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In this lab, you will design two pipelined processor microarchitectures for the TinyRV2 instruction
set architecture. After implementing all TinyRV2 instructions, your processors will be capable of ex-
ecuting simple C programs that do not use system calls. The baseline design is a five-stage processor
pipeline that uses stalling to resolve data hazards and the alternative design is a five-stage processor
pipeline that uses bypassing to improve the processor performance. You are required to implement
the baseline and alternative designs, verify the designs using an effective testing strategy, and per-
form an evaluation comparing the two implementations. As with all lab assignments, the majority
of your grade will be determined by the lab report. You should consult the course lab assignment
assessment rubric for more information about the expectations for all lab assignments and how
they will be assessed.

This lab is designed to give you experience with:

• instruction set architecture;
• basic pipelined processor microarchitecture;
• microarchitectural techniques for handling data and control hazards;
• interfacing processors and memories;
• abstraction levels including functional- and register-transfer-level modeling;
• design principles including modularity, hierarchy, and encapsulation;
• design patterns including message interfaces, control/datapath split, and pipelined control;
• agile design methodologies including incremental development and test-driven development.

This handout assumes that you have read and understand the course tutorials and the lab assessment
rubric. You should have already used the ece4750-lab-admin script to create or join a GitHub group.
To get started, login to an ecelinux machine, source the setup script, and clone your lab group’s
remote repository from GitHub:

% source setup-ece4750.sh
% mkdir -p ${HOME}/ece4750
% cd ${HOME}/ece4750
% git clone git@github.com:cornell-ece4750/lab-groupXX

where XX is your group number. You should never fork your lab group’s remote repository! If you
need to work in isolation then use a branch within your lab group’s remote repository. If you have
already cloned your lab group’s remote repository, then use git pull to ensure you have any recent
updates before running all of the tests. You can run all of the tests in the lab like this:

% cd ${HOME}/ece4750/lab-groupXX
% git pull --rebase
% mkdir -p sim/build
% cd sim/build
% py.test ../lab2_proc
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All of the tests for the provided functional-level model should pass, and the tests for a few instruc-
tions we have already implemented for you should pass on the baseline design. For this lab you will
be working in the lab2_proc subproject which includes the following files:

• SparseMemoryImage.py – Class representing memory image for loading test memory
• elf.py – Classes/functions for reading/writing ELF binary files
• tinyrv2_encoding.py – Classes/functions for the TinyRV2 ISA encoding (FL model)
• tinyrv2_semantics.py – Classes/functions for the TinyRV2 ISA semantics (FL model)
• ProcFL.py – FL processor

• DropUnitPRTL.py – PyMTL RTL unit for dropping inst mem response on squash
• DropUnitVRTL.v – Verilog RTL unit for dropping inst mem response on squash
• TinyRV2InstPRTL.py – PyMTL RTL helper constants, functions for TinyRV2 ISA
• TinyRV2InstPRTL.v – Verilog RTL helper constants, functions for TinyRV2 ISA
• ProcDpathComponentsPRTL.py – PyMTL data-path components
• ProcDpathComponentsVRTL.v – Verilog data-path components
• ProcDpathComponentsRTL.py – Wrapper to choose RTL language
• ProcBaseDpathPRTL.py – PyMTL RTL stalling processor’s datapath
• ProcBaseCtrlPRTL.py – PyMTL RTL stalling processor’s control unit
• ProcBasePRTL.py – PyMTL RTL stalling processor
• ProcBaseDpathVRTL.v – Verilog RTL stalling processor’s datapath
• ProcBaseCtrlVRTL.v – Verilog RTL stalling processor’s control unit
• ProcBaseVRTL.v – Verilog RTL stalling processor
• ProcBaseRTL.py – Wrapper to choose RTL language
• ProcAltPRTL.py – PyMTL RTL bypassing processor
• ProcAltVRTL.v – Verilog RTL bypassing processor
• ProcAltRTL.py – Wrapper RTL to choose RTL language

• proc-sim – Processor simulator for evaluation
• proc_sim_eval.py – Script to run all ubmarks on each design
• __init__.py – Package setup

