
ECE 4750 Computer Architecture, Fall 2016
Lab 3: Blocking Cache

School of Electrical and Computer Engineering
Cornell University

revision: 2016-10-29-12-58

In this lab, you will design two finite-state-machine (FSM) cache microarchitectures, which we will
eventually compose with the processor designs you developed in the previous lab. The baseline
design is a direct-mapped, write-back, write-allocate cache, and the alternative design is a two-way
set associative cache that should reduce the miss rate by avoiding conflict misses. You are required to
implement the baseline and alternative designs, verify the designs using an effective testing strategy,
and perform an evaluation comparing the two implementations. As with all lab assignments, the
majority of your grade will be determined by the lab report. You should consult the course lab
assignment assessment rubric for more information about the expectations for all lab assignments
and how they will be assessed.

This lab is designed to give you experience with:

• basic memory system design;
• complex finite-state-machine cache controllers;
• microarchitectural techniques for implementing cache associativity;
• abstraction levels including functional- and register-transfer-level modeling;
• design principles including modularity, hierarchy, and encapsulation;
• design patterns including message interfaces, control/datapath split, and FSM control;
• agile design methodologies including incremental development and test-driven development.

This handout assumes that you have read and understand the course tutorials and the lab assessment
rubric. To get started, you should access the ECE computing resources and you have should have
used the ece4750-lab-admin script to create or join a GitHub group. If you have not do so already,
source the setup script and clone your lab group’s remote repository from GitHub:

% source setup-ece4750.sh
% mkdir -p ${HOME}/ece4750
% cd ${HOME}/ece4750
% git clone git@github.com:cornell-ece4750/lab-groupXX

where XX is your group number. You should never fork your lab group’s remote repository! If you
need to work in isolation then use a branch within your lab group’s remote repository. If you have
already cloned your lab group’s remote repository, then use git pull to ensure you have any recent
updates before running all of the tests. You can run all of the tests in the lab like this:

% cd ${HOME}/ece4750/lab-groupXX
% git pull --rebase
% mkdir -p sim/build
% cd sim/build
% py.test ../lab3_mem

1

ECE 4750 Computer Architecture, Fall 2016 Lab 3: Blocking Cache

All of the tests for the provided functional-level model should pass, while the tests for the baseline
and alternative cache designs should fail. For this lab, you will be working in the lab3_mem subproject
which includes the following files:

• BlockingCacheFL.py – FL cache

• BlockingCacheBaseDpathPRTL.py – PyMTL blocking direct-mapped cache’s datapath
• BlockingCacheBaseCtrlPRTL.py – PyMTL blocking direct-mapped cache’s control unit
• BlockingCacheBasePRTL.py – PyMTL blocking direct-mapped cache
• BlockingCacheBaseDpathVRTL.v – Verilog blocking direct-mapped cache’s datapath
• BlockingCacheBaseCtrlVRTL.v – Verilog blocking direct-mapped cache’s control unit
• BlockingCacheBaseVRTL.v – Verilog blocking direct-mapped cache
• BlockingCacheBaseRTL.py – Wrapper to choose which RTL language

• BlockingCacheAltDpathPRTL.py – PyMTL blocking set-associative cache’s datapath
• BlockingCacheAltCtrlPRTL.py – PyMTL blocking set-associative cache’s control unit
• BlockingCacheAltPRTL.py – PyMTL blocking set-associative cache
• BlockingCacheAltDpathVRTL.v – Verilog blocking set-associative cache’s datapath
• BlockingCacheAltCtrlVRTL.v – Verilog blocking set-associative cache’s control unit
• BlockingCacheAltVRTL.v – Verilog blocking set-associative cache
• BlockingCacheAltRTL.py – Wrapper to choose which RTL language

• mem-sim – Cache simulator for evaluation
• mem_sim_eval.py – Script to run all patterns on each design
• __init__.py – Package setup

• test/BlockingCacheFL_test.py – FL cache unit tests
• test/BlockingCacheBaseRTL_test.py – Direct-mapped cache unit tests
• test/BlockingCacheAltRTL_test.py – Set-associative cache unit tests
• test/TestCacheSink.py – Custom test sink for cache
• test/__init__.py – Package setup

1. Introduction

Accessing main memory can require hundreds of cycles, but cache memories can significantly reduce
the average memory access latency for well-structured address patterns. Caches are faster than main
memory because they are smaller and are located close to the processor; but because a cache can
only hold a subset of all memory locations at any one time, we must carefully manage what data we
keep in the cache. A cache hit occurs when the data we are requesting is already in the cache, while
a cache miss occurs when the data we are requesting is not in the cache and thus requires accessing
main memory. Caches exploit spatial and temporal locality to increase the number of cache hits. In an
address pattern with significant spatial locality, if we access a given address then in the near future,
we are likely to access an address close to the first address. In an address pattern with significant
temporal locality, if we access a given address then in the near future, we are likely to access that
same address again. In this lab, you will implement and evaluate two cache microarchitectures that
organize cache lines in two different ways: (1) direct-mapped where every cache line can only be
placed in a single location in the cache, and (2) two-way set-associative where every cache line can
be placed in one of two locations in the cache. Both caches will use a write-back, write-allocate policy
for handling write misses. Additionally, both caches will have the ability to act as a bank in a larger
multi-bank cache organization.

