
ECE 4750 Computer Architecture, Fall 2024

Topic 5: Integrating Processors and Memories

School of Electrical and Computer Engineering
Cornell University

revision: 2024-11-03-23-03

1 Processor and L1 Cache Interface 2

2 Analyzing Processor + Cache Performance 7

3 Case Study: MIPS R4000 9

P

I$

D$

Network

Network

Network

P

I$

P

I$

P

I$

D$ D$ D$

M
a

in
 M

e
m

o
ry

• Processors for computation

• Memories for storage

• Networks for communication

Copyright © 2024 Anne Bracy. All rights reserved. This handout was prepared by Prof.
Anne Bracy at Cornell University for ECE 4750 Computer Architecture (derived from
previous handouts prepared and copyrighted by Prof. Christopher Batten). Download
and use of this handout is permitted for individual educational non-commercial purposes
only. Redistribution either in part or in whole via both commercial or non-commercial
means requires written permission.

1. Processor and L1 Cache Interface

1. Processor and L1 Cache Interface

Approaches to integrate L1 caches into a processor pipeline vary based
on how the L1 memory system is encapsulated and implemented.

Tightly Coupled Interface

Processor contains L1 memory
system and has fine grain control
over the L1 microarchitecture
through control/status signals.

Loosely Coupled Interface

Processor communicates with L1
memory system over (potentially
latency insensitive) communication
channels.

Zero-Cycle Hit Latency with Tightly Coupled Interface

pc_plus4

result_sel_X

ir[31:0]

jr

eq_X

wb_sel_M

pc_F +4

regfile
(read)ir[24:20]

ir[19:15]

regfile
(write)

rf_
wen_W

rf_
waddr_W

regfile
(write)

imm_type

immgen

a
lu

m
u

l

op1_sel_D

+

alu_fn_X
op2_sel_D

pc_sel_F

jbtarg

ir_FD

result
_XM

F Stage D Stage X Stage M Stage W Stage

result
_XM

result
_MW

pc_F pc_FD

op1_DX

sd_DX

btarg_DX

op2_DX

always pc_plus4

btarg
jtarg

Inst Cache

addr rdata

Data Cache

addr rdata

result
_XM
result
_XM

wdata

reg_
en_D

reg_
en_F

op1_
byp_
sel_D

bypass_from_X
bypass_from_M
bypass_from_W

op2_
byp_
sel_D

pc_sel_F

Topic 5: Integrating Processors and Memories 2

1. Processor and L1 Cache Interface

FSM Cache with Two-Cycle Hit Latency

pc_plus4

result_sel_X

ir[31:0]

jr

eq_X

wb_sel_M

pc_F +4

regfile
(read)ir[24:20]

ir[19:15]

regfile
(write)

rf_
wen_W

rf_
waddr_W

regfile
(write)

imm_type

immgen

a
lu

m
u

l

op1_sel_D

+

alu_fn_X
op2_sel_D

pc_sel_F

jbtarg

ir_FD

result
_XM

F Stage D Stage X Stage M Stage W Stage

result
_XM

result
_MW

pc_F pc_FD

op1_DX

sd_DX

btarg_DX

op2_DX

always pc_plus4

btarg
jtarg

Inst Cache

addr rdata

MT MRD

Data Cache

addr rdata

MT MRD

w
d

at
a

reg_
en_D

reg_
en_F

op1_
byp_
sel_D

bypass_from_X
bypass_from_M
bypass_from_W

op2_
byp_
sel_D

pc_sel_F

addi x1, x2, 1

↪→ mem transactions

sw x3, 0(x4) [hit]

↪→ mem transactions

lw x5, 0(x6) [miss]

↪→ mem transactions

lw x7, 0(x8) [hit]

↪→ mem transactions

We would see similar performance even if we moved to a pipelined cache with
a two-cycle hit latency unless we also increased processor pipeline depth!