• test/elf_test.py – Tests for elf binary
• test/SparseMemoryImage_test.py – Tests for sparse memory image
• test/tinyrv2_encoding_test.py – Tests for inst encoding
• test/ProcDpathComponentsRTL_test.py– Tests for alu and immgen unit
• test/Proc<impl>_csr_test.py – Tests for csr related insts (<impl> = FL, BaseRTL, AltRTL)
• test/Proc<impl>_rr_test.py – Tests for reg-to-reg insts (<impl> = FL, BaseRTL, AltRTL)
• test/Proc<impl>_rimm_test.py – Tests for reg-to-imm insts (<impl> = FL, BaseRTL, AltRTL)
• test/Proc<impl>_mem_test.py – Tests for memory insts (<impl> = FL, BaseRTL, AltRTL)
• test/Proc<impl>_jump_test.py – Tests for jump insts (<impl> = FL, BaseRTL, AltRTL)
• test/Proc<impl>_branch_test.py – Tests for branch insts (<impl> = FL, BaseRTL, AltRTL)
• test/harness.py – Test harness
• test/inst_<inst>.py – Test cases for each instruction
• test/inst_utils.py – Utility functions and templates for assembly fragment
• test/__init__.py – Package setup

• ubmark/ – Data and assembly code for microbenchmarks

2



ECE 4750 Computer Architecture, Fall 2016 Lab 2: Pipelined Processor

1. Introduction

Pipelining is a design pattern that enables overlapping the execution of multiple transactions. A
pipelined microarchitecture is divided into stages with each stage performing specific tasks in a
similar manner to car manufacturing in an assembly line. Compared to a single-cycle processor,
pipelining reduces the cycle time (clock period) while still approximately achieving an average of
one cycle per instruction (CPI). Compared to an FSM processor, pipelining reduces the CPI while
approximately achieving a similar cycle time (clock period). However, pipelining introduces various
hazards that complicate the control logic. In this lab, you will implement and evaluate two five-stage
pipelined processor microarchitectures that avoid hazards in two different ways: (1) by stalling,
and (2) by bypassing. Later in the course, you will see how modern processors combine pipelin-
ing with more sophisticated techniques to exploit instruction-level parallelism, enabling improved
performance at the cost of increased energy, area, and complexity over this lab.

We will be using the RISC-V instruction set architecture (ISA) for this course and all the labs. More
specifically we will be using the Tiny RISC-V ISA subset which is suitable for teaching. The Tiny
RISC-V ISA was introduced in lecture, and both the full RISC-V ISA manual and the Tiny RISC-V
ISA manual are available on the public course web page. As an example, the specification from the
Tiny RISC-V ISA manual for the add instruction is shown in Figure 1. You will be implementing
the TinyRV2 subset which is sufficient for executign simple C programs. The list of instructions that
constitute TinyRV2 are below.

• CSR : csrr, csrw
• Reg-Reg : add, sub, mul, and, or, xor, slt, sltu, sra, srl, sll
• Reg-Imm : addi, ori, andi, xori, slti, sltiu, srai, srli, slli, lui, auipc
• Memory : lw, sw
• Jump : jal, jalr
• Branch : bne, beq, blt, bltu, bge, bgeu

We have provided you a complete functional-level model of a TinyRV2 processor. You can find this
model in ProcFL.py. The functional-level model executes one instruction at time “magically”. It is
not synthesizable and is purely meant to be used as a reference design. This kind of functional-level
model is often called an “instruction-set-architecture emulator” (or ISA emulator) since it simulates
just the ISA with no microarchitectural details.

Figure 2 shows a block-level diagram illustrating how the baseline and alternative designs are inte-
grated with a test source, test sink, and test memory for testing and evaluation. The interfaces for

* ADD

- Summary : Addition with 3 GPRs, no overflow exception
- Assembly : add rd, rs1, rs2
- Semantics : R[rd] = R[rs1] + R[rs2]
- Format : R-type

31 25 24 20 19 15 14 12 11 7 6 0
+------------+---------+---------+------+---------+-------------+
| 0000000 | rs2 | rs1 | 000 | rd | 0110011 |
+------------+---------+---------+------+---------+-------------+

Figure 1: ADD Instruction from RISC-V ISA Manual – The RISC-V ISA manual specifies the as-
sembly syntax, semantics, and encoding for every instruction in the RISC-V ISA.
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Figure 2: Processor System – The processor is integrated with a test source, test sink, and test mem-
ory for testing and evaluation.

the FL, baseline, and alternative designs are identical. We will load a program (and potentially some
data) into the test memory before resetting the processor. Once the processor starts execution, we
can send test data into the processor using the test source and the csrr instruction, and we can have
the processor verify data using the test sink and the csrw instruction.

We make extensive use of the latency insensitive val/rdy microprotocol in the processor interface.
There are six different val/rdy interfaces.

