ECE 4750 Computer Architecture, Fall 2024
Topic 5: Integrating Processors and Memories

School of Electrical and Computer Engineering
Cornell University

revision: 2024-11-03-23-03

1 Processor and L1 Cache Interface 2
2 Analyzing Processor + Cache Performance 7
3 Case Study: MIPS R4000 9

Network * Processors for computation

* Memories for storage

e Networks for communication

OfH)

Main Memory

FEHER
A=

Network j
Network]:

[HeH FCHEH |
akls
2

Copyright © 2024 Anne Bracy. All rights reserved. This handout was prepared by Prof.
Anne Bracy at Cornell University for ECE 4750 Computer Architecture (derived from
previous handouts prepared and copyrighted by Prof. Christopher Batten). Download
and use of this handout is permitted for individual educational non-commercial purposes
only. Redistribution either in part or in whole via both commercial or non-commercial
means requires written permission.

1. Processor and L1 Cache Interface

1. Processor and L1 Cache Interface

Approaches to integrate L1 caches into a processor pipeline vary based
on how the L1 memory system is encapsulated and implemented.

Tightly Coupled Interface

Processor contains L1 memory
system and has fine grain control
over the L1 microarchitecture
through control/status signals.

Loosely Coupled Interface

Processor communicates with L1
memory system over (potentially
latency insensitive) communication

channels.

Zero-Cycle Hit Latency with Tightly Coupled Interface

F Stage D Stage

irf31:0] T

imm_type

ir[19:15]

N—>

¢ [addr
Inst Cache ||

rdata | |

regfile [
i2620 | (read) | |

btarg_DX

M Stage LW

Stage

regfile
(w%ite)

bypass_from_X

bypass_from M

bypass_from_W

| |wdata addr rdata :
. Data Cache |!

Topic 5: Integrating Processors and Memories

1. Processor and L1 Cache Interface

FSM Cache with Two-Cycle Hit Latency

: F Stage : D Stage

: M Stage LW Stage
btarg :
jtarg N

ir "
poplust |

310 [——)

imm_type

193]

regfile
si2420 | (read)

op2_
byp.
sél.D

|;| alu_fn_X
[A

bypass_from X sd_DX
bypass_from_M
bypass_from_W

addr rdata || : addr rdata :

oo - Moo
' ' z '
Inst Cache | : Data Cache :

addi x1, x2, 1

— mem transactions

sw x3, 0(x4) [hit]

— mem transactions

1w x5, 0(x6) [miss]

— mem transactions

1w x7, 0(x8) [hit]

— mem transactions

We would see similar performance even if we moved to a pipelined cache with
a two-cycle hit latency unless we also increased processor pipeline depth!

Topic 5: Integrating Processors and Memories 3

1. Processor and L1 Cache Interface

Pipelined Cache with Two-Cycle Hit Latency

D Stage

X Stage ‘

310 [

e

imm_type

MO | Ml | WStage
: : : v
result_sel X+ ! ! waddr W
: wh_sel_ M1 | 1f
= wen_W

ir[19:15]
1 regfile regfile
if2420) | (read) (write)
| Bypass 1 !
o2 o | Pathe? :
e alu_fn_X ! ! !
sel D ' ' '
bypass_from_X sd_DX !
ypass_from_M1 | . . |
bypass_from_W_ T ; ; H
Inst Cache ‘ ‘ Data Cache ‘
addi x1, x2, 1
— mem transactions
sw x3, 0(x4) [hit]
— mem transactions
1w x5, 0(x6) [miss]
— mem transactions
lw x7, 0(x8) [hit]
— mem transactions
Topic 5: Integrating Processors and Memories 4

1. Processor and L1 Cache Interface

Pipelined Cache with Parallel Read, Pipelined Write

X Stage

: F Stage : D Stage :
: btarg : :
' jlarg

0 it .

| peplusd i3] ———

imm_type

ir19:15]
| regfile
si2420 | (read)

Inst Cache

alu_fn_X

bypass_from X

bypass_from M

M Stage

LW Stage

regfile

(write)

bypass_from_W

Data Cache

addi x1, x2, 1

(SN

mem transactions

SW

x3, 0(x4) [hit]

(SN

mem transactions

1w

x5, 0(x6) [miss]

