
ECE 4750 Computer Architecture, Fall 2016
PyMTL Usage Rules

School of Electrical and Computer Engineering
Cornell University

revision: 2016-08-25-22-58

PyMTL is embedded within Python, which is a fully general-purpose language. Given this, it is
very easy to write PyMTL code that does not actually model any kind of realistic hardware. In-
deed, we actually need this feature to be able to write clean and productive functional-level models,
test harnesses, assertions, and line tracing. So students must be very diligent in actively deciding
whether or not they are writing synthesizable register-transfer-level models or non-synthesizable
code. Students must always keep in mind what hardware they are modeling and how they are
modeling it!

Students’ design work will almost exclusively use synthesizable PyMTL register-transfer-level (RTL)
models. Note that students can use any Python code they like in their elaboration code; the elabo-
ration code is all of the Python code outside the PyMTL concurrent blocks (i.e., outside s.tick_rtl
and s.combinational blocks). This is because elaboration code is used to generate hardware instead
of actually model hardware. It is also acceptable to include a limited amount of non-synthesizable
code in concurrent blocks for the sole purpose of debugging, assertions, or line tracing. If the stu-
dent includes non-synthesizable code in their concurrent blocks, they should demarcate this code
with comments. This explicitly documents the code as non-synthesizable and aids automated tools
in removing this code before synthesizing the design. If at any time students are unclear about
whether a specific construct is allowed in a synthesizable concurrent block, they should ask the
instructors.

The next page includes a table that outlines which Python constructs are allowed in synthesizable
PyMTL concurrent blocks, which constructs are allowed in synthesizable PyMTL concurrent blocks
with limitations, and which constructs are explicitly not allowed in synthesizable PyMTL concurrent
blocks.

1

ECE 4750 Computer Architecture, Fall 2016 PyMTL Usage Rules

Always Allowed in Allowed in Synthesizable Explicitly Not Allowed
Synthesizable Concurrent Blocks in Synthesizable
Concurrent Blocks With Limitations Concurrent Blocks

Bits accessing Python lists2 * / // % **
BitStruct writing signals += -= *= /= %= **= //=7

& | ^ ^~ ~ with .value/.next3 for, while, break, continue
and or not writing temporary variables4 def, global, class
+ - reading reset signal5 try, except, raise
>> << read-modify-write signal6 as, is, in
== != > <= < <= with, return, yield
reduce_and(), reduce_or() import, from
reduce_xor() del, exec, pass
sext(), zext(), concat() lambda
if, else, elif finally
s.signal[n], s.signal[n:m] constructing Python lists
reading constant variables constructing/using Python dicts
reading signals1 reading/writing non-signals8

writing signals
without .value/.next9

reading/writing clk signal
writing reset signal

1 Signals are instances of InPort, OutPort, InValRdyBundle, OutValRdyBundle, or Wire. Signals can only
communicate bit-specific value types (e.g., Bits, BitStruct).

2 Accessing lists of signals or lists of models is allowed although students should be careful to keep the
indexing logic relatively simple.

3 Signals must only be written using .value in s.combinational concurrent blocks. Signals must only be
written using .next in s.tick_rtl concurrent blocks.

4 Writing temporary variables is allowed as long as the type of the temporary variable (e.g., the bitwidth) can
be reasonably inferred.

5 Reading the special reset signal is allowed, but only in a s.tick_rtl concurrent block. Reading the reset
signal in a s.combinational concurrent block is not allowed. If you need to factor the reset signal into
some combinational logic, you should instead use the reset signal to reset some state bit, and the output
of this state bit can be factored into some combinational logic. In other words, students should only use
synchronous and not asynchronous resets.

6 Reading a signal, performing some arithmetic on the corresponding value, and then writing this value
back to the same signal (i.e., read-modify-write) is not allowed within an s.combinational concurrent
block. This is a combinational loop and does not model valid hardware. Read-modify-write is allowed
in an s.tick_rtl concurrent block using .next, although we urge students to consider separating the
sequential and combinational logic. Students can use an s.combinational concurrent block to read the
signal, perform some arithmetic on the corresponding value, and then write a temporary wire; and use an
s.tick_rtl concurrent block to flop the temporary wire into the destination signal.

2

ECE 4750 Computer Architecture, Fall 2016 PyMTL Usage Rules

7 These assignment operators essentially perform a read-modify-write of a signal. See the above footnote.
Technically, these operators might model valid hardware if used within a s.tick_rtl, but this syntax is not
currently supported and will result in strange simulator behavior. Therefore, these assignment operators
are never allowed in synthesizable concurrent blocks.

8 Students cannot use non-signals (i.e., normal Python variables) to communicate between concurrent blocks.
Students must use instances of InPort, OutPort, InValRdyBundle, OutValRdyBundle, or Wire.

9 Writing a signal without using .value or .next is not synthesizable and will likely result in strange simu-
lator behavior.

3