2

ECE 4750 Computer Architecture, Fall 2016 Lab 3: Blocking Cache

Cache

cachereq_msg

cachereq_val

cachereq_rdy

cacheresp_msg

cacheresp_val

cacheresp_rdy

Test
Source

Test
Sink

Test
Memory

memreq_msg/val/rdy
memresp_msg/val/rdy

Figure 1: Memory System – The cache is integrated with a test source, test sink, and test memory for
testing and evaluation.

We have provided you with a functional-level model of a cache, which essentially just passes all
cache requests through to the memory interface, and passes all memory responses through to the
cache response interface. While this might not seem useful, the functional-level model will enable us
to develop many of our test cases with the test memory before attempting to use these tests with the
baseline and alternative designs.

Figure 1 shows a block-level diagram illustrating how the functional-level, baseline, and alternative
designs are integrated with a test source, test sink, and test memory for testing and evaluation. We
will load data into the test memory before resetting the cache. Once we start the execution, the
test source will send memory requests into the cache, and eventually the cache will send memory
responses to the test sink. If the cache needs to access main memory, then the cache will send memory
requests to the test memory, and eventually the test memory will send memory responses back to the
cache. We make extensive use of the latency insensitive val/rdy micro-protocol in the cache interface.
There are four different val/rdy channels.

• cachereq : from test source (processor) to cache
• cachresp : from cache to test sink (processor)
• memreq : from cache to test memory
• memresp : from test memory to cache

The message formats for memory requests and responses are shown in Figure 2. Corresponding
PyMTL BitStructs are defined in pclib here:

• https://github.com/cornell-brg/pymtl/blob/ece4750/pclib/ifcs/MemMsg.py

Similar Verilog structs are defined in vc/mem-msgs.v included within the lab release. Memory
requests use fields to encode the type (e.g., read, write, init), the address, the length of data in bytes,
and the data. Memory responses use fields to encode the type (e.g., read, write), the length of data
in bytes, and the data. The opaque field can be used for implementation defined behavior. You
should always ensure the opaque field is correctly preserved in the response. Note that the memory
messages used for the cachereq and cacheresp interfaces are for a single word (i.e., 32-bit data field
and 2-bit length field), while the memory messages used for the memreq and memresp interfaces are
for an entire cache line (i.e., 128-bit data field and 4-bit length field). If the length field is one then
only the least significant byte of the data field (i.e., bits 7-0) is valid. If the length field is two then
only the least significant two bytes of the data field (i.e., bits 15-0) are valid. If the length field is

3

ECE 4750 Computer Architecture, Fall 2016 Lab 3: Blocking Cache

76 74 73 66 65 34 33 32 31 0

Cache Req type opaque addr len data

46 44 43 36 35 34 33 32 31 0

Cache Resp type opaque test len data

174 172 171 164 163 132 131 128 127 0

Mem Req type opaque addr len data

144 142 141 134 133 132 131 128 127 0

Mem Resp type opaque test len data

Figure 2: Cache and Memory Request/Response Message Formats – Cache request/response mes-
sages are sent between the processor and cache and contain four bytes of data (i.e., one word), while
memory request/response messages are sent between the cache and the test memory and contain 16
bytes of data (i.e., one cache line).

zero then all bytes are valid. Note that while the memory message format is quite flexible, our cache
designs will only support 4-byte cache requests and 16-byte memory requests. The data field can
contain an arbitrary value in a write memory request, however the data field must contain all zeros in
a write memory response. This simplifies creating reference responses when testing. We add a two-bit
test field to each cacheresp and memresp message. We use the test field in cacheresp for testing. If
a cachereq ends up with a cache miss, we should set the corresponding cacheresp message’s test
field to be 2’b0. If a cachereq turns out to be a cache hit, we should set the corresponding cacheresp
message’s test field to be 2’b1. By using the test field in the test harness can verify whether a cache
transaction is a hit or a miss.

One way to increase cache bandwidth is to enable a cache to process multiple transactions at the same
time. Figure 3 shows an alternative approach based on a banked cache organization. In a banked cache,
we add a request network which directs a cache request to the appropriate bank based on some bits
in the address of this cache request. Cache responses are returned over a different response network.
Different cache banks can be potentially execute different transactions at the same time, and this
increases the overall throughput of the system. The cache you design in this will be used both on its
own (i.e., in a single-bank configuration) as well as in a four-bank configuration. Figure 4 illustrates
which bits are used by the request network to direct a given cache request to the appropriate cache
bank in a four-bank configuration. For example, if bits 4 and 5 of the cache request address are zero
then the cache request is sent to bank zero, and if bits 4 and 5 of the cache request are one then the
cache request is sent to bank three. For a single-bank design to support its use in a banked cache
organization, we need to exclude the bank bits when indexing into the cache bank. In other words, if
we consider all four banks holistically as a single “banked cache”, a fourth of the sets of the banked
cache are in each bank. Note you cannot completely ignore the bank bits since you will need them
when generating a cache line address for refills.