• mngr2proc : from test source to processor
• proc2mngr : from processor to test sink
• imemreq : instruction memory request
• imemresp : instruction memory response
• dmemreq : data memory request
• dmemresp : data memory response

The processor interacts with the memory using memory messages. The message format for memory
requests and responses are shown in Figure 3. Corresponding PyMTL BitStructs are defined in
pclib here:

• https://github.com/cornell-brg/pymtl/blob/ece4750/pclib/ifcs/MemMsg.py

Similar Verilog structs are defined in vc/mem-msgs.v included within the lab release. Memory
requests use fields to encode the type (e.g., read, write), the address, the length of data in bytes, and
the data. Memory responses use fields to encode the type (e.g., read, write), the length of data in
bytes, and the data. The data field is fixed at 32-bits or four bytes. If the length field is one then only
the least significant byte of the data field (i.e., bits 7–0) is valid. If the length field is two then only
the least significant two bytes of the data field (i.e., bits 15–0) are valid. If the length field is zero then
all four bytes are valid. Both memory requests and responses have an eight-bit opaque field, which
is reserved for use by the requester. Memory systems must ensure that the exact same opaque field
is included in the corresponding response. For now you should always set the opaque field to zeros.
Memory response messages also include a test field that is for testing memory systems. For now you
can ignore this field.
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76 74 73 66 65 34 33 32 31 0

Mem Req type opaque addr len data

46 44 43 36 35 34 33 32 31 0

Mem Resp type opaque test len data

Figure 3: Memory Request/Response Message Formats – Memory request messages are sent from
the processor to the memory, while memory response messages are sent from the memory back to
the processor.

The processor sends a memory request message across a val/rdy interface to the memory, and then
the memory will send a response message back to the processor one or more cycles later. You can
assume that the memory will always take at least one cycle (i.e., there will be one clock edge between
when the request is sent and when the response is received), but you cannot assume how many
cycles it will take for the response to return. The response could return in one cycle or 100 cycles.
You must also correctly deal with situations where the memory is not ready to accept a request. This
means you must carefully handle the val/rdy signals to ensure correct operation. For example, your
designs will need to wait if the manager or memory is not ready yet, and your designs will also need
to wait if a message from the manager or memory has not arrived yet. Using latency insensitive
interfaces will enable us to easily compose our processor designs with the memories and networks
we design later in the course.

2. Baseline Design

The baseline design for this lab assignment is a five-stage stalling processor that supports the TinyRV2
ISA. As with the first lab, we will be decomposing the baseline design into two separate modules: the
datapath which has paths for moving data through various arithmetic blocks, muxes, and registers;
and the control unit which is in charge of managing the movement of data through the datapath.
Unlike the first lab, the control unit will not use an FSM but will instead use pipelined control logic.
Because the processor design is significantly more complicated than the previous designs we have
worked on, we have decided to place the datapath module, control unit module, and the parent
module that connects the datapath and control unit together in three different files.

Our pipelined processors have five stages: F – fetch instructions, increment PC; D – decode instruc-
tions, read register operands, handle jumps; X – arithmetic operations, address generation, branch
comparison; M – access data memory; and W – write register file. The datapath for the baseline de-
sign is shown in Figure 14. The blue boxes and signals indicate the control and status signals between
the control and datapath units. To help you get started, we have already implemented three primary
instructions (add, lw, bne). We have also implemented the csrr (move from the test manager) and
csrw (move to the test manager) instructions which are used for testing. Figure 15 illustrates the
datapath that we provide to get you started.

Your datapath module should instantiate a child module for each of the blocks in the datapath di-
agram; in other words, you must use a structural design style in the datapath. You will need to
add and/or modify datapath components as you support more TinyRV2 instructions in your base-
line design. Although you are free to develop your own modules to use in the datapath, you can
also use the ones provided for you in pclib and vclib. We have also provided you the initial im-
plementations of the immediate generator unit and the ALU (see ProcDpathComponentsPRTL.py or
ProcDpathComponentsVRTL.v). You will need to add functionality to the each of these modules as
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Figure 4: Processor Datapath and Control Composition – In addition to the datapath and control
unit, the processor also includes bypass queues on output val/rdy interfaces and a drop unit for the
input val/rdy instruction memory response interface.

you add more instructions to the baseline design. As you add and/or modify datapath components,
you will also need to add another row to the control signal table in the control unit and potentially
more columns in the control signal table to handle new control signals.

