ECE 4750 Computer Architecture
Course Overview
Christopher Batten

School of Electrical and Computer Engineering
Cornell University

http://www.csl.cornell.edu/courses/ece4750
In its broadest definition, computer architecture is the development of the abstraction/implementaion layers that allow us to execute information processing applications efficiently using available manufacturing technologies.
Sort an array of numbers
2,6,3,8,4,5 -> 2,3,4,5,6,8

Out-of-place selection sort algorithm
1. Find minimum number in array
2. Move minimum number into output array
3. Repeat steps 1 and 2 until finished

C implementation of selection sort
```c
void sort( int b[], int a[], int n ) {
    for ( int idx, k = 0; k < n; k++ ) {
        int min = 100;
        for ( int i = 0; i < n; i++ ) {
            if ( a[i] < min ) {
                min = a[i];
                idx = i;
            }
        }
        b[k] = min;
        a[idx] = 100;
    }
}
```
The Computer Systems Stack

- Application
- Algorithm
- Programming Language
- Operating System
- Instruction Set Architecture
- Microarchitecture
- Register-Transfer Level
- Gate Level
- Circuits
- Devices
- Technology

Mac OS X, Windows, Linux
Handles low-level hardware management

MIPS32 Instruction Set
Instructions that machine executes

```assembly
blez  $a2, done
move $a7, $zero
li   $t4, 99
move $a4, $a1
move $v1, $zero
li   $a3, 99
lw   $a5, 0($a4)
addiu $a4, $a4, 4
slt  $a6, $a5, $a3
movn $v0, $v1, $a6
addiu $v1, $v1, 1
movn $a3, $a5, $a6
```
The Computer Systems Stack

- Application
- Algorithm
- Programming Language
- Operating System
- Instruction Set Architecture
- Microarchitecture
- Register-Transfer Level
- Gate Level
- Circuits
- Devices
- Technology

How data flows through system

Boolean logic gates and functions

Combining devices to do useful work

Transistors and wires

Silicon process technology
In its broadest definition, computer architecture is the development of the abstraction/implementation layers that allow us to execute information processing applications efficiently using available manufacturing technologies.
Computer Architecture in the ECE/CS Curriculum

Computer Architecture
- Application
- Algorithm
- Programming Language
- Operating System
- Instruction Set Architecture
- Microarchitecture
- Register-Transfer Level
- Gate Level
- Circuits
- Devices
- Technology

Related Graduate Courses
- ECE 5760 Advanced Microcontroller Design
- ECE 5750 Advanced Computer Architecture
- ECE 5730 Memory Systems
- ECE 5770 Resilient Computer Systems
- ECE 5745 Complex Digital ASIC Design
- ECE 5775 High-Level Design Automation

ECE 4410 Operating Systems
CS 4420 Compilers
ECE 3140 Embedded Systems
ECE 4750 Computer Architecture
ECE 2300 Digital Logic & Computer Org
ECE 4740 Digital VLSI Design
Digital systems are implemented with three basic building blocks
• **Logic** to process data
• **State** to store data
• **Interconnect** to move data
Processors, Memories, and Networks

Computer engineering basic building blocks

- **Processors** for computation
- **Memories** for storage
- **Networks** for communication
Computer Architecture Artifacts
Agenda

What is Computer Architecture?

Activity 1

Trends in Computer Architecture

Activity 2

Computer Architecture Design
Activity #1: Sorting with a Sequential Processor

- **Application:** Sort 32 numbers

- **Simulated Sequential Computing System**
 - Processor: You!
 - Memory: Worksheet, read input data, write output data
 - Network: Passing/collecting the worksheets

- **Activity Steps**
 1. Discuss strategy with neighbors
 2. When instructor starts timer, flip over worksheet
 3. Sort 32 numbers as fast as possible
 4. Lookup when completed and write time on worksheet
 5. Raise hand
 6. When everyone is finished, then analyze data
Agenda

What is Computer Architecture?

