ECE 4750 Computer Architecture
Topic 6: Network Topology

Christopher Batten
School of Electrical and Computer Engineering
Cornell University

http://www.csl.cornell.edu/courses/ece4750
slide revision: 2014-10-15-12-21

Processors, Memories, Networks
Topology: Arrangement of Nodes and Channels

Many Potential Topologies
Topology is Constrained By Packaging

Routing: Determining Path Between Terminals

Mininal Routing vs. Non-Minimal Routing
Oblivious vs. Adaptive Routing
Deterministics vs. Randomized Routing
Flow Control: Managing Allocation of Resources

Router Microarchitecture
Evaluating A Network Implementation

Latency (seconds)

Ideal Throughput

Flow Control
Routing
Topology

Zero-Load Latency

Offered Bandwidth (bits/second)

Sun Niagara 2 Processor

- 8 multithreaded processors
- Single-stage crossbar connecting 8 cores to 4 L2 cache banks
- "200 GB/s" total bisection BW

ECE 4750 T06: Network Topology 9 / 12
IBM Cell Processor

- 1 general-purpose processor
- 8 processors specialized for data-parallelism
- 4 uni-directional rings
- Each ring is 128b wide at 1.6 GHz
- Network Bisection BW = 25.6 GB/s
- Total Bisection = 102.4 GB/s

MIT Raw Processor

- 16 simple RISC cores
- Two dynamically routed mesh networks (32b/channel)
- Two statically routed mesh networks for message passing (32b/channel)
- Bisection bandwidth per network is 8*32b at 400 MHz 12.8 = 12.8 GB/s
- Total bisection bandwidth is 51.2 GB/s
- Network consumes 20-30% of total chip power
BASIC CROSS BAR TOPOLOGY

- Single stage global crossbar difficult to scale in terms of cycle time, energy, and area
- Multi-stage topologies improve scalability but raise many other interesting challenges

BUTTERFLY TOPOLOGY

- k-ary n-fly
 - Router radix # stages
 - Unidirectional Channel

2-ARY 2-FLY

Each router is similar to a 2x2 crossbar
Torus Topologies

k-ary N-cube

Nodes in each Dimension

n-dimensional grid

Input + Output Terminal

Two unidirectional channels in opposite directions

Router

4-ary 2-cube

"Wrap around" channel

4-ary 2-cube

4-ary 2-cube

MESU

TORUS

3-ary 3-cube

MESU
Constructing k-ary n-cube from k k-ary $(n-1)$ cubes

2-ary 1-cube

2-ary 2-cube 2-ary 3-cube

Binary n-cube

Hypercube

Terminology

2-ary 3-cube

4-ary 2-cube

MESU
NODES + CHANNELS

- BIDIRECTIONAL CHANNELS IN MESH
- UNIDIRECTIONAL CHANNELS IN CUCKY

CHANNELS

\[\omega_c = \text{WIDTH} \] (# Wires)
\[f_c = \text{frequency} \]
\[t_c = \text{latency} \]
\[l_c = \text{length} \]
\[b_c = \omega_c \times f_c \] \((\text{CHANNEL BANDWIDTH})\)

- DIRECT (MESH) vs. INDIRECT (CUCKY)
 (NOT REALLY TOO IMPORTANT A DISTINCTION)

Bisection Cuts

- Both Cuts 4 and 5 on MESH are Bisection Cuts
- **4** is minimum bisection cut

\[B_c = \text{Bisection Channel Count} \]
\[\text{MESH} = 8 \]
\[B_L = 4 \]

\[B_c = B_c \cdot b_c \] \((\text{Bisection Bandwidth})\)
\[\text{MESH} = B_b c \]
\[b_L = 4 b_c \]

- Bisection BW is good way to estimate global wiring resources \((\text{ie. Technology constraint})\)
PATHS

- Hop = one element on path or a path
- Hop count = number of hops on a path
- Hop count on path from terminal A → B or mesh shown earlier is
 \[H_2 = 5, \quad H_c = 4 \]
 number of hops from terminal to first route
 may or may not be included
- Minimal path = smallest hop count between 2 terminals
- Diameter = \(H_{\text{max}} \) largest minimal path between all terminal pairs

Show on mesh + Bfly

\[H_{\text{min, min}} = 8, \quad H_{\text{max, min}} = 4 \]

- Average minimal hop count \(H_{\text{avg}} \) over all terminal pairs also is expected hop count for uniform demand

2D Mesh, \[\frac{2}{3} k + 2 = \frac{2}{3} 4 + 2 = \frac{8}{3} + 2 = 4.3 \]

Bfly 4

PATH DIVERSITY

- Mesh illustrate multiple ways to get from upper left to lower right terminal
- Bfly was no path diversity
- Adding an extra stage can fix Bfly path diversity without impacting \(D_{\text{DS}} \) (version 2a)
| 4/350 | 600 |

Adding Extra
First Stages
↑ Pam Diversity
Traffic Patterns

Traffic matrix

Admission traffic patterns

Uniform

Random

Partition

VS. Tape

Neighbor

General

Transpose

Probability of Src 3 sending a packet to Dest 0

1/3 to every entry including sending to yourself!
Logical to Physical Mapping

Assume partition traffic pattern. Now are logical src/dst ids in traffic pattern mapped to physical terminal ids?

