In its broadest definition, computer architecture is the development of the abstraction/implementation layers that allow us to execute information processing applications efficiently using available manufacturing technologies.
The Computer Systems Stack

- Application
- Algorithm
- Programming Language
- Operating System
- Instruction Set Architecture
- Microarchitecture
- Register-Transfer Level
- Gate Level
- Circuits
- Devices
- Technology

Sort an array of numbers
2,6,3,8,4,5 -> 2,3,4,5,6,8

Out-of-place selection sort algorithm
1. Find minimum number in array
2. Move minimum number into output array
3. Repeat steps 1 and 2 until finished

C implementation of selection sort

```c
void sort( int b[], int a[], int n ) {
    for ( int idx, k = 0; k < n; k++ ) {
        int min = 100;
        for ( int i = 0; i < n; i++ ) {
            if ( a[i] < min ) {
                min = a[i];
                idx = i;
            }
        }
        b[k] = min;
        a[idx] = 100;
    }
}
```
The Computer Systems Stack

- Application
- Algorithm
- Programming Language
- Operating System
- Instruction Set Architecture
- Microarchitecture
- Register-Transfer Level
- Gate Level
- Circuits
- Devices
- Technology

Mac OS X, Windows, Linux
Handles low-level hardware management

MIPS32 Instruction Set
Instructions that machine executes

```plaintext
blez  $a2, done
move $a7, $zero
li    $t4, 99
move $a4, $a1
move $v1, $zero
li    $a3, 99
lw     $a5, 0($a4)
addiu  $a4, $a4, 4
slt    $a6, $a5, $a3
movn  $v0, $v1, $a6
addiu  $v1, $v1, 1
movn  $a3, $a5, $a6
```
The Computer Systems Stack

- Application
- Algorithm
- Programming Language
- Operating System
- Instruction Set Architecture
- Microarchitecture
- Register-Transfer Level
- Gate Level
- Circuits
- Devices
- Technology

How data flows through system
Boolean logic gates and functions
Combining devices to do useful work
Transistors and wires
Silicon process technology
In its broadest definition, computer architecture is the development of the abstraction/implementation layers that allow us to execute information processing applications efficiently using available manufacturing technologies.
Computer Architecture in the ECE/CS Curriculum

- Application
- Algorithm
- Programming Language
- Operating System
- Instruction Set Architecture
- Microarchitecture
- Register-Transfer Level
- Gate Level
- Circuits
- Devices
- Technology

CS 4410 Operating Systems
CS 4420 Compilers

ECE 3140 Embedded Systems

ECE 4750 Computer Architecture

ECE 2300 Digital Logic & Computer Org
ECE 4740 Digital VLSI Design

Related Graduate Courses
- ECE 5760 Advanced Microcontroller Design
- ECE 5750 Advanced Computer Architecture
- ECE 5730 Memory Systems
- ECE 5770 Resilient Computer Systems
- ECE 5745 Complex Digital ASIC Design
- ECE 5775 High-Level Design Automation
Digital systems are implemented with three basic building blocks:

- **Logic** to process data
- **State** to store data
- **Interconnect** to move data
Processors, Memories, and Networks

Computer engineering basic building blocks
- **Processors** for computation
- **Memories** for storage
- **Networks** for communication
Computer Architecture Artifacts
Agenda

What is Computer Architecture?

Activity 1

Trends in Computer Architecture

Activity 2

Computer Architecture Design
Activity #1: Sorting with a Sequential Processor

- **Application**: Sort 32 numbers

- **Simulated Sequential Computing System**
 - Processor: You!
 - Memory: Worksheet, read input data, write output data
 - Network: Passing/collecting the worksheets

- **Activity Steps**
 1. Discuss strategy with neighbors
 2. When instructor starts timer, flip over worksheet
 3. Sort 32 numbers as fast as possible
 4. Lookup when completed and write time on worksheet
 5. Raise hand
 6. When everyone is finished, then analyze data
Agenda

What is Computer Architecture?

Activity 1

Trends in Computer Architecture

Activity 2

Computer Architecture Design
Application Requirements vs. Technology Constraints

Traditional Application Requirements
- As much processor compute as possible
- As much memory capacity as possible
- As much network bandwidth as possible

Traditional Technology Constraints
- Exponential scaling of resources
Exponential Scaling for Processor Computation

Data collected by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, C. Batten
What is Computer Architecture?

Activity 1
- Trends in Computer Architecture
- Activity 2
- Computer Architecture Design

Exponential Scaling for Memory Capacity

First presentation at ISSCC or Symp. VLSI Circuits

Memory Capacity per Chip

16G
1G
64M
4M
256K
16K
16K
Memory Capacity per Chip

What is Computer Architecture?

Activity 1
• Trends in Computer Architecture
• Activity 2

Computer Architecture Design

Exponential Scaling for Network Bandwidth

Data from Hennessy & Patterson, Morgan Kaufmann, 2nd & 5th eds., 1996 & 2011; D.E. Culler et al., Morgan Kaufmann, 1999.
Key trends in **application requirements** and **technology constraints** over the past decade have resulted in a radical rethinking of the **processors, memories, and networks** used in modern computing systems.

Five Key Trends in Computer Architecture

1. Growing diversity in application requirements motivate growing diversity in computing systems pushing towards the cloud and IoT
2. Energy & power constrain systems across the computing spectrum
3. Transition to multiple cores integrated onto a single chip
4. Transition to heterogeneous systems-on-chip
5. Technology scaling challenges motivate new emerging compute, storage, and communication device technologies
Trend 1: Bell’s Law

Roughly every decade a new, smaller, lower priced computer class forms based on a new programming platform resulting in entire new industries.
Trend 1: Growing Diversity in Apps & Systems

- Game Consoles
- Computing: From Handhelds to Servers
- Automobiles
- Digital Cameras
- Wearable Computing
- Sensor Networks
- Medical Devices
- Smart Home
- Wearable Activity Monitors
- Internet Routers
- GPS Devices and Satellites
- Humanoid Robots
- Unmanned Vehicles
- Data Centers
- Medical Devices
- Unmanned Vehicles
- GPS Devices and Satellites
- Humanoid Robots
Trend 2: Energy and Power Constraints

Power = \frac{\text{Energy}}{\text{Second}} = \frac{\text{Energy}}{\text{Op}} \times \frac{\text{Ops}}{\text{Second}}

- **Power**
 - Chip Packaging
 - Chip Cooling
 - System Noise
 - Case Temperature
 - Data-Center Air Conditioning

- **Energy**
 - Battery Life
 - Electricity Bill
 - Mobile Device Weight

![Graph showing Energy per Operation vs. Performance (Ops/Second) with Power Constraints for 100W Workstation and 1W Handheld devices.](image-url)
Trend 2: Energy and Performance of Single Processor

Based on analytical models of 90nm technology with joint optimization of microarchitectural and circuit parameters.

Trend 2: Power Constrains Single-Processor Scaling

- Transistors (Thousands)
- MIPS
- R2K
- Intel P4
- DEC Alpha 21264
- MIPS R2K
- Intel P4
- DEC Alpha 21264
- Typical Power (W)
- Frequency (MHz)
- SPECint Performance

- ~9%/year
- ~15%/year

Diagram showing trends in computer architecture from 1975 to 2015.
Trend 3: Transition to Multicore Processors

Intel Pentium 4
Single monolithic processor

Cray XT3 Supercomputer
1024 single-core processors

AMD Quad-Core Opteron
Four cores on the same die

IBM Blue Gene Q Supercomputer
Thousands of 18-core processors
Trend 3: Energy and Performance of Multicores

![Graph showing energy and performance comparison of different processor types.]

- **Simple Single Proc**: Basic performance with minimal energy consumption.
- **Superscalar w/ Deeper Pipelines**: Improved performance but increased energy consumption.
- **Out-of-Order Superscalar Superpipelined**: Highest performance with moderate energy consumption.
- **Multicore**: Improved performance through parallel processing, sometimes at the cost of increased energy consumption.
- **General-Purpose Manycores**: Advanced parallel processing with high energy efficiency.

Energy (Joules per Task) vs. Performance (Tasks per Second)
Activity 1: Trends in Computer Architecture

- Trend 3: The Multicore “Hail Mary Pass”

Transistors (Thousands)

MIPS
R2K
Intel P4

10

0

10

1

10

2

10

3

10

4

10

5

10

6

10

7

DEC Alpha 21264

MIPS R2K

Intel 48-Core Prototype

AMD 4-Core Opteron

Parallelism?

SPECint Performance

Frequency (MHz)

Typical Power (W)

Number of Cores

~9%/year

~15%/year

~10%/year
Trend 4: Heterogeneous Systems-on-Chip

Adapted from D. Brooks Keynote at NSF XPS Workshop, May 2015.
Trend 5: Emerging Device Technologies

- Vertical MOSFETs
- Graphene
- Carbon Nanotubes
- Nanorelays
- Quantum Computing
- Molecular Computing
- Memristers
- Phase-Change Mem
- Spintronics
- 3D Integration
- Nanophotonics

Key trends in application requirements and technology constraints over the past decade have resulted in a radical rethinking of the processors, memories, and networks used in modern computing systems.

Five Key Trends in Computer Architecture

1. Growing diversity in application requirements motivate growing diversity in computing systems pushing towards the cloud and IoT
2. Energy & power constrain systems across the computing spectrum
3. Transition to multiple cores integrated onto a single chip
4. Transition to heterogeneous systems-on-chip
5. Technology scaling challenges motivate new emerging compute, storage, and communication device technologies
Agenda

What is Computer Architecture?

Activity 1

Trends in Computer Architecture

Activity 2

Computer Architecture Design
Activity #2: Sorting with a Parallel Processor

□ Application: Sort 32 numbers

□ Simulated Parallel Computing System
 ▶ Processor: Group of 2–8 students
 ▶ Memory: Worksheet, scratch paper
 ▶ Network: Communicating between students

□ Activity Steps
 ▶ 1. Discuss strategy with group
 ▶ 2. When instructor starts timer, master processor flips over worksheet
 ▶ 3. Sort 32 numbers as fast as possible
 ▶ 4. Lookup when completed and write time on worksheet
 ▶ 5. Master processor only raises hand
 ▶ 6. When everyone is finished, then analyze data
Activity #2: Discussion

Diagram:

- Unsorted data flows from the top to the bottom of the diagram.
- The diagram shows multiple processes and networks, with data moving through them.
- The data flows through three merge phases, each involving the addition of numbers:
 - Merge Phase 1: 4 + 4 = 8
 - Merge Phase 2: 8 + 8 = 16
 - Merge Phase 3: 16 + 16 = 32

Nodes:
- ECE 4750
- Course Overview
- 29 / 36
Agenda

What is Computer Architecture?

Activity 1

Trends in Computer Architecture

Activity 2

Computer Architecture Design
What do computer architects actually do?

General Science
- Discover truths about nature
 - Ask question about nature
 - Construct hypothesis
 - Test with experiment
 - Analyze results and draw conclusions

Computer Engineering
- Explore design space for a new system
 - Design and model baseline system
 - Ask question about system
 - Test with experiment
 - Analyze results and draw conclusions
 - Build prototype or real system
 - Design and model alternative system
What is Computer Architecture?

Activity 1

Trends in Computer Architecture

Activity 2

Computer Architecture Design

Modeling in Computer Architecture

Computer Engineering

Explore design space for a new system

Design and model baseline system

Ask question about system

Test with experiment

Analyze results and draw conclusions

Build prototype or real system

Design and model alternative system

// rdy is OR of the AND of reqs and grants
assign in_rdy = | (reqs & grants);

reg [2:0] reqs;
always @(*) begin
if (in_val) begin

 // eject packet if it is for this tile
 if (dest == p_router_id)
 reqs = 3'b010;

 // otherwise, just pass it along ring
 else
 reqs = 3'b001;
end else begin

 // if !val, don't request any ports
 reqs = 3'b000;
end
end

Verilog • SystemVerilog • VHDL
C++ • SystemC
Bluespec • Chisel • Python
How do we design something so incredibly complex?

Computer Engineering

Explore design space for a new system

Design and model baseline system

Ask question about system

Test with experiment

Analyze results and draw conclusions

Build prototype or real system

Design and model alternative system

Fighter Airplane: ~100,000 parts

Intel Sandy Bridge E: 2.27 Billion transistors
Design Principles

- **Modularity** – Decompose into components with well-defined interfaces
- **Hierarchy** – Recursively apply modularity principle
- **Encapsulation** – Hide implementation details from interfaces
- **Regularity** – Leverage structure at various levels of abstraction
- **Extensibility** – Include mechanisms/hooks to simplify future changes

Design Patterns

- Processors, Memories, Networks
- Control/Datapath Split
- Single-Cycle, FSM, Pipelined Control
- Raw Port, Message, Method Interfaces

Design Methodologies

- Agile Hardware Development
- Test-driven Development
- Incremental Development
Quad-core processor with private L1 instruction caches and a shared, banked L1 data cache interconnected through various ring networks implemented at the register-transfer-level and capable running real parallel programs.

Lab assignments will use an agile hardware development methodology based on a Python hardware modeling framework, the Verilog hardware description language (optional), the GitHub repository hosting site, and the TravisCI continuous integration service.
Take-Away Points

- Computer architecture is the process of building computing systems to meet given application requirements within physical technology constraints.

- We are entering an exciting new era of computer architecture with growing diversity in applications and systems, a remarkable industrial shift towards mainstream parallel processing and SoCs, and significant technology scaling challenges.

- This era offers tremendous challenges and opportunities, which makes it a wonderful time to study and contribute to the field of computer architecture.