Topic 5: Integrating Processors and Memories 3

1. Processor and L1 Cache Interface

Pipelined Cache with Two-Cycle Hit Latency

pc_plus4

result_sel_X

ir[31:0]

jr

eq_X

wb_sel_M1

+4

regfile
(read)ir[24:20]

ir[19:15]

regfile
(write)

rf_
wen_W

rf_
waddr_W

regfile
(write)

imm_type

immgen

a
lu

m
u

l

op1_sel_D

+

alu_fn_X
op2_sel_D

pc_sel_F

jbtarg

ir_FD

F0 D Stage X Stage M0 W Stage

result
_XM0

result
_M1W

pc_F0 pc_FD

op1_DX

sd_DX

btarg_DX

op2_DX

always pc_plus4

btarg
jtarg

Inst Cache

addr rdata

M0 M1

pc_F0F1

F1

Data Cache

addr rdata

M0 M1

result
_M0M1

M1

M0

More
Bypass
Paths?

w
d

at
a

reg_
en_D

reg_
en_F0 reg_

en_F1

op1_
byp_
sel_D

bypass_from_X
bypass_from_M1
bypass_from_W

op2_
byp_
sel_D

pc_sel_F0

addi x1, x2, 1

↪→ mem transactions

sw x3, 0(x4) [hit]

↪→ mem transactions

lw x5, 0(x6) [miss]

↪→ mem transactions

lw x7, 0(x8) [hit]

↪→ mem transactions

Topic 5: Integrating Processors and Memories 4

1. Processor and L1 Cache Interface

Pipelined Cache with Parallel Read, Pipelined Write

pc_plus4

result_sel_X

ir[31:0]

jr

eq_X

wb_sel_M

pc_F +4

regfile
(read)ir[24:20]

ir[19:15]

regfile
(write)

rf_
wen_W

rf_
waddr_W

regfile
(write)

imm_type

immgen

a
lu

m
u

l

op1_sel_D

+

alu_fn_X
op2_sel_D

pc_sel_F

jbtarg

ir_FD

result
_XM

F Stage D Stage X Stage M Stage W Stage

result
_XM

result
_MW

pc_F pc_FD

op1_DX

sd_DX

btarg_DX

op2_DX

always pc_plus4

btarg
jtarg

Inst Cache

addr rdata

M0

Data Cache

addr rdata

M0 M1M0

w
d

at
a

reg_
en_D

reg_
en_F

op1_
byp_
sel_D

bypass_from_X
bypass_from_M
bypass_from_W

op2_
byp_
sel_D

pc_sel_F

addi x1, x2, 1

↪→ mem transactions

sw x3, 0(x4) [hit]

↪→ mem transactions

lw x5, 0(x6) [miss]

↪→ mem transactions

lw x7, 0(x8) [hit]

↪→ mem transactions

Topic 5: Integrating Processors and Memories 5

1. Processor and L1 Cache Interface

Integrating Instruction and Data TLBs

pc_plus4

result_sel_X

ir[31:0]

jr

eq_X

wb_sel_M

pc_F +4

regfile
(read)ir[24:20]

ir[19:15]

regfile
(write)

rf_
wen_W

rf_
waddr_W

regfile
(write)

imm_type

immgen

a
lu

m
u

l

op1_sel_D
+

alu_fn_X
op2_sel_D

pc_sel_F

jbtarg

ir_FD

result
_XM

F Stage D Stage X Stage M Stage W Stage

result
_XM

result
_MW

pc_F pc_FD

op1_DX

sd_DX

btarg_DX

op2_DX

always pc_plus4

btarg
jtarg

Inst Cache

addr rdata

M0

Data Cache

addr rdata

M0 M1
M0

w
d

at
a

ITLB DTLB

reg_
en_D

reg_
en_F

op1_
byp_
sel_D

bypass_from_X
bypass_from_M
bypass_from_W

op2_
byp_
sel_D

pc_sel_F

TLB miss?
Protection violation?
Page fault?

TLB miss?
Protection violation?
Page fault?

• TLB miss needs a hardware or software mechanism to refill TLB

• Software handlers need restartable exceptions on page fault

• Need mechanism to cope with the additional latency of a TLB

– Increase the cycle time
– Pipeline the TLB and cache access
– Use virtually addressed caches
– Access TLB and cache in parallel

Topic 5: Integrating Processors and Memories 6

2. Analyzing Processor + Cache Performance

2. Analyzing Processor + Cache Performance

How long in cycles will it take to execute the vvadd example assuming
n is 64? Assume cache is initially empty, parallel-read/pipelined-write,
four-way set-associative, write-back/write-allocate, and miss penalty is
two cycles.

