care of writing one item from the TOS registers to the special memory.
If there are more than two items on the stack and the program pops one item from the stack, then
the microarchitecture will take care of reading one item from the special memory into the TOS
registers. To be more precise, assume an instruction pops n items (0 < n) at the beginning of its
execution and pushes m items at the end of its execution. For our simple stack-based instruction
set, 0 ≤ n ≤ 2 and 0 ≤ m ≤ 2 for all instructions. If n < m and the final stack size is greater than
two, the microarchitecture will need to write some number of items from the TOS registers to the
special stack memory. If n > m and the initial stack size is greater than two, the microarchitecture
will need to read some number of items from the special stack memory into the TOS registers. If
n = m, then there is no need to access the special stack memory regardless of the current stack size;
in this case, the pushes and pops necessary to implement the instruction can simply be done by
accessing the TOS registers. In other words, the pushm, swap, and goto instructions never need to
access the special stack memory since n = m, while all other instructions may access the special
stack memory depending on the current stack size.

8

ECE 4750 Computer Architecture NetID:

Translate the array_increment loop from Part 2.A to our simple stack-based ISA. On entry to the
code, assume that the top of the stack contains size and the second entry in the stack contains the
aptr. To show your translation, create a table like the one shown in Figure 4. Explicitly track
what is in the stack before the execution of each instruction, and note on which instructions the
microarchitecture will need to perform some number of access to the stack memory. To get you
started, a portion of the translation is already shown in Figure 4.

How many bytes are in the stack-based program? How many bytes of instructions need to be
fetched if size is 16? Assuming 32-bit data values, how many bytes of data need to be loaded
from the data memory? How many bytes need to be stored to the data memory? How many
instructions will result in some kind of access to the special stack memory? If the microarchi-
tecture used eight TOS registers, how many instructions would result in some kind of access to
the special stack memory? Show your work.

Part 2.E Comparison of ISAs

Given the results from the first four parts as a starting point, make a compelling argument for
which ISA will result in smallest static code size and fewest dynamically fetched instruction
bytes on a broader selection of common programs. While you certainly should summarize the re-
sults from the first three parts, your analysis should not be purely based on these results. Consider
how these initial results can be extrapolated to other programs. Do not factor in memory traffic or
performance; your argument should be purely based on static code size and number of bytes of
instructions that need to be fetched.

9

ECE 4750 Computer Architecture NetID:

Appendix A: TinyRV1 Instruction Set

Assembly Syntax Semantics

add rd, rs1, sr2 R[rd]← R[rs1] + R[rs2]

addi rd, rs1, imm R[rd]← R[rs1] + sext(imm)

mul rd, rs1, rs2 R[rd]← R[rs1] × R[rs2]

lw rd, imm(rs1) R[rd]←M_4B[R[rs1] + sext(imm)]

sw rs2, imm(rs1) M_4B[R[rs1] + sext(imm)]← R[rs2]

jal rd, imm R[rd]← PC + 4; PC← PC + sext(imm)

jr rs1 PC← R[rs1]

bne rs1, rs2, imm if (R[rs1] != R[rs2]) PC← PC + sext(imm) else PC← PC + 4

R[i] = value of register i; M[ma] = value of memory address ma; PC = program counter; sext = sign extend;
assume all instructions include PC← PC + 4 unless otherwise specified.

10