2. Baseline Design

The baseline design for this lab is a direct-mapped, write-back, write-allocate cache with a total
capacity of 256 bytes, 16 cache lines, and 16 bytes per cache line. As with the earlier labs, we will
be decomposing the baseline design into two separate modules: the datapath which has paths for

4

ECE 4750 Computer Architecture, Fall 2016 Lab 3: Blocking Cache

Bank
0

Bank
1

Bank
2

Bank
3

Cache
Request
Network

Cache
Response
Network

Memory
Request
Network

Memory
Response
Network

Figure 3: Banked Cache Organization
– Four-bank cache organization. High-
lighted path is for a memory request that
hits in bank 0.

Address With No Banking

31 8 7 4 3 0

tag index offset

Address With Four Banks

31 10 9 6 5 4 3 0

tag index bank offset

Figure 4: Memory Address Formats With and Without
Banking – When using the baseline or alternative de-
sign as a bank in a larger cache, we need to exclude the
bank bits when indexing into the cache since the request
network will take care of routing messages to the correct
bank.

moving data through various arithmetic blocks, muxes, and registers; and the control unit which is
in charge of managing the movement of data through the datapath. As in the first lab, the control
unit will use an FSM. Because the cache design is significantly more complicated than the first lab,
we have decided to place the datapath module, control unit module, and the parent module that
connects the datapath and control unit together in three different files.

The datapath for the baseline design is shown in Figure 5. The blue signals represent the control/s-
tatus signals for communicating between the datapath and the control unit. Your datapath module
should probably instantiate a child module for each of the blocks in the datapath diagram; in other
words, you should mostly use a structural design style in the datapath. Although you are free to
develop your own modules to use in the datapath, you can also use the ones provided for you in
the pclib and vclib. The repl block takes a 32b value and simply replicates it four times to create
a 128b value. The mkaddr block simply concatenates the tag and idx plus some zeros like this: {
tag, 4’b0000 }. As we become more proficient, we can use our judgement about what needs to
be encapsulated in a child module. For example, the repl and mkaddr blocks can probably be done
directly in the datapath without encapsulating them in a module. These operations are just wiring
and not really "logic". However, we strongly encourage students to use comments and a temporary
signal to clearly indicate where in the code you are doing this kind of wiring so that it is still easy to
connect your datapath diagram to your code. Notice that to simplify our design, we are implement-
ing the tag and data arrays using combinational-read SRAMs. This means that after setting the read
address signals, the read data is available that same cycle. Note that more realistic designs meant for
implementation in either an FPGA or ASIC would likely need to synchronous SRAMs.

5

ECE 4750 Computer Architecture, Fall 2016 Lab 3: Blocking Cache

read_addr

write_addr

write_data

write_en

read_en

read_data

"Tag"
Array

(16x28b)

tag
_array
_wen

tag
_array

_ren

read_addr

write_addr

write_data

write_en

read_en

write_byte_en

read_data

Data
Array

(16x128b)

data
_array
_wen

data
_array

_ren

data
_array
_wben

memresp
_en

repl

128b

memresp_
data_reg

cachereq_
type_reg

write_data_
mux_sel

cachereq
_en

cachereq_
addr_reg

cachereq_
data_reg

d
at

a
ad

d
r

ty
p

e

ca
ch

er
eq

_m
sg

d
at

a
ig

or
e

ot
h

er
 f

ie
ld

s

m
em

re
sp

_m
sg 128b

32b

idx

cmp

addr[31:4]

read_data
_reg_en

read_data
_reg

evict_addr
_reg_en

evict_addr
_reg

memreq_addr_
mux_sel

mk
addr

cachereq
_type

cachereq
_addr

d
at

a
ty

p
e

ca
ch

er
es

p
_m

sg

d
at

a m
em

re
q

_m
sg

le
n

le
n

127:96

95:64

63:32

31:0

2'b0

4'b0

cacheresp
_type

memreq
_type

tag
_match

128b

128b

32b

te
st

op
aq

u
e

op
aq

u
e

8'b0

cachereq_
opaque_reg

op
aq

u
e

hit

ad
d

r

mk
addr

addr[31:4]

0

read_word
_mux_sel

Figure 5: Baseline Datapath – Direct-mapped, write-back, write-allocate cache with 16-byte cache
lines and a total capacity of 256 bytes. repl = replicate 32b four times to create 128b signal; mkaddr =
concatenate { tag, 4’b0000 }. Orange blocks represent extracting or inserting fields into either a
PyMTL BitStruct or Verilog struct.

We provide two kinds of combinational-read SRAMs in both pclib and vclib: a version that sup-
ports partial byte-writes but where each entry must be an even multiple of eight bits (let’s call this
ByteWriteSRAM) and a version that does not support partial byte-writes but where each entry can be
any bitwidth you want (let’s call this FullWriteSRAM). We recommend using a ByteWriteSRAM for
your data array (since you need partial write support, and cache lines are an even multiple of eight
bits), and we recommend using a FullWriteSRAM for your tag array (since you do not need partial
write support, and tags are not necessarily an even multiple of eight bits). Unfortunately, we made
this a little more confusing than we had to by using different names for these two different kinds of
SRAMs in pclib vs. vclib. To make matters worse we also used slightly different interfaces in pclib
vs. vclib. They have the same functionality though, and remember that all of these SRAMs can only
do one read or one write per cycle regardless of the interface. So here is the naming:

• ByteWriteSRAM in pclib (use for data array)
• Named: SRAMBytesComb_rst_1rw
• Link: https://github.com/cornell-brg/pymtl/blob/master/pclib/rtl/SRAMs.py#L73-L140
• addr: address for reads and writes
• rdata: read data
• wen: write enable
• wben: write byte enable
• wdata: write data

6

ECE 4750 Computer Architecture, Fall 2016 Lab 3: Blocking Cache

• FullWriteSRAM in pclib (use for tag array)
• Named: SRAMBitsComb_rst_1rw
• Link: https://github.com/cornell-brg/pymtl/blob/master/pclib/rtl/SRAMs.py#L9-L71
• addr: address for reads and writes
• rdata: read data
• wen: write enable
• wdata: write data

• ByteWriteSRAM in vclib (use for data array)
• Named: vc_CombinationalSRAM_1rw
• Link: in lab release at vc/srams.v#L88-L176
• read_en: read enable
• read_addr: read address
• read_data: read data
• write_en: write enable
• write_byte_en: write byte enable
• write_addr: write address
• write_data: write data

• FullWriteSRAM in vclib (use for tag array)
• Named: vc_CombinationalBitSRAM_1rw
• Link: in lab release at vc/srams.v#L8-L86
• read_en: read enable
• read_addr: read address
• read_data: read data
• write_en: write enable
• write_addr: write address
• write_data: write data

The baseline design is direct mapped with 16-byte cache lines and a total capacity of 256 bytes (i.e.,
16 cache lines). So we need four bits for the byte offset and four bits for the index leaving 24 bits
for the tag. Ideally, this would mean the direct mapped cache can use a FullWriteSRAM with 24 bits.
Technically, for a banked-cache organization, we can use even fewer tag bits since the bank bits will
always be the same in any given bank. For a four-bank cache organization, we really only need 22
bits for the tag, but we would have to concatenate the bank bits when we do a cache line eviction.
Given all of this, in this lab we recommend a simpler approach that wastes a little area in the tag
array. Students should always use 28 bits in the tag array (even in the alternative design). This
makes the tag array a “tag” array in quotes, since the tag array really stores the tag, the bank bits,
and the index. This is fine for our purposes. The datapath diagram in Figure 5 uses the Verilog port
names and uses 28 bits in the tag array. If you take this approach, the only change you should need
to support banking is to simply choose different bits for the set index based on Figure 4.

7

ECE 4750 Computer Architecture, Fall 2016 Lab 3: Blocking Cache

tag
check

read
data

access

wait

write
data

access

idle

evict
prepare

evict
request

refill
request

evict
wait

refill
update

refill
wait

read
hit

write
hit

write

read

!cacheresp_rdy

!cachereq_val

miss & dirty

!memreq_rdy

!memreq_rdy

!memresp_val

!memresp_val

miss &
!dirty

init
data

access

init
transaction

memreq_rdy

memresp_val

memreq_rdy

m
em

re
sp

_v
al

Figure 6: Baseline FSM Control Unit

The FSM for the baseline design is shown in Figure 6. The control unit should also include additional
valid and dirty bits to track the state of each tag entry. You should not use SRAMs for the valid and
dirty bits. You should instead use standard register files. We provide register files in pclib here:

• https://github.com/cornell-brg/pymtl/blob/ece4750/pclib/rtl/RegisterFile.py

The equivalent Verilog register files are defined in vc/regfiles.v. The various FSM states are de-
scribed in more detail below:

• STATE_IDLE (I) – Receive the incoming cache request and place it in the input registers
• STATE_TAG_CHECK (TC) – Check tag, state transition based on hit/miss, valid/dirty
• STATE_INIT_DATA_ACCESS (IN) – Immediately write to appropriate cache line
• STATE_READ_DATA_ACCESS (RD) – Read from appropriate cache line
• STATE_WRITE_DATA_ACCESS (WD) – Write to appropriate cache line
• STATE_EVICT_PREPARE (EP) – Read tag and data, and prepare eviction message
• STATE_EVICT_REQUEST (ER) – Make a request to memory to write the evicted cache line
• STATE_EVICT_WAIT (EW) – Wait for memory response
• STATE_REFILL_REQUEST (RR) – Make a request to memory for refill the desired cache line
• STATE_REFILL_WAIT (RW) – Wait for memory response
• STATE_REFILL_UPDATE (RU) – Write the response to the victim cache line
• STATE_WAIT (W) – Wait while the sink (processor) is busy

8

ECE 4750 Computer Architecture, Fall 2016 Lab 3: Blocking Cache

This FSM control unit differs from the basic FSM cache discussed in lecture. This is due to the need
to handle the various latency insensitive interfaces, the init transaction, and waiting for eviction
responses. The FSM cache microarchitectures used in this lab will have a hit latency of four cycles
(e.g., I → TC → RD → W). In the previous lab, the memory access time was usually a single cycle
although you also tested your processor with random delays on the memory interface. Assuming we
correctly implement the latency insensitive val/rdy microprotocol in both the processor and cache,
then there should be no problem composing these two subsystems. Later optimizations can reduce
the cache hit latency without the need to modify the processor.