If you look carefully at the datapath diagram in Figure 14, you will notice several important dif-
ferences from the basic pipeline discussed in lecture. The TinyRV1 processor described in lecture
assumed a combinational memory where the memory response would always be returned in the
same cycle as the memory request. This simplified our discussion, but it prevents composing the
processor with more sophisticated memory systems that may be busy and/or take multiple cycles.
As mentioned above, our memory interface assumes that a response can be returned in one or more
cycles after the request. This means we must send the request into the memory system one cycle
earlier than we would with a purely combinational memory system. Notice that the address for a
data request (due to a load/store instruction) is sent into the memory system at the end of the X stage,
not the beginning of the M stage. This allows the read data to be returned at the end of the M stage.
Similarly, the instruction address is sent into the memory system before the F stage. This allows the
instruction to be returned at the end of the F stage.

Figure 4 shows how the datapath and control unit are composed in the top-level processor model.
Note that we include several additional components in this composition. We include bypass queues
on output val/rdy interfaces. If a bypass queue is empty, then the message “bypasses” the queue
and is immediately sent out the corresponding val/rdy interface. If the val/rdy interface is not
ready, then we can buffer the message in the bypass queue. These queues simplify our processor
implementation since they remove the requirement that a valid signal cannot depend on a ready
signal. Note that the queue on the imemreq interface actually requires two elements of buffering;
this extra buffering ensures that we always have a place to put new instruction memory requests
when we are redirecting the control flow at the front-end of the pipeline, even if the front-end of
the pipeline is stalled. There is one more subtle but very important issue we must consider when
using this kind of latency insensitive interface for our memory system. Once we send a memory
request into the memory system we cannot “cancel” that request. This is not a problem with data
memory requests since we never need to cancel such a request. The situation is more complicated for
instruction memory requests. When we need to squash instructions at the beginning of the pipeline
due to a control hazard, we also need to handle instruction memory requests that are currently in
flight. Since we cannot actually cancel these instruction memory requests, we insert a special drop
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unit (see DropUnitPRTL.py or DropUnitVRTL.v) where the instruction memory response comes back
into the processor. When we squash an instruction, we also tell the drop unit to remember to drop
the next instruction that is returned from the memory system. Note that the baseline processor we
provide you already correctly interacts with the memory system, so you should hopefully not have
to worry too much about these subtle issues.

You will use the variable-latency integer multiplier that you worked so hard on in the first lab to
implement the mul instruction. If you are using PyMTL for this lab, you can import your multiplier
like this:

from lab1_imul import IntMulAltRTL

This should work regardless of whether you used PyMTL or Verilog for the first lab. If you are using
Verilog for this lab, and also used Verilog for the first lab, you can import your multiplier like this:

`include "lab1_imul/IntMulAltVRTL.v"

If you used PyMTL for the first lab and would like to use Verilog for this lab, please speak with the
instructors on how to proceed. Send the request to the multiplier in the D stage and wait for the
response in the X stage. Integrating the multiplier unit into the processor can be difficult since you
will need to carefully manage the val/rdy signals for requests to the multiplier and for responses
from the multiplier. Here are some hints to get you started:

• imul.req.val: This signal is sent from the D stage of the processor to the multiplier. You should
factor the D stage’s stall signal into the logic for setting the multiplier’s request val signal, since
if the D stage is stalling we do not want to send a request into the multiplier (otherwise we might
end up sending the same request multiple times while we continue to stall!).

• imul.req.rdy: This signal is sent from the multiplier back to the D stage of the processor. You
should factor the multiplier’s request rdy signal into the ostall logic for the D stage, since if the
multiplier is not ready to accept a new request you must originate a stall. You should always
originate a stall in D if the multiplier is not ready regardless of what instruction is in the D stage
(e.g., we do not want an add instruction to “slip by” a multiply instruction that is using the
multiplier).

• imul.resp.val: This signal is sent from the multiplier back to the X stage of the processor. If a
mul instruction is in the X stage, then you should factor the multiplier’s response val into the
ostall logic for the X stage. If the multiplier has not returned the response, we must wait for the
multiplier to finish.

• imul.resp.rdy: This signal is sent from the X stage of the processor to the multiplier. You should
factor the X stage’s stall signal into the logic for setting the multiplier’s response rdy signal, since
if the X stage is stalling we do not want to accept a response from the multiplier (we have no
where to store that response since we are stalling!).