Activity 1

Trends in Computer Architecture

Activity 2

Computer Architecture Design
Application Requirements vs. Technology Constraints

Traditional Application Requirements
- As much processor compute as possible
- As much memory capacity as possible
- As much network bandwidth as possible

Traditional Technology Constraints
- Exponential scaling of resources
Exponential Scaling for Processor Computation

- **Transistors (Thousands)**
- **SPECint Performance**
- **Frequency (MHz)**

Data collected by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, C. Batten
Exponential Scaling for Memory Capacity

First presentation at ISSCC or Symp. VLSI Circuits

DRAM
SRAM
FLASH

Exponential Scaling for Network Bandwidth

Data from Hennessy & Patterson, Morgan Kaufmann, 2nd & 5th eds., 1996 & 2011; D.E. Culler et al., Morgan Kaufmann, 1999.
Key trends in **application requirements** and **technology constraints** over the past decade have resulted in a radical rethinking of the **processors, memories, and networks** used in modern computing systems.

Five Key Trends in Computer Architecture

1. Growing diversity in application requirements motivate growing diversity in computing systems pushing towards the cloud and IoT
2. Energy & power constrain systems across the computing spectrum
3. Transition to multiple cores integrated onto a single chip
4. Transition to heterogeneous systems-on-chip
5. Technology scaling challenges motivate new emerging compute, storage, and communication device technologies
Trend 1: Bell’s Law

Roughly every decade a new, smaller, lower priced computer class forms based on a new programming platform resulting in entire new industries.
Trend 1: Growing Diversity in Apps & Systems

- Game Consoles
- Computing: From Handhelds to Servers
- Internet Routers
- GPS Devices and Satellites
- Humanoid Robots
- Unmanned Vehicles
- Smart Home
- Wearable Activity Monitors
- Medical Devices
- Sensor Networks
- Wearable Computing
- Digital Cameras
- Automobiles
- Data Centers
Trend 2: Energy and Power Constraints

Power = \frac{Energy}{Second} = \frac{Energy}{Op} \times \frac{Ops}{Second}

Power
- Chip Packaging
- Chip Cooling
- System Noise
- Case Temperature
- Data-Center Air Conditioning

Energy
- Battery Life
- Electricity Bill
- Mobile Device Weight

100W Workstation Power Constraint
1W Handheld Power Constraint
Trend 2: Energy and Performance of Single Processor

- in-order, 1-issue
- in-order, 2-issue
- in-order, 3-issue
- out-of-order, 1-issue
- out-of-order, 2-issue
- out-of-order, 3-issue

Increasing Power

Based on analytical models of 90nm technology with joint optimization of microarchitectural and circuit parameters

Trend 2: Power Constrains Single-Processor Scaling

- Transistor counts (Thousands):
- MIPS:
- R2K:
- Intel P4:

- Typical Power (W):
- Frequency (MHz):
- SPECint Performance:

~9%/year
~15%/year
Trend 3: Transition to Multicore Processors

Intel Pentium 4
Single monolithic processor

Cray XT3 Supercomputer
1024 single-core processors

AMD Quad-Core Opteron
Four cores on the same die

IBM Blue Gene Q
Supercomputer
Thousands of 18-core processors
Trend 3: Energy and Performance of Multicores

- Simple Single Proc
- Superscalar w/ Deeper Pipelines
- Out-of-Order Superscalar Superpipelined
- Multicore
- General-Purpose Manycores

Performance (Tasks per Second)
Energy (Joules per Task)
Increasing Power
Processor Power Constraint

Increasing Power
Trend 3: The Multicore “Hail Mary Pass”

- Transistors (Thousands)
- Typical Power (W)
- Frequency (MHz)
- SPECint Performance
- ~9%/year
- Parallelism?
- ~15%/year
- SPECint Performance
- Number of Cores
- Typical Power (W)
- Frequency (MHz)
- SPECint Performance
- ~9%/year
Trend 4: Heterogeneous Systems-on-Chip

Adapted from D. Brooks Keynote at NSF XPS Workshop, May 2015.
Trend 5: Emerging Device Technologies

Vertical MOSFETs
Graphene
Carbon Nanotubes
Nanorelays
Quantum Computing
Molecular Computing
Memristers
Phase-Change Mem
Spintronics
3D Integration
Nanophotonics

Key trends in application requirements and technology constraints over the past decade have resulted in a radical rethinking of the processors, memories, and networks used in modern computing systems.

Five Key Trends in Computer Architecture

1. Growing diversity in application requirements motivate growing diversity in computing systems pushing towards the cloud and IoT
2. Energy & power constrain systems across the computing spectrum
3. Transition to multiple cores integrated onto a single chip
4. Transition to heterogeneous systems-on-chip
5. Technology scaling challenges motivate new emerging compute, storage, and communication device technologies
Agenda

What is Computer Architecture?