(=N

mem transactions

1w

x7, 0(x8) [hit]

mem transactions

Topic 5: Integrating Processors and Memories

1. Processor and L1 Cache Interface

Integrating Instruction and Data TLBs

TLB miss? TLB miss?
Protection violation? Protection violation?
Page fault? Page fault?
-~
F Sta l D Stage l X Stage l M Stage l W Stage
- - 1 3 |

ir

: peplusé ol [+
e e

imm_type of

btarg_DX

result
XM

1

ir[19:15]
regfile [
i2e20) | (read) | |

opl_sel_ D ©°PL]

op2_sel D °P2.DX
alu_fn_X
bypass_from X sd_DX
bypass_from_M
bypass_from W
addr data | | . addr rdaf
: : o
D MO i g]| | } —>§|;| MO prrp D
Inst Cache|: : Data Cache

e TLB miss needs a hardware or software mechanism to refill TLB

* Software handlers need restartable exceptions on page fault

¢ Need mechanism to cope with the additional latency of a TLB

— Increase the cycle time

Pipeline the TLB and cache access
Use virtually addressed caches
Access TLB and cache in parallel

Topic 5: Integrating Processors and Memories 6

2. Analyzing Processor + Cache Performance

2. Analyzing Processor + Cache Performance

How long in cycles will it take to execute the vvadd example assuming
n is 64? Assume cache is initially empty, parallel-read /pipelined-write,
four-way set-associative, write-back/write-allocate, and miss penalty is
two cycles.

loop:

1w x5, 0(x13)
1w x6, 0(x14)
add x7, x5, x6
sw x7, 0(x12)
addi x13, x12, 4
addi x14, x14, 4
addi x12, x12, 4
addi x15, x15, -1
bne x15, x0, loop
jr x1

Topic 5: Integrating Processors and Memories 7

2. Analyzing Processor + Cache Performance

o< Mm
== e s B B R I = BT~ P = PR
— =+ n|+ + + |+ Q0 0 | A +

sw
+i

+i
+i

+i

bne

opA
opB

1w

Topic 5: Integrating Processors and Memories

3. Case Study: MIPS R4000

3. Case Study: MIPS R4000

IF IS RF EX DF DS TC WB

Instruction memory H Reg ’ Data memory

* 8-stage pipeline with extra stages for instruction/data mem access

IF: First-half of inst fetch

— IS: Second half of inst fetch

— RF: Instruction decode, register read, stall logic

EX: Execution (including effective address calculation)
DF: First-half of data fetch

— DS: Second half of data fetch

— TC: Tag check

— WB: Write-back for loads and reg-reg operations

¢ Longer pipeline results in

— Decreased cycle time
— Increased load-use delay latency and branch resolution latency
— More bypass paths

Topic 5: Integrating Processors and Memories

3. Case Study: MIPS R4000

Clock
Phase | 1|2 |12 1|2|1]2|1]2]|1]2]1]2]|1]2]

Stage | IF 1S RF EX DF DS TC wB
1C1 1C2

";e':ch [1TLB1__ITLB2 ITC

d
Decode I?Rlic 1

ALU | ALU |
Load/Store DVA DC1 DC2 |
[LSA |
JTLB1 JTLB2 DTC WB |
Branch IVA
IC1 Instruction cache access stage 1
IC2 Instruction cache access stage 2
ITLB1 Instruction address translation stage 1
ITLB2 Instruction address translation stage 2
ITC Instruction tag check
IDEC Instruction decode
RF Register operand fetch
ALU Operation
DVA Data virtual address calculation
DC1 Data cache access stage 1
DC2 Data cache access stage 2
LSA Data load or store align
JTLB1 Data/Instruction address translation stage 1

JTLB2 Data/Instruction address translation stage 2

DTC Data tag check
IVA Instruction virtual address calculation
WB Write back to register file

Topic 5: Integrating Processors and Memories

10

3. Case Study: MIPS R4000

Load-Use Delay Latency

Time (in clock cycles)

CcC1 CC2 CcCc3 CC4 CCs CCe cc7 ccs CCo9 CC 10 cc11

Instriction memory .w-g Data memory

Instruction 2

LD R1

ADDD R2, R1

Instruction memory .w-g Data memory .