We strongly encourage you to use an incremental development design methodology. You should
add one instruction at a time to your baseline processor, test that instruction, ensure it is work-
ing, and then move onto the next instruction. We recommend implementing the instructions in the
following order: register-register arithmetic instructions, register-immediate instructions, memory
instructions, jump instructions, branch instructions. We do not recommend waiting until the end to
add the mul instruction. Since the mul instruction uses a val/rdy interface, it is probably easier to
integrate it into the pipeline after completing the other register-register arithmetic instructions.
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1 always_comb begin
2 casez ( inst_D )
3 // br imm rs1 op2 rs2 alu dmm wbmux rf
4 // val type type en muxsel en fn typ sel wen csrr csrw
5 `RV2ISA_INST_NOP :cs( y, br_na, imm_x, n, bm_x, n, alu_x, nr, wm_a, n, n, n );
6 `RV2ISA_INST_ADD :cs( y, br_na, imm_x, y, bm_rf, y, alu_add, nr, wm_a, y, n, n );
7 `RV2ISA_INST_LW :cs( y, br_na, imm_i, y, bm_imm, n, alu_add, ld, wm_m, y, n, n );
8 `RV2ISA_INST_BNE :cs( y, br_bne, imm_b, y, bm_rf, y, alu_x, nr, wm_a, n, n, n );
9 `RV2ISA_INST_CSRR :cs( y, br_na, imm_i, n, bm_csr, n, alu_cp1, nr, wm_a, y, y, n );
10 `RV2ISA_INST_CSRW :cs( y, br_na, imm_i, y, bm_rf, n, alu_cp0, nr, wm_a, n, n, y );
11

12 `RV2ISA_INST_ADDI :cs( y, br_na, imm_i, y, bm_imm, n, alu_add, nr, wm_a, y, n, n );
13

14 default :cs( n, br_x, imm_x, n, bm_x, n, alu_x, nr, wm_x, n, n, n );
15 endcase
16 end

Figure 5: Updated Control Signal Table for addi in Baseline Design

To add a new instruction to the baseline design, first update Figure 15 with any changes you need to
support the new instruction, update the code for the datapath, update the control signal table in the
control unit, update the top-level module, and thoroughly test your instruction before moving onto
the next instruction. For example, the addi instruction only requires a new row in the control signal
table. Figure 5 shows what the Verilog control signal table would look like for the baseline processor
after adding the addi instruction to the five instructions we provide. We need to specify that this is a
valid instruction, it is not a branch, that the rs1 field is valid, that the operand mux is set to select the
immediate, the ALU function is set to add, it is not a data memory instruction, the write-back data
comes from the ALU output, and the instruction writes the register file. Note that the write register
address is always rd according to RISC-V ISA manual. To implement the jal instruction we would
need to change both the datapath and the control unit. In the datapath, we would connect the sum
of the generated immediate and PC to another input of the PC select mux, and as a consequence the
pc_sel_F control signal would need to be wider than 1 bit. In the control unit, we need to add a
column in the control signal table indicating if this instruction is jal. In the D stage there should
be some logic to redirect the PC (pc_sel_D). For example, you should have a pc_redirect_D signal
set to be high if the instruction is valid and it is a jump. In the F stage, you need to factor in both
the branch (pc_redirect_X) and jump (pc_redirect_D) to decide pc_sel_F, which is the signal used
to set the pc_sel_mux_F in the datapath. jalr is probably the most interesting instruction. As you
can see from the baseline processor datapath diagram, you might ask why is there another PC+4
incrementer in X stage? (Hint: how is the jalr_target calculated and why?)

You will end up with around 13 or so different operations in your ALU. Most of these are pretty
straight-forward. You can use standard arithmetic, shift, comparison, and logical operators, but all of
these operators are agnostic to whether the inputs are signed or unsigned. For example, the addition
operator (+) will work correctly regardless of whether or not the inputs are signed or unsigned (this
is the beauty of two’s complement!). However, some instructions will require ALU operations that
are specifically designed to treat the inputs as signed values. More specifically, students will need to
carefully consider the slt (register-register signed-less-than), slti (register-immediate signed-less-
than), sra (shift right arithmetic), blt (branch signed-less-than), and bge (branch signed-greater-
than-or-equal). Figure 6 shows how to implement signed-less-than and signed-right-shift on 32-
bit input signals in Verilog. The $signed system task indicates that a value should be treated as a
signed value. The >>> Verilog operator is specifically designed for signed-right-shift operations. Both
$signed and >>> are synthesizable and allowed according to the course Verilog usage rules. Figure 7
shows how to implement signed-less-than and signed-right-shift on 32-bit input signals in PyMTL.
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1 # signed-less-than operation
2

3 logic slt;
4 assign slt = $signed(a) < $signed(b);