Mapping can turn any logical permutation pattern into any other or none. Given permutation pattern usually assumes a specific mapping.
Performance: Throughput

- Bottleneck channel will limit aggregate throughput.

Channel load (N_c) is amount of traffic that crosses channel c if each input injects one unit of traffic according to given traffic pattern.

Example Traffic Pattern

$src \, i \rightarrow dest \, i+1$

Channel load ranges from 0-2.

Max channel load (N_{max}) is 2. These are the bottleneck channels that will limit throughput.

Alternative way to think about N. Channel load is ratio of data demand from channel to data injected by one terminal.
IDEAL THROUGHPUT

\[\Theta_{\text{term}} = \frac{6e}{\eta_{\text{max}}} \]

\[\Theta_{\text{tot}} = N \cdot \frac{6}{\eta_{\text{max}}} = 8 \cdot \frac{6}{2} = 48 \]

Often interested in ideal throughput under UNLOAD TRAFFIC.

Ring Example:

Two unidirectional channels

Because symmetric, focus on this channel.

Non-minimal path 1 \rightarrow 0

INCLUDER? Depends on floating algorithm.

Sometimes ideal throughput is for ideal routing algo

Sometimes for ideal routing algo

USE MINIMAL ROUTES

For now:

\[N = 3 \cdot \frac{4}{7} = 0.75 \]

But this does not assume ideal routing. Ideal routing would load balance paths of length 2, send 0.5 traffic counterclockwise and 0.5 traffic clockwise.
- Ideal routing will result in the lowest γ_{max} for a given traffic pattern.
- For any example and uniform random traffic,

$$\gamma_{\text{max}} = 0.5, \quad \Theta_{\text{term}} = \frac{6}{0.5} = 12, \quad \Theta_{\text{tot}} = 4 \cdot \frac{6}{0.5} = 86$$

Small Diffy Examples

1. $\gamma_{\text{max}} = 1, \quad \Theta_{\text{term}} = 6$

2. $\gamma_{\text{max}} = 1, \quad \Theta_{\text{term}} = 6$

3. $\gamma_{\text{max}} = 2, \quad \Theta_{\text{term}} = 6 \frac{1}{2}$

4. $\gamma_{\text{max}} = 4, \quad \Theta_{\text{term}} = 6 \frac{1}{4}$

Each tick = $\frac{1}{4}$ unit.
More generally for uniform random traffic

- On average, with uniform random traffic, half the traffic crosses the direction.
- Out of total units of traffic, N/2 cross direction.
- Ideal routing will evenly balance load across directions (this was an issue in Ring example).

\[\text{N}_{\text{max}} = \frac{N/2}{Bc} = \frac{N}{2Bc} \]

\[\text{Q}_{\text{term}} = \frac{6}{N/2Bc} = \frac{2Bc}{N} = \frac{2Bc}{2Bc} \]

\[\text{Q}_{\text{tot}} = N \frac{2Bc}{N} = 2Bc \]

Performance: Latency

\[36 \text{ b/cycle} = \text{packet length} \]

\[8 \text{ b/cycle} = b_a \]
$$T = T_{\text{head}} + \frac{L}{b}$$

Serialization Latency

5 Head Pmt Latency
Includes tc, t_r, hop count, + contention

$$T = H_r t_r + H_c t_c + \frac{L}{b}$$

Latency due to router hps
Latency due to channel hops
Serialization latency

Zero Load Latency (no contention)
Four ways to improve latency

\[T_\phi = H_r t_r + H_c t_c + \frac{L}{6} \text{ wide channels or shorter msg}s \]

Shorter routes Faster routes Faster channels

Avg latency vs offered BW

\[T_\phi \] offered BW

Flow control

Ideal routing

Topology preparation
Activity

MESH

SMESH

Assume:

- \(L = 1286 \)
- \(b_c \) for MESH is \(326 \) / cycle
- \(b_c \) for SMESH is \(166 \) / cycle
- \(t_c = 3 \)
- \(t_c = 1 \)

Which topology can achieve higher ideal throughput under uniform random traffic?