We strongly encourage you to take an incremental design approach using the following steps:

• Implement the init transaction (I, TC, IN, W)
• Implement the read hit path (I, TC, RD, W)
• Implement the write hit path (I, TC, WD, W)
• Implement the refill path (I, TC, RR, RW, RU, RD/WD, W)
• Implement the evict path (I, TC, EP, ER, EW, RR, RW, RU, RD/WD, W)
• Implement support for banking

The hit path is the simplest place to start, but in order to hit in the cache, we need valid data in the
cache. The init transaction (explained further in Section 4) allows you to write data into the cache
without doing a refill from main memory. This kind of transaction is an example of design-for-test
since this transaction is only meant to simplify testing and has no real use once we have a working
cache model. We recommend implementing the init transaction first, and then using this transaction
to implement and test both hit paths. Once the hit paths are working, then you can move onto the
more complicated miss paths.

3. Alternative Design

The alternative design for this lab is a two-way set-associative, write-back, write-allocate cache with
the same capacity (256 bytes) and cache line size (16 bytes) as the baseline cache. The general FSM
for the alternative design will be very similar to that of the baseline design, except that the control
signals will likely be different. Note that you will need to split the valid bits into two parts, one for
each way and carefully keep track of them. You will need to AND the result of the tag match in each
way with the appropriate valid bit to determine if there is a hit or miss. The control unit should use a
least-recently-used (LRU) replacement policy to choose between the two ways during eviction. You
should track the LRU status with separate bits in the control unit.

4. Testing Strategy

We provide you with a few basic directed tests. For example, we provide you with a basic test for
the read hit path for clean lines. Although you will not need to write as many tests as in the previous
lab, the tests for this lab may be more challenging since you will need to carefully craft directed tests
that exercise all paths in your datapath and all states and state transitions in your FSM. As with the
previous labs, you will want to initially write tests using the functional-level model. Once these tests
are working on the functional-level model, you can move on to testing the baseline and alternative
designs.

The following commands illustrate how to run all of tests for the entire project, how to run just the
tests for this lab, and how to run just the basic tests we provide on the various designs.

% cd ${HOME}/ece4750/lab-groupXX/sim/build

9

ECE 4750 Computer Architecture, Fall 2016 Lab 3: Blocking Cache

% py.test ..
% py.test ../lab3_mem
% py.test ../lab3_mem/BlockingCacheFL_test.py
% py.test ../lab3_mem/BlockingCacheBaseRTL_test.py
% py.test ../lab3_mem/BlockingCacheAltRTL_test.py

You will add your directed and random tests to BlockingCacheFL_test.py. Since this harness is
shared across the functional-level model, the baseline design, and the alternative design you can
write your tests once and reuse them to test all three models. You will be adding more test cases. Do
not just make the given test case larger. A key challenge in writing directed tests for cache memo-
ries, is that most of the miss path must be working before you can test the hit path. The miss path
is significantly more complicated than the hit path, so this lends itself more towards a monolithic
design process. Most of the cache must be implemented before we can run our first directed test.
We could potentially use white-box ad-hoc testing that directly initializes the tag and data arrays in
the cache before starting the test, but these ad-hoc tests are fragile and difficult to develop on the
functional-level model.

To address this challenge, we will use a design-for-test (DFT) approach. DFT involves adding fea-
tures to a design that are solely meant to facilitate test-driven development. In this specific design,
we will be adding a new init transaction to go along with our current read and write transactions.
The init transaction does the following:

• Writes to the appropriate cache line based on the index bits of the address
• Writes the corresponding tag
• Never updates main memory
• Sets the valid bit for that cache line to one
• Sets the dirty bit for that cache line to zero
• Sets the cacheresp’s test field to zero

Only one init transaction is allowed after reset, and it must be the very first transaction. Using more
than one init transaction after reset, or using an init transaction after a read or write transaction is
undefined. The staff tests will not test any undefined behavior. If you would like, you can “define”
some of the undefined behavior if it facilitates your testing strategy.

Figure 7 illustrates how we will be writing tests for this lab using various helper tasks which are de-
fined in BlockingCacheFL_test.py. The req and resp Python helper functions will create a memory
request message and the expected memory response message. We use the test field in response mes-
sages to test whether the memory request resulted in a hit or a miss. This specific example first uses
an init transaction to initialize one word in the first cache line, before using a read transaction to read
this same word. Note that the second transaction should be a hit and we set the second cacheresp
message’s test field to be one. For each test case we define a Python function that returns a list of
request-response message pairs. The request messages and response messages will be passed to the
test source and the test sink respectively. In Figure 7, lines 6–11 and lines 17–22 illustrate two test
cases. We also provide you a helper function to load data into the test memory before running the
test. It will allow you to test the cache refill path without involving the cache evict path. If you want
to load data into the test memory before running the test, you can create a Python function that re-
turns a list of address-data pairs and then the test function we provide will load it to the test memory
before running the test. For example lines 26–31, load the test memory with two words of data at
addresses 0x00000000 and 0x00000004 before running the read_miss_1word_msg test case.