loop:
lw x5, 0(x13)
lw x6, 0(x14)
add x7, x5, x6
sw x7, 0(x12)
addi x13, x12, 4
addi x14, x14, 4
addi x12, x12, 4
addi x15, x15, -1
bne x15, x0, loop
jr x1

Topic 5: Integrating Processors and Memories 7

2. Analyzing Processor + Cache Performance
lw lw + sw +i +i +i +i bn

e
op

A
op

B

lw lw + sw +i +i +i +i bn
e

op
A

op
B

lw

Topic 5: Integrating Processors and Memories 8

3. Case Study: MIPS R4000

3. Case Study: MIPS R4000

C-62 ! Appendix C Pipelining: Basic and Intermediate Concepts

Figure C.41 shows the eight-stage pipeline structure using an abstracted
version of the data path. Figure C.42 shows the overlap of successive instruc-
tions in the pipeline. Notice that, although the instruction and data memory

Figure C.40 The stalls occurring for the MIPS FP pipeline for five of the SPEC89 FP
benchmarks. The total number of stalls per instruction ranges from 0.65 for su2cor to
1.21 for doduc, with an average of 0.87. FP result stalls dominate in all cases, with an
average of 0.71 stalls per instruction, or 82% of the stalled cycles. Compares generate
an average of 0.1 stalls per instruction and are the second largest source. The divide
structural hazard is only significant for doduc.

Figure C.41 The eight-stage pipeline structure of the R4000 uses pipelined instruction and data caches. The
pipe stages are labeled and their detailed function is described in the text. The vertical dashed lines represent the
stage boundaries as well as the location of pipeline latches. The instruction is actually available at the end of IS, but
the tag check is done in RF, while the registers are fetched. Thus, we show the instruction memory as operating
through RF. The TC stage is needed for data memory access, since we cannot write the data into the register until we
know whether the cache access was a hit or not.

Number of stalls
0.00 1.000.200.10 0.40 0.80 0.900.60 0.700.30 0.50

F
P

 S
P

E
C

 b
en

ch
m

ar
ks

doduc

ear

hydro2d

mdljdp

su2cor

0.01
0.01
0.02

0.61

0.00
0.03

0.10
0.88

0.00
0.04

0.22
0.54

0.00
0.07
0.09

0.52

0.08
0.08
0.07

0.98

FP result stalls

FP compare stalls

Branch/load stalls

FP structural

IF IS

Instruction memory Reg A
LU Data memory Reg

RF EX DF DS TC WB

• 8-stage pipeline with extra stages for instruction/data mem access

– IF: First-half of inst fetch
– IS: Second half of inst fetch
– RF: Instruction decode, register read, stall logic
– EX: Execution (including effective address calculation)
– DF: First-half of data fetch
– DS: Second half of data fetch
– TC: Tag check
– WB: Write-back for loads and reg-reg operations

• Longer pipeline results in

– Decreased cycle time
– Increased load-use delay latency and branch resolution latency
– More bypass paths

Topic 5: Integrating Processors and Memories 9

3. Case Study: MIPS R4000

MIPS R4000 Microprocessor User's Manual 47

The CPU Pipeline

WB - Write Back

For register-to-register instructions, the instruction result is written back
to the register file during the WB stage. Branch instructions perform no
operation during this stage.

Figure 3-2 shows the activities occurring during each ALU pipeline stage,
for load, store, and branch instructions.

Figure 3-2 CPU Pipeline Activities

IC1 Instruction cache access stage 1
IC2 Instruction cache access stage 2
ITLB1 Instruction address translation stage 1
ITLB2 Instruction address translation stage 2
ITC Instruction tag check
IDEC Instruction decode
RF Register operand fetch
ALU Operation
DVA Data virtual address calculation
DC1 Data cache access stage 1
DC2 Data cache access stage 2
LSA Data load or store align
JTLB1 Data/Instruction address translation stage 1
JTLB2 Data/Instruction address translation stage 2
DTC Data tag check
IVA Instruction virtual address calculation
WB Write back to register file

Clock

Phase

Stage

IFetch

ALU
Load/Store

Branch

1 2

IF IS RF EX DF DS TC WB

IC1 IC2
ITLB1 ITLB2 ITC

IDEC
RF

DVA DC1 DC2
LSA

JTLB1 JTLB2 DTC WB
IVA

1 2 1 2 1 2 1 2 1 2 1 2 1 2

and
Decode

WBALU

Topic 5: Integrating Processors and Memories 10

3. Case Study: MIPS R4000

Load-Use Delay Latency
C.6 Putting It All Together: The MIPS R4000 Pipeline ! C-63

occupy multiple cycles, they are fully pipelined, so that a new instruction can
start on every clock. In fact, the pipeline uses the data before the cache hit
detection is complete; Chapter 2 discusses how this can be done in more detail.