Cycle \Run\Run\ Run\ Run\ Run\ Run\ Run\ st \ St \ St \ st \ St \Run\ﬂun\Run\Run\Run\

Resan [| [[[[[[[[[refet] [[[[|

Load | IF [1S [RF] EX[DF| DS TC| [DF [DS [TC [wB]

|
(F[is[RF[Ex[DF[Ds| | [[DF|DS[TC[ws]
|

AL L IF [1s [RF] EX] DF | | | Jor]ps|Tc[ws]
[[is]RE[ex] [[[RF[Ex+|DF[Ds[TC|wB]
(FJws[rr] | [| | [ex]oF[ps][Tc [ws]

¢ Load-use delay latency increased by one cycle

* Data is forwarded from end of DS stage to end of RF stage

¢ Tag check does not happen until TC!

* On miss, instruction behind load may have bypassed incorrect data

¢ EX stage of dependent instruction needs to be re-executed

Topic 5: Integrating Processors and Memories 11

3. Case Study: MIPS R4000

Branch Resolution Latency

Time (in clock cycles)

CC1 cC2 CC3 CC4 CCs CCe CCc7 CCs CcCo Ccc10 CC 11

st e ol {3 @

Instruction 1 Instruction memory .M-g @

Instruction memo: ’ Data memory

Instr 'ctior'i_' memory 'M-g T‘ Data memory r—‘*
Target Instruction memory 'w-g Data memory

* Branches are resolved in EX stage

Instruction 2

Instruction 3

¢ Instruction 1 is in the branch delay slot

¢ Use predicted not-taken for instruction 2 and 3

Topic 5: Integrating Processors and Memories 12

|< >|< >|
Inmmummurummuuuuuuccluuruuuuuuucc|
cycle 1234/567890123456789012[345678901234|
+ + +

1w x5, 0(x13) FDXMMMW

1w x6, 0(x14) FDXXXMMMW

add x7, x5, x6 FDDDDDDIXMW

sw x7, 0(x12) FFFFFFDXMMMW

addi x13, x12, 4 FDXXXMW

addi x14, x14, 4 FDDDXMW

addi x12, x12, 4 FFFDXMW

addi x15, x15, -1 FDXMW

bne x15, x0, loop FDXM

opA F D - |

opB F----|

1w x5, 0(x13) FDXMW

1w x6, 0(x14) DXMW

add x7, x5, x6 FDDXMW

sw x7, 0(x12) FFDXMW

addi x13, x12, 4 FDXMW

addi x14, x14, 4 FDXMW

addi x12, x12, 4 FDXMW

addi x15, x15, -1 FDXMW
bne x15, x0, loop FDXMW
opA FD-- -
opB F----
1w x5, 0(x13) FDXMW
u cycle of useful work

m = cycle lost due to memory stall

r = cycle lost due to RAW stall

c = cycle lost due to control squashes

* First Iteration CPI

+ num of insts = 9

+ num of cycles = 18

+ CPI = 2.00

* First Iteration CPI Breakdown

+ u =9 cycles, 9/9 = 1.00 CPI

+m =6 cycles, 6/9 = 0.67 CPI

+ cycle, 1/9 = 0.11 CPI

+ cycles, 2/9 = 0.22 CPI

+ = 2.00 CPI

* Second Iteration CPI

+ num of insts =9

+ num of cycles = 12

+ CPI =1.33

* Second Iteration CPI Breakdown

+ cycles, 9/9 = 1.00 CPI

+ cycles, 6/9 = 0.00 CPI

+ cycle, 1/9 = 0.11 CPI

+ cycles, 2/9 = 0.22 CPI

+ = 1.33 CPI

* Overall CPI

+ num of iterations like first iteration = 16

+ num of iterations like second iteration = 64-16 = 48

+ total num insts = 9%64 = 576

+ total num cycles = 16%18 + 48%12 = 864

+ total CPI = 1.50

* Overall CPI Breakdown

+ u = 16*9 + 48*9 = 576 cycles, 576/576 = 1.00 CPI

+m = 16%6 + 48%0 96 cycles, 96/576 = 0.17 CPI

+r = 16%1 + 48%1 64 cycles, 64/576 = 0.11 CPI

+ c = 16%2 + 48%2 = 128 cycles, 128/576 = 0.22 CPI

+ total = 1.50 CPI