Once you create a new test harness, you can add it to the test case table, as shown on lines 37–41 in
Figure 7. A test case table has eight columns. The first column is the name of tests, the second one

10

ECE 4750 Computer Architecture, Fall 2016 Lab 3: Blocking Cache

1 #--
2 # Test Case: read hit path
3 #--
4 # The test field in the response message: 0 == MISS, 1 == HIT
5

6 def read_hit_1word_clean(base_addr):
7 return [
8 # type opq addr len data type opq test len data
9 req('in', 0x00, base_addr, 0, 0xdeadbeef), resp('in', 0x00, 0, 0, 0),

10 req('rd', 0x01, base_addr, 0, 0), resp('rd', 0x01, 1, 0, 0xdeadbeef),
11]
12

13 #---
14 # Test Case: read miss path
15 #---
16

17 def read_miss_1word_msg(base_addr):
18 return [
19 # type opq addr len data type opq test len data
20 req('rd', 0x00, 0x00000000, 0, 0), resp('rd', 0x00, 0, 0, 0xdeadbeef),
21 req('rd', 0x01, 0x00000004, 0, 0), resp('rd', 0x01, 1, 0, 0x00c0ffee),
22]
23

24 # Data to be loaded into memory before running the test
25

26 def read_miss_1word_mem(base_addr):
27 return [
28 # addr data
29 0x00000000, 0xdeadbeef,
30 0x00000004, 0x00c0ffee,
31]
32

33 #---
34 # Test table for generic test
35 #---
36

37 test_case_table_generic = mk_test_case_table([
38 ("msg_func mem_data_func nbank stall lat src sink"),
39 ["read_hit_1word", read_hit_1word, None, 0, 0.0, 0, 0, 0],
40 ["read_miss_1word_mem", read_miss_1word_msg, read_miss_1word_mem, 0, 0.0, 0, 0, 0],
41])
42

43 @pytest.mark.parametrize(**test_case_table_generic)
44 def test_generic(test_params, dump_vcd):
45 msgs = test_params.msg_func(0)
46 if test_params.mem_data_func != None:
47 mem = test_params.mem_data_func(0)
48 # Instantiate testharness
49 harness = TestHarness(msgs[::2], msgs[1::2],
50 test_params.stall, test_params.lat,
51 test_params.src, test_params.sink,
52 BlockingCacheFL, False)
53 # Load memory before the test
54 if test_params.mem_data_func != None:
55 harness.load(mem[::2], mem[1::2])
56 # Run the test
57 run_sim(harness, dump_vcd)

Figure 7: Writing Directed Tests – A portion of the BlockingCacheFL_test.py file. We create all test
cases in this file and use it to test both FL, baseline RTL and alternative RTL model.

11

ECE 4750 Computer Architecture, Fall 2016 Lab 3: Blocking Cache

is the function that generates source/sink messages, and the third one is the function that generates
memory data to be loaded before running the test. If your test case does not need to load data to
the test memory, simply use None. The last five columns are for the number of banks (0 or 4), test
memory’s stall probability, test memory latency, source delay, and sink delay, respectively.

Ideally, we want to use same set of tests to test the FL, baseline RTL, and alternative RTL model. We
define all the test cases in BlockingCacheFL_test.py, test them on the FL model to make sure the test
cases are correct, and we import them in the BlockingCacheBaseRTL_test.py and BlockingCacheAltRTL_test.py
test scripts. We need to be careful about the test field, because the same test may have different
hit/miss behavior on different cache implementations. For example, in an FL cache, every response
is a miss because we simply pass cachereq and cacheresp to memory. The alternative design will
have less conflict misses than the baseline design, because the alternative design is set-associative
whereas the baseline design is direct-mapped. Therefore, we should expect different values for the
test field in the cacheresp messages passed to the sink from different cache models even if we use
the same source messages. To solve this issue, we provide you a custom TestCacheSink model
which is used by the test harness in BlockingCacheFL_test.py. The TestCacheSink is similar to the
TestSink you have used before, except that it can optionally skip checking the test field. Lines 49–52
in Figure 7 show how to instantiate this TestHarness model. The first two parameters (src_msgs and
sink_msgs) are source and sink messages. The stall_prob, latency, src_delay, and sink_delay
parameters are the stalling probability of the test memory, latency (in cycles) of the test memory,
source delay, and source delay, respectively. CacheModel is the model we want to test. check_test
determines whether the test harness should check the test field in cacheresp messages from the
model under test to the test sink. When we run a test case on the FL model, we should set check_test
to False to make the harness skip checking the test field because the test field is always zero for the
FL model. Otherwise the test will fail. When we test the actual RTL models, we must set check_test
to True in order to inspect every cacheresp message’s test field to verify if the request correctly hit
or missed in the cache.

As mentioned above, your baseline and alternative designs will have different hit/miss behav-
iors, so you may need to use different sink values even for the same sequence of source messages.
You should add tests designed specifically for your baseline or alternative design. For example,
you should have tests that only hit in a two-way set-associative cache to make sure your alterna-
tive design is indeed two-way set-associative. We group the test cases into three test case tables.
test_case_table_generic is shown on lines 37–41 in Figure 7 and is used to generically test both
the baseline and alternative designs (i.e., tests in this table should have the same expected behavior
for both the baseline and alternative design). test_case_table_set_assoc and
test_case_table_set_dir_mapped are used to test only one of the designs. We provide examples
which test for a very simple conflict miss in the baseline design and test for a hit with the same
sequence of source messages in the alternative design.

Some suggestions for what you might want to test are listed below. Each of these would probably be
a separate test case.