The function of each stage is as follows:

! IF—First half of instruction fetch; PC selection actually happens here,
together with initiation of instruction cache access.

! IS—Second half of instruction fetch, complete instruction cache access.

! RF—Instruction decode and register fetch, hazard checking, and instruction
cache hit detection.

! EX—Execution, which includes effective address calculation, ALU opera-
tion, and branch-target computation and condition evaluation.

! DF—Data fetch, first half of data cache access.

! DS—Second half of data fetch, completion of data cache access.

! TC—Tag check, to determine whether the data cache access hit.

! WB—Write-back for loads and register-register operations.

In addition to substantially increasing the amount of forwarding required, this
longer-latency pipeline increases both the load and branch delays. Figure C.42
shows that load delays are 2 cycles, since the data value is available at the end of

Figure C.42 The structure of the R4000 integer pipeline leads to a 2-cycle load delay. A 2-cycle delay is possible
because the data value is available at the end of DS and can be bypassed. If the tag check in TC indicates a miss, the
pipeline is backed up a cycle, when the correct data are available.

CC 1

Time (in clock cycles)

CC 2

Instruction memory Reg A
LU Data memory Reg

Instruction memory Reg A
LU Data memory Reg

Instruction memory Reg A
LU Data memory Reg

Instruction memory

LD R1

Instruction 1

Instruction 2

ADDD R2, R1 Reg A
LU Data memory Reg

CC 3 CC 4 CC 5 CC 6 CC 7 CC 8 CC 9 CC 10 CC 11

Chapter 3

54 MIPS R4000 Microprocessor User's Manual

Backing Up the Pipeline
An example of pipeline back-up occurs in a data cache miss, in which the
late detection of the miss causes a subsequent instruction to compute an
incorrect result.

When this occurs, not only must the cache miss be serviced but the EX
stage of the dependent instruction must be re-executed before the pipeline
can be restarted. Figure 3-7 illustrates this procedure; a minus (–) after
the pipeline stage descriptor (for instance, EX–) indicates the operation
produced an incorrect result, while a plus (+) indicates the successful
re-execution of that operation.

Figure 3-7 Pipeline Overrun

Run Run Run Run Run Run Run Stl Stl Stl Stl Stl Run Run Run Run Run

Rst2 Rst1

IF IS RF EX DF DS TC DF DS TC WB

IF IS RF EX DF DS DF DS TC WB

IF IS RF EX DF DF DS TC WB

IF IS RF EX- RF EX+ DF DS TC WB

IF IS RF EX DF DS TC WB

Cycle

Restart

Load

ALU

• Load-use delay latency increased by one cycle

• Data is forwarded from end of DS stage to end of RF stage

• Tag check does not happen until TC!

• On miss, instruction behind load may have bypassed incorrect data

• EX stage of dependent instruction needs to be re-executed

Topic 5: Integrating Processors and Memories 11

3. Case Study: MIPS R4000

Branch Resolution Latency

C-64 ! Appendix C Pipelining: Basic and Intermediate Concepts

DS. Figure C.43 shows the shorthand pipeline schedule when a use immediately
follows a load. It shows that forwarding is required for the result of a load
instruction to a destination that is 3 or 4 cycles later.

Figure C.44 shows that the basic branch delay is 3 cycles, since the branch
condition is computed during EX. The MIPS architecture has a single-cycle
delayed branch. The R4000 uses a predicted-not-taken strategy for the remain-
ing 2 cycles of the branch delay. As Figure C.45 shows, untaken branches are
simply 1-cycle delayed branches, while taken branches have a 1-cycle delay
slot followed by 2 idle cycles. The instruction set provides a branch-likely
instruction, which we described earlier and which helps in filling the branch

 Clock number

Instruction number 1 2 3 4 5 6 7 8

LD R1,... IF IS RF EX DF DS TC WB

DADD R2,R1,... IF IS RF Stall Stall EX DF DS

DSUB R3,R1,... IF IS Stall Stall RF EX DF

OR R4,R1,... IF Stall Stall IS RF EX

9

Figure C.43 A load instruction followed by an immediate use results in a 2-cycle stall. Normal forwarding paths
can be used after 2 cycles, so the DADD and DSUB get the value by forwarding after the stall. The OR instruction gets
the value from the register file. Since the two instructions after the load could be independent and hence not stall,
the bypass can be to instructions that are 3 or 4 cycles after the load.