1 # signed-right-shift
2

3 logic [31:0] srs
4 assign srs = $signed(a) >>> b

Figure 6: Verilog Signed Less-Than and Right-Shift

1 # signed-less-than operation
2

3 s.slt = Wire(1)
4

5 @s.combinational
6 def block():
7 tmp = sext( a, 33 ) - sext( b, 33 )
8 s.slt.value = tmp[32]

1 # signed-right-shift
2

3 s.srs = Wire(32)
4

5 @s.combinational
6 def block():
7 tmp = sext( a, 64 ) >> b
8 s.srs.value = tmp[0:32]

Figure 7: PyMTL Signed Less-Than and Right-Shift

Since PyMTL does not have $signed and >>>, we must be a bit more clever. For signed-less-than,
we simply subtract the two inputs and check if the result is less than zero using the sign bit. We
need to sign-extend the inputs by one bit to avoid overflow or underflow. For signed-right-shift, we
simply sign-extend the input before using the standard right shift operator. Students are strongly
encouraged to experiment with small code snippets until they feel comfortable with these signed
operations.

3. Alternative Design

The alternative design for this lab is a five-stage bypassing processor for the same TinyRV2 ISA.
Once you get your baseline design working and passing all of your tests, you should copy your
baseline processor design into ProcAltDpathPRTL.py, ProcAltCtrlPRTL.py, and ProcAltPRTL.py
(or ProcAltDpathVRTL.v, ProcAltCtrlVRTL.v, and ProcAltVRTL.v), and then start working on the
alternative design. Bypassing avoids data hazards by forwarding values from later pipeline stages to
earlier stages. Your design should be fully-bypassed, i.e., it should be possible to forward values from
the end of the X, M, and W stages to the instruction in D stage. To add bypassing to the processor,
you will need to add bypass muxes to the datapath. Examine the datapath for the baseline design
and determine where the muxes would need to be placed, as well as where the values would need
to be bypassed from. We should emphasize that the goal is not just to pass the tests, but to pass
the tests with a fully bypassed datapath. Check your line traces for your tests, and also judge your
performance in your evaluation to make sure your design is working as you expect. Keep in mind
that implementing bypassing does not remove the need to stall in some cases. Specifically, load-
use dependencies cannot be avoided by bypassing data; you will still need to stall in this case. We
strongly encourage you to use an incremental development design methodology. Add bypass paths
from one stage and test your design before starting to add the next set of bypass paths.

4. Testing Strategy

We provide you with one very basic test for each instruction in TinyRV2. We have also provide more
comprehensive directed and random tests for add, lw, bne, csrr, csrw, and, andi, or, ori, xor, xori.
Writing tests for this lab will be very challenging due to both the number of instructions and the
number of cases we need to test for each instruction. As with the previous lab, you will want to
initially write tests using the functional-level model (ISA emulator). Once these tests are working on
the ISA emulator, you can move on to testing the baseline and alternative designs.
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The following commands illustrate how to run all of tests for the entire project, how to run just the
tests for this lab, and how to just the tests for a specific model, and how to run just the tests for add
instruction for each each model.

% cd ${HOME}/ece4750/lab-groupXX/sim/build
% py.test ..
% py.test ../lab2_proc
% py.test ../lab2_proc/test/ProcFL_*_test.py
% py.test ../lab2_proc/test/ProcBaseRTL_*_test.py
% py.test ../lab2_proc/test/ProcAltRTL_*_test.py
% py.test ../lab2_proc/test/ProcFL_rr_test.py -k test_add
% py.test ../lab2_proc/test/ProcBaseRTL_rr_test.py -k test_add
% py.test ../lab2_proc/test/ProcAltRTL_rr_test.py -k test_add

All of the tests should pass on the FL model, and as you add more tests and incrementally develop
your designs you will slowly start passing more and more of the tests for your baseline and alterna-
tive designs. The baseline processor that we provide to get you started will pass all of the tests for
the add, lw, csrr, and csrw instructions. It should pass the very first test, but will fail the remaining
tests for the bne instruction for example. This is because we use the addi instruction in most of our
control flow tests. Once you implement and test the addi instruction the remaining tests should start
passing for the bne instruction.

Our directed testing will be done using short assembly sequences represented as multi-line Python
strings. Each assembly sequence usually starts with one or more csrr instructions to receive input
data from the test source, and ends with one or more csrw instructions to send output data to the
test sink for verification. You will need to think critically about how to test each instruction. Pick
one instruction, think through what it does, and trace its flow through the datapath diagram. Where
can things go wrong? You can choose large or small values, force stalls or bypassing, or stress its
interaction with other instruction classes. You will need many assembly sequences for each instruc-
tion to test basic operation, proper handling of hazards, various input values, and random delays on
the test source, sink, and memory. Once you have thoroughly tested an instruction of one class (e.g.,
register-register instructions, branch instructions), you can usually leverage a very similar approach
for other instructions in that class.