• Read hit path for clean lines
• Write hit path for clean lines
• Read hit path for dirty lines
• Write hit path for dirty lines
• Read miss with refill and no eviction
• Write miss with refill and no eviction
• Read miss with refill and eviction
• Write miss with refill and eviction

12

ECE 4750 Computer Architecture, Fall 2016 Lab 3: Blocking Cache

• Tests which stress entire cache, not just a few cache lines
• Conflict misses
• Capacity misses
• LRU replacement policy by filling up a way
• Tests for a four-bank cache organization
• Tests specifically designed to trigger corner cases in your alternative design
• Testing all or some of the above using random source and sink delays and test memory delays

Note that you need to test the ability for your cache to be used in a four-bank cache organization. In
the test case tables in BlockingCacheFL_test.py, there is a column named nbank. This parameter is
passed to the test harness and then your cache model. You only need to test the cases where nbank
is zero and four. Think critically about how to discriminate between a correct cache implementation
which ignores the bank bits, and an incorrect cache implementation which does not ignore the bank
bits. Then design a sequence of memory transactions, some of which hit (or miss) in the wrong
implementation but miss (or hit) in the correct implementation.

Once you have finished writing your directed tests you should move on to writing random tests.
You can use the same Python-based random test generation system we used in the first lab. Some
suggestions for what you might want to test are listed below. Each of these would probably be a
separate test pattern, or potentially multiple test patterns with different random parameters.

• Simple address patterns, single request type, with random data
• Simple address patterns, with random request types and data
• Random address patterns, request types, and data
• Unit stride with random data
• Stride with random data
• Unit stride (high spatial locality) mixed with shared (high temporal locality)

Writing random tests for memories can actually be quite challenging. With the first lab, the correct
output was trivial to calculate based on the random inputs, but with a memory system the correct
output (i.e., the data we expect in a memory read response) depends on the last write to the corre-
sponding address. To write random tests with random address patterns and/or types, you will need
to keep track of a “reference memory” in your Python script. This reference memory can just be an
array of words. Every time you generate a write request, you should update the reference memory
in addition to generating the appropriate write request. Every time you generate a read request, you
should consult your reference memory to determine what data we expect to be returned in a memory
read response.

You will almost certainly want to use line tracing to visualize the execution of transactions on your
baseline and alternative designs. We have provided some line tracing code for you in the test harness
which traces the cache request/response and memory request/response interfaces. Figure 8 illus-
trates a line trace for the basic test in Figure 7 executing on the baseline design with extra annotations
to indicate what the columns mean. The first columns shows when memory request messages are
sent from the test source into the cache, and the last column shows when memory response messages
are sent from the cache back to the test sink. The second column shows the state of the cache. This
column is critical to understanding the behavior of your cache, but it is not currently implemented
in the lab harness. You will need to modify the line tracing code in your baseline and alternative
designs to append a string representing the current cache state. Use the short state names as given
in the state description list above (e.g., I for STATE_IDLE, TC for STATE_TAG_CHECK). The third and
fourth columns show the memory request and response messages to/from the test memory. Figure 9

13

ECE 4750 Computer Architecture, Fall 2016 Lab 3: Blocking Cache

cycle cachreq state memreq memresp cacheresp
2: (I) (). .
3: in:00:00001000:deadbeef (I) ().
4: # (TC) ().
5: # (IN) ().
6: # (W) (). in:00:0:
7: rd:01:00001000: (I) ().
8: . (TC) ().
9: . (RD) ().

10: . (W) (). rd:01:1:deadbeef

Figure 8: Line Trace for Basic Directed Test – The line trace shows two memory requests sent from
the test source to the cache, the four states each transaction goes through, and then the response
being sent from the cache back to the test sink.

cycle cachreq state memreq memresp cacheresp
2: (I) (). .
3: rd:00:00000010: (I) ().
4: # (TC) ().
5: # (RR) rd:00:00000010: ().
6: # (RW) ()rd:00:0:00...00
7: # (RU) ().
8: # (RD) ().
9: # (W) (). rd:00:0:00000000

10: wr:01:00000010:deadbeef (I) ().
11: # (TC) ().
12: # (WD) ().
13: # (W) (). wr:01:1:
14: rd:02:00000110: (I) ().
15: . (TC) ().
16: . (EP) ().
17: . (ER) wr:00:00000010:00...deadbeef().
18: . (EW) ()wr:00:0:
19: . (RR) rd:00:00000110: ().
20: . (RW) ()rd:00:0:00...00
21: . (RU) ().
22: . (RD) ().
23: . (W) (). rd:02:0:cafecafe

Figure 9: Line Trace for More Involved Directed Test – The line trace shows three memory requests
meant to trigger an eviction of a dirty line. Notice how the third request must go through a total of
10 states as the FSM does tag check, eviction, and refill. Note, only a portion of the bits for the data
field for memory request/responses are shown for simplicity.

illustrates a line trace for a more extensive test that is forcing a line to be evicted. Notice how the line
trace clearly shows what data is moving between the test source/sink, cache, and test memory.

In addition to the tests for the entire cache, you must also add additional unit tests for any datapath
components you add or modify.