1. \(\Theta_{term,\text{MESH}} > \Theta_{term,\text{SMESH}} \)
2. \(\Theta_{term,\text{MESH}} < \Theta_{term,\text{SMESH}} \)
3. \(\Theta_{term,\text{MESH}} = \Theta_{term,\text{SMESH}} \)

Calculate zero load latency under uniform random traffic
MESH

\[T_C = 6 \quad T_B = 6 \cdot 3.2 = 19.2 \text{ b/cycle} \]

\[\Theta_{cm} = \frac{2 \cdot T_B}{N} = \frac{2 \cdot 19.2}{6} = 6.4 \text{ b/cycle} \]

but \(T_C \) is just 32 b/cycle! Limiting by worst terminal injection backwash!

Achievable \(\Theta_{cm, \text{min}} = 32 \text{ b/cycle} \)

SMESH

\[T_C = 10 \quad T_B = 10 \cdot 16 = 160 \text{ b/cycle} \]

\[\Theta_{cm} = \frac{2 \cdot T_B}{N} = \frac{2 \cdot 160}{6} = 53.3 \text{ b/cycle} \]

but \(T_C \) is just 16 b/cycle! Again limiting by worst terminal injection backwash!

Achievable \(\Theta_{cm, \text{min}} = 16 \text{ b/cycle} \)

MESH

Min Bifurcation
CUT

SMESH

Min Bifurcation
CUT
MESY

First calculate T_{ϕ} under uniform random traffic

<table>
<thead>
<tr>
<th>SRC</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

$1 \times 6 = 6$

$2 \times 14 = 28$

$3 \times 12 = 36$

$4 \times 4 = 16$

$86/36 = 2.39$

$T_{\phi} = H_{ctn} + H_{cte} + \frac{L}{b}$

$= 2.39 \times 3 + 1.39 \times 1 + 128/36$

$= 7.17 + 1.39 + 4$

$T_{\phi} = 12.56$ cycles

MSER

First calculate T_{ϕ} under uniform random traffic

<table>
<thead>
<tr>
<th>SRC</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

$1 \times 6 = 6$

$2 \times 22 = 44$

$3 \times 8 = 24$

$74/36 = 2.06$

$T_{\phi} = H_{ctn} + H_{cte} + \frac{L}{b}$

$= 2.06 \times 3 + 1.06 \times 1 + 128/16$

$= 6.18 + 1.06 + 8$

$T_{\phi} = 15.24$ cycles
SMESH

MESHE

Traffic!

Achievable term
(6th order)
Calculating \mathcal{H}_{MW}

2-ary 2-cube
Circles = terminals
Squares = routers
"Terminal channels"

Calculating $\mathcal{H}_{\text{MW},i}$

<table>
<thead>
<tr>
<th>src</th>
<th>0123</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1232</td>
</tr>
<tr>
<td>1</td>
<td>2123</td>
</tr>
<tr>
<td>2</td>
<td>3212</td>
</tr>
<tr>
<td>J</td>
<td>2321</td>
</tr>
</tbody>
</table>

$1 \times 4 = 4$ including $i \rightarrow i$
$2 \times 8 = 16$
$3 \times 4 = 12$ excluding $i \rightarrow i$

$32/16 = 2$
$28/12 = 2.3$

Calculating $\mathcal{H}_{\text{MW},i}$ with terminal channels

<table>
<thead>
<tr>
<th>src</th>
<th>0123</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2343</td>
</tr>
<tr>
<td>1</td>
<td>3243</td>
</tr>
<tr>
<td>2</td>
<td>4323</td>
</tr>
<tr>
<td>J</td>
<td>3432</td>
</tr>
</tbody>
</table>

$2 \times 8 = 8$ including $i \rightarrow i$
$3 \times 8 = 24$
$4 \times 4 = 16$ excluding $i \rightarrow i$

$40/16 = 2.5$
$40/12 = 3.3$

Calculating $\mathcal{H}_{\text{MW},i}$ without terminal channels

<table>
<thead>
<tr>
<th>src</th>
<th>0123</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0121</td>
</tr>
<tr>
<td>1</td>
<td>1012</td>
</tr>
<tr>
<td>2</td>
<td>2101</td>
</tr>
<tr>
<td>J</td>
<td>1210</td>
</tr>
</tbody>
</table>

$1 \times 8 = 8$ including $i \rightarrow i$
$2 \times 8 = 16$
$3 \times 8 = 24$
$4 \times 8 = 32$

$16/16 = 1$
$16/12 = 1.3$

Equation from book is $\frac{nk}{3}$ for even n

$\frac{nk}{3} = \frac{2.2}{3} = 1.33$

This is for $\mathcal{H}_{\text{MW},i}$ without terminal channels + ignoring i sensors' stuff