Figure C.44 The basic branch delay is 3 cycles, since the condition evaluation is performed during EX.

CC 1

Time (in clock cycles)

CC 2

Instruction memory Reg A
LU Data memory Reg

Instruction memory Reg A
LU Data memory Reg

Instruction memory Reg A
LU Data memory Reg

Instruction memory

BEQZ

Instruction 1

Instruction 2

Instruction 3

Target

Reg A
LU Data memory Reg

Instruction memory Reg A
LU Data memory

CC 3 CC 4 CC 5 CC 6 CC 7 CC 8 CC 9 CC 10 CC 11

• Branches are resolved in EX stage

• Instruction 1 is in the branch delay slot

• Use predicted not-taken for instruction 2 and 3

Topic 5: Integrating Processors and Memories 12

 |<--------------------------------->|<--------------------->|
 |m m u m m u r u m m u u u u u u c c|u u r u u u u u u u c c|
cycle 1 2 3 4|5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2|3 4 5 6 7 8 9 0 1 2 3 4|
----------------------------+-----------------------------------+-----------------------+
lw x5, 0(x13) F D X M M M W | |
lw x6, 0(x14) F D X X X M M M W | |
add x7, x5, x6 F D D D D D D X M W | |
sw x7, 0(x12) F F F F F F D X M M M W | |
addi x13, x12, 4 F D X X X M W | |
addi x14, x14, 4 F D D D X M W | |
addi x12, x12, 4 F F F D X M W | |
addi x15, x15, -1 F D X M W | |
bne x15, x0, loop F D X M W | |
opA F D - - - | |
opB F - - - -| |
lw x5, 0(x13) F D X M W |
lw x6, 0(x14) F D X M W |
add x7, x5, x6 F D D X M W |
sw x7, 0(x12) F F D X M W |
addi x13, x12, 4 F D X M W |
addi x14, x14, 4 F D X M W |
addi x12, x12, 4 F D X M W |
addi x15, x15, -1 F D X M W |
bne x15, x0, loop F D X M W |
opA F D - - - |
opB F - - - -|
lw x5, 0(x13) F D X M W

 u = cycle of useful work
 m = cycle lost due to memory stall
 r = cycle lost due to RAW stall
 c = cycle lost due to control squashes

* First Iteration CPI
 + num of insts = 9
 + num of cycles = 18
 + CPI = 2.00

* First Iteration CPI Breakdown
 + u = 9 cycles, 9/9 = 1.00 CPI
 + m = 6 cycles, 6/9 = 0.67 CPI
 + r = 1 cycle, 1/9 = 0.11 CPI
 + c = 2 cycles, 2/9 = 0.22 CPI
 + total = 2.00 CPI

* Second Iteration CPI
 + num of insts = 9
 + num of cycles = 12
 + CPI = 1.33

* Second Iteration CPI Breakdown
 + u = 9 cycles, 9/9 = 1.00 CPI
 + m = 0 cycles, 6/9 = 0.00 CPI
 + r = 1 cycle, 1/9 = 0.11 CPI
 + c = 2 cycles, 2/9 = 0.22 CPI
 + total = 1.33 CPI

* Overall CPI
 + num of iterations like first iteration = 16
 + num of iterations like second iteration = 64-16 = 48
 + total num insts = 9*64 = 576
 + total num cycles = 16*18 + 48*12 = 864
 + total CPI = 1.50

* Overall CPI Breakdown
 + u = 16*9 + 48*9 = 576 cycles, 576/576 = 1.00 CPI
 + m = 16*6 + 48*0 = 96 cycles, 96/576 = 0.17 CPI
 + r = 16*1 + 48*1 = 64 cycles, 64/576 = 0.11 CPI
 + c = 16*2 + 48*2 = 128 cycles, 128/576 = 0.22 CPI
 + total = 1.50 CPI

