1 Processor and L1 Cache Interface 2
2 Analyzing Processor + Cache Performance 5
3 Case Study: MIPS R4000 7
1. Processor and L1 Cache Interface

Approaches to integrate L1 caches into a processor pipeline vary based on how the L1 memory system timing is encapsulated.

Zero-Cycle Hit Latency with Tightly Coupled Interface

- Processors for computation
- Memories for storage
- Networks for communication
1. Processor and L1 Cache Interface

Two-Cycle Hit Latency with Val/Rdy Interface

Parallel Read, Pipelined Write Hit Path
Integrating Instruction and Data TLBs

- TLB miss needs a hardware or software mechanism to refill TLB
- Software handlers need restartable exceptions on page fault
- Need mechanism to cope with the additional latency of a TLB
 - Increase the cycle time
 - Pipeline the TLB and cache access
 - Use virtually addressed caches
 - Access TLB and cache in parallel
2. **Analyzing Processor + Cache Performance**

How long in cycles will it take to execute the vvadd example assuming \(n \) is 64? Assume cache is initially empty, parallel-read/pipelined-write, four-way set-associative, write-back/write-allocate, and miss penalty is two cycles.

```
loop:
lw    r12, 0(r4)
lw    r13, 0(r5)
addu   r14, r12, r13
sw     r14, 0(r6)
addiu  r4,  r4, 4
addiu  r5,  r5, 4
addiu  r6,  r6, 4
addiu  r7,  r7, -1
bne    r7,  r0, loop
jr     r31
```
2. Analyzing Processor + Cache Performance

lw lw + lw lw + i i i bne opA opB lw lw + lw lw + i i i bne opA opB lw lw
3. Case Study: MIPS R4000

- 8-stage pipeline with extra stages for instruction/data mem access
 - IF: First-half of inst fetch: PC selection and start icache access
 - IS: Second half of inst fetch, complete icache access
 - RF: Instruction decode, register read, stall logic, icache hit detection
 - EX: Execution (including effective address calculation)
 - DF: First-half of data fetch, start dcache access
 - DS: Second half of data fetch, complete dcache access
 - TC: Tag check, dcache hit detection
 - WB: Write-back for loads and reg-reg operations

- Longer pipeline results in
 - Decreased cycle time
 - Increased load-use delay latency and branch resolution latency
 - More bypass paths
Load-Use Delay Latency

• Load-use delay latency increased by one cycle
• Data is forwarded from end of DS stage to end of RF stage
• Tag check does not happen until TC!
• On miss, instruction behind load may have bypassed incorrect data
• EX stage of dependent instruction needs to be re-executed
Branch Resolution Latency

- Branches are resolved in EX stage
- Instruction 1 is in the branch delay slot
- Use predicted not-taken for instruction 2 and 3