Activity 1

Trends in Computer Architecture

Activity 2

Computer Architecture Design
Activity #2: Sorting with a Parallel Processor

► **Application:** Sort 32 numbers

► **Simulated Parallel Computing System**
 ▶ Processor: Group of 2–8 students
 ▶ Memory: Worksheet, scratch paper
 ▶ Network: Communicating between students

► **Activity Steps**
 ▶ 1. Discuss strategy with group
 ▶ 2. When instructor starts timer, master processor flips over worksheet
 ▶ 3. Sort 32 numbers as fast as possible
 ▶ 4. Lookup when completed and write time on worksheet
 ▶ 5. *Master processor only* raises hand
 ▶ 6. When everyone is finished, then analyze data
Activity #2: Discussion

Algorithm
Communication
Load Balancing
Fault Tolerance
Dataset Size

Distribute
Sort 4 Numbers
Merge Phase 1
> merge 4+4 = 8
Merge Phase 2
> merge 8+8 = 16
Merge Phase 3
> merge 16+16 = 32
Agenda

What is Computer Architecture?

Activity 1

Trends in Computer Architecture

Activity 2

Computer Architecture Design

- Application
- Algorithm
- PL
- OS
- ISA
- \(\mu \text{Arch} \)
- RTL
- Gates
- Circuits
- Devices
- Technology
What do computer architects actually do?

General Science
- Discover truths about nature
- Ask question about nature
- Construct hypothesis
- Test with experiment
- Analyze results and draw conclusions

Computer Engineering
- Explore design space for a new system
- Design and model baseline system
- Ask question about system
- Test with experiment
- Analyze results and draw conclusions
- Build prototype or real system
- Design and model alternative system
Model in Computer Architecture

Computer Engineering

- Explore design space for a new system
- Design and model baseline system
- Ask question about system
- Test with experiment
- Analyze results and draw conclusions
- Build prototype or real system
- Design and model alternative system

```verilog
// rdy is OR of the AND of reqs and grants
assign in_rdy = | (reqs & grants);

reg [2:0] reqs;
always @(*) begin
  if ( in_val ) begin
    // eject packet if it is for this tile
    if ( dest == p_router_id )
      reqs = 3'bx10;
    // otherwise, just pass it along ring
    else
      reqs = 3'bx01;
  end else begin
    // if !val, don't request any ports
    reqs = 3'bx00;
  end
end
```

- **Verilog** • **SystemVerilog** • **VHDL**
- **C++** • **SystemC**
- **Bluespec** • **Chisel** • **Python**
How do we design something so incredibly complex?

Computer Engineering

Explore design space for a new system

Design and model baseline system

Ask question about system

Test with experiment

Analyze results and draw conclusions

Build prototype or real system

Design and model alternative system

Fighter Airplane: ~100,000 parts

Intel Sandy Bridge E: 2.27 Billion transistors
Design Principles

- **Modularity** – Decompose into components with well-defined interfaces
- **Hierarchy** – Recursively apply modularity principle
- **Encapsulation** – Hide implementation details from interfaces
- **Regularity** – Leverage structure at various levels of abstraction
- **Extensibility** – Include mechanisms/hooks to simplify future changes

Design Patterns

- Processors, Memories, Networks
- Control/Datapath Split
- Single-Cycle, FSM, Pipelined Control
- Raw Port, Message, Method Interfaces

Design Methodologies

- Agile Hardware Development
- Test-driven Development
- Incremental Development
Quad-core processor with private L1 instruction caches and a shared, banked L1 data cache interconnected through various ring networks implemented at the register-transfer-level and capable running real parallel programs

Lab assignments will use an agile hardware development methodology based on a Python hardware modeling framework, the Verilog hardware description language (optional), the GitHub repository hosting site, and and the TravisCI continuous integration service
Lab 1: Iterative Multiplier

Lab 2: Pipelined Processor

Lab 3: Blocking Cache

Lab 4: Ring Network

Lab 5: Multicore

Lab 2: Pipelined Processor

Lab 3: Blocking Cache

Lab 4: Ring Network

Lab 5: Multicore
Take-Away Points

- Computer architecture is the process of building computing systems to meet given application requirements within physical technology constraints.

- We are entering an exciting new era of computer architecture with growing diversity in applications and systems, a remarkable industrial shift towards mainstream parallel processing and SoCs, and significant technology scaling challenges.

- This era offers tremendous challenges and opportunities, which makes it a wonderful time to study and contribute to the field of computer architecture.