Each assembly sequence is generated by Python functions defined in the test subdirectory. You can
use the assembly sequence generation functions that we provide in test/inst_add.py, test/inst_lw.py,
and test/inst_bne.py as examples. Note that these examples use helper functions defined in
test/inst_utils.py. You are free to use these helper functions in your own assembly sequence
generation functions. Developing these assembly sequences can be tedious, so we strongly encour-
age students to leverage the productivity of Python to create parameterized helper functions.

Figure 8 shows a simple assembly program that is meant to illustrate the assembly syntax we will be
using for testing. Note that this program does not make a very good unit test since it uses too many
instructions all at once. However, an assembly sequence like this might be a reasonable integration
test once all instructions have been unit tested individually. Comments are denoted with the # char-
acter. All registers are denoted using xN where N is the register number. Immediate literals can be in
either signed decimal (e.g., 16 or -16), hexidecimal (e.g., 0x10), or binary (e.g., 0b10000). Labels are
allowed (e.g., loop: on line 7) and can also be used as the target for control flow instructions (e.g.,
bne instruction on line 14). Note the special syntax for specifying the values that should be retrieved
from a test source, or the values expected in a test sink. On line 1, we send the value 0x2000 from
the test source into the processor where it is written to register x2. On line 20, we send the value in
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1 # Send value 0x00002000 from test source into processor
2 csrr x2, mngx2proc < 0x00002000
3 csrr x4, mngx2proc < 0x00002010
4

5 # Loop over four elements in array
6 addi x1, x0, 4
7 loop:
8 lw x3, 0(x2)
9 addi x3, x3, 1
10 sw x3, 0(x4)
11 addi x2, x2, 4
12 addi x4, x4, 4
13 addi x1, x1, -1
14 bne x1, x0, loop
15

16 # Read out the four results and send to test sink for verification
17

18 addi x1, x0, 0x2010
19 lw x2, 0(x1)
20 csrw proc2mngr, x2 > 2
21

22 addi x1, x0, 0x2014
23 lw x2, 0(x1)
24 csrw proc2mngr, x2 > 3
25

26 addi x1, x0, 0x2018
27 lw x2, 0(x1)
28 csrw proc2mngr, x2 > 4
29

30 addi x1, x0, 0x201c
31 lw x2, 0(x1)
32 csrw proc2mngr, x2 > 5
33

34 # Data section
35 .data
36

37 # src array
38 .word 0x00000001
39 .word 0x00000002
40 .word 0x00000003
41 .word 0x00000004
42

43 # dest array
44 .word 0x00000000
45 .word 0x00000000
46 .word 0x00000000
47 .word 0x00000000

Figure 8: Example Assembly Program Illustrating Acceptable Syntax

register x2 out to the test sink, where the sink will expect to see the value 2. If the sink receives a
value other than 2, then it will cause a test sink failure. Please keep in mind that the messages are
added to the test source and sink in static program order. In other words, the messages are added to
the test source and sink in the order they appear in the static assembly sequence regardless of any
control flow. The very first instruction in an assembly sequence that we load into memory is always
at address 0x200. As illustrated on line 35, data is specified in a special .data section which is al-
ways located at address 0x2000. Raw values can be initialized in the data section using .word (see
lines 38–41).

Figure 9 shows example assembly sequence generation functions that test the addi instruction. The
gen_single_dest_dep_test function is meant to just test that the processor correctly resolves RAW

11
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1 def gen_single_dest_dep_test( num_nops,
2 src, imm, result ):
3 return """
4 csrr x1, mngr2proc < {src}
5 nop
6 nop
7 nop
8 nop
9 nop
10 nop
11 nop
12 nop
13 addi x3, x1, {imm}
14 {nops}
15 csrw proc2mngr, x3 > {result}
16 """.format(
17 nops = gen_nops( num_nops ),
18 **locals()
19 )
20

21 def gen_dest_dep_test():
22 return [
23 gen_single_dest_dep_test( 5, 1, 1, 2 ),
24 gen_single_dest_dep_test( 4, 2, 1, 3 ),
25 gen_single_dest_dep_test( 3, 3, 1, 4 ),
26 gen_single_dest_dep_test( 2, 4, 1, 5 ),
27 gen_single_dest_dep_test( 1, 5, 1, 6 ),
28 gen_single_dest_dep_test( 0, 6, 1, 7 ),
29 ]