14

ECE 4750 Computer Architecture, Fall 2016 Lab 3: Blocking Cache

5. Evaluation

Once you have verified the functionality of the baseline and alternative designs, you should then use
the provided simulator to evaluate these two designs. The simulator delays all responses from the
test memory by 20 cycles to model a long main-memory latency. You can run the simulator to see the
performance of each cache implementation as follows:

% cd ${HOME}/ece4750/lab-groupXX/sim/build
% ../lab3_mem/mem-sim --impl base --pattern loop-1d --stats
% ../lab3_mem/mem-sim --impl alt --pattern loop-1d --stats

We provide you with three input patterns that capture common access patterns in loops. The C code
for each loop that might generate the corresponding pattern is shown in Figure 10. The loop-1d
pattern simply iterates through an array. The loop-2d pattern iterates through the same array five
times. The loop-3d patterns uses a more interesting stride to iterate through an array multiple times.

The simulator will display a collection of statistics: number of cycles, number of memory and cache
accesses, number of misses, miss rate, and the average memory access latency (AMAL). You should
study the line traces (with the --trace option) and possibly the waveforms (with the --dump-vcd
option) to understand the reason why each design performs as it does on the various patterns.

You can run simulations for all given patterns like this:

% cd ${HOME}/ece4750/lab-groupXX/sim/build
% python ../lab3_mem/mem_sim_eval.py

You must add additional evaluation patterns with different amounts of spatial and temporal locality.
We strongly recommend including some patterns that mix reads/writes and random patterns. We
recommend a total of six or more patterns for evaluation. Obviously, these patterns need to be
carefully chosen to highlight the differences between the baseline and alternative designs. You will
also need to add the name of the new dataset to the mem-sim simulator script.

Writing an access pattern for the simulator is similar to writing a test case. Basically for each pattern
you need to write a Python function that returns a list of source messages, a list of sink message, and
a list of memory address-data pairs that will be loaded to the test memory before the simulation. Fig-
ure 11 shows you loop-3d pattern. Please keep in mind that patterns you will write in the simulator
are not for testing. Instead, you need to fully test your designs using test cases and then use patterns
in the simulator script as a way to evaluate your designs.

6. Looking Towards the Multicore System in Lab 5

In lab 5, we will compose the pipelined processor and cache memory designed in labs 2–3 to create
a baseline single-core system, and we will compose the pipelined processor, cache memory, and bus
network designed in labs 2–4 to create the alternative multicore system. You will be developing a se-
rial and parallel sorting microbenchmark, and comparing the performance of this microbenchmark
across the baseline and alternative designs. You will quickly find that the performnace of your al-
ternative multicore system is limited by the hit latency of the cache you designed in this lab. While
we could move to a more aggressive pipelined cache microarchitecture, you can achieve much of the
same benefit by simply merging states in the FSM control unit used in this lab. Ideally, you would
merge enough states to enable a single-cycle hit latency for reads (i.e., a single state for read hits) and
a sustained throughput of one read hit per cycle. This requires performing tag check and data access
in parallel, and carefully handling the val/rdy signals for the cache request and response interfaces.
Writes can potentially use two states to do tag check and data access in sequence, although single-

15

ECE 4750 Computer Architecture, Fall 2016 Lab 3: Blocking Cache

// loop-1d pattern // loop-2d pattern // loop-3d pattern
for (i = 0; i < 100; i++) for (i = 0; i < 5; i++) for (i = 0; i < 5; i++)

result += a[i]; for (j = 0; j < 100; j++) for (j = 0; j < 2; j++)
result += a[j]; for (k = 0; k < 8; k++)

result += a[j*64 + k*4];

Figure 10: Evaluation Patterns – Three loops that correspond to the given evaluation patterns.

1 #---
2 # Pattern: loop-3d
3 #---
4

5 def loop_3d():
6 src_msgs = []
7 sink_msgs = []
8

9 mem_data = []
10 mem_word = Bits(32)
11

12 # Initialize memory
13 addr = 0
14 for i in xrange(2):
15 for j in xrange(8):
16 addr = i*256 + j*16
17 mem_word.value = i*64 + j*4
18 mem_data.append(addr)
19 mem_data.append(mem_word.uint())
20 addr += 4
21

22 # Read from memory
23 for i in xrange(5):
24 for j in xrange(2):
25 for k in xrange(8):
26 addr = j*256 + k*16
27 data = j*64 + k*4
28 src_msgs.append (mk_req (0, addr, 0, 0))
29 sink_msgs.append(mk_resp(0, 0, data))
30

31 return [src_msgs, sink_msgs, mem_data]

Figure 11: loop-3d Pattern for the Simulator – A function that returns source messages, sink mes-
sages, and a memory section for loop-3d access pattern.

cycle hit latency for writes is still possible if the cache response is sent back in the first state. Reducing
the read hit latency is the most critical since this would improve the performance of instruction fetch
in your processor. There is no need to wait until lab 5. Students should feel free to start optimizing
their cache as part of the alternative design in this lab, or after this lab is submitted.

Acknowledgments

This lab was created by Shunning Jiang, Shuang Chen, Ian Thompson, Moyang Wang, Christopher
Torng, Berkin Ilbeyi, Ackerley Tng, Shreesha Srinath, Christopher Batten, and Ji Kim as part of the
course ECE 4750 Computer Architecture at Cornell University.

16