Figure 9: Example Assembly Sequence
Generation Function for addi Instruction

1 def gen_multijump_test():
2 return """
3

4 # Use x3 to track the control flow pattern
5 addi x3, x0, 0 # 0x00000200
6

7 jal x1, label_a # j -. # 0x00000204
8 addi x3, x3, 0b000001 # | # 0x00000208
9 # | #
10 label_b: # <--+-. #
11 addi x3, x3, 0b000010 # | | # 0x0000020c
12 addi x5, x1, 0 # | | # 0x00000210
13 jal x1, label_c # j -+-+-. # 0x00000214
14 addi x1, x3, 0b000100 # | | | # 0x00000218
15 # | | | #
16 label_a: # <--' | | #
17 addi x3, x3, 0b001000 # | | # 0x0000021c
18 addi x4, x1, 0 # | | # 0x00000220
19 jal x1, label_b # j ---' | # 0x00000224
20 addi x3, x3, 0b010000 # | # 0x00000228
21 # | #
22 label_c: # <------' #
23 addi x3, x3, 0b100000 # # 0x0000022c
24 addi x6, x1, 0 # # 0x00000230
25

26 # Carefully determine which bits are expected
27 # to be set if jump operates correctly.
28 csrw proc2mngr, x3 > 0b101010
29

30 # Check the link addresses
31 csrw proc2mngr, x4 > 0x00000208
32 csrw proc2mngr, x5 > 0x00000228
33 csrw proc2mngr, x6 > 0x00000218
34 """

Figure 10: Example Assembly Sequence
Generation Function for jal Instruction

1 from test import inst_addi
2

3 @pytest.mark.parametrize( "name,test", [
4 asm_test( inst_addi.gen_basic_test ),
5 asm_test( inst_addi.gen_dest_dep_test ),
6 ])
7 def test_addi( name, test ):
8 run_test( ProcFL, test )

Figure 11: Example Test Function for addi in
ProcFL_rimm_test.py

1 def test_add_rand_delays( dump_vcd ):
2 run_test( ProcBaseRTL,
3 inst_add.gen_random_test,
4 dump_vcd,
5 src_delay = 3,
6 sink_delay = 5,
7 mem_stall_prob = 0.5,
8 mem_latency = 3 )

Figure 12: Example Test Function for add with
Random Delays in ProcBaseRTL_rr_test.py

hazards for the destination register (i.e., that the consuming csrw instruction correctly stalls or by-
passes the result of the instruction under test). We include plenty of nop instructions before the
instruction under test to ensure there are no RAW hazards with reading the source register. The
gen_single_dest_dep_test function is parameterized by the number of nops to insert after the in-
struction under test. The gen_nops helper function is included as part of test/inst_utils.py. The
assembly sequence generation function is also parameterized by the input value, immediate value,
and expected result. The gen_dest_dep_test uses the gen_single_dest_dep_test to generate a
more complicated sequence of six tests. You can use the Python interpreter and print statements to
verify that the generated assembly is as expected.

12
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Figure 10 shows an example assembly sequence generation function that tests the jal instruction.
Testing control flow instructions is particularly challenging since our test sink verifies values not
control flow. We use the addi instruction to “track” the control flow; whenever we want to record that
processor visited a certain point in our assembly sequence, we simply set a unique bit in a common
register (x3 in this case). Then at the end of the assembly sequence, we can send this common register
to the test sink and verify that only the expected bits are set (i.e., that the processor only visited the
expected points in our assembly sequence). There are 12 bits in the immediate field, but you should
only use 11 bits to avoid issues with sign extension. This means you can track up to 11 control flow
points in a single assembly sequence.

Once we have developed assembly sequence generation functions in test, we can then use these
generation functions to create the actual unit tests for the various processor implementations. These
unit tests are divided into six categories and six corresponding test scripts for each implementation
(FL, baseline, alternative):

• Proc<impl>_csr_test.py – Tests for csr insts (<impl> = FL, BaseRTL, AltRTL)
• Proc<impl>_rr_test.py – Tests for reg-to-reg insts (<impl> = FL, BaseRTL, AltRTL)
• Proc<impl>_rimm_test.py – Tests for reg-to-imm insts (<impl> = FL, BaseRTL, AltRTL)
• Proc<impl>_mem_test.py – Tests for memory insts (<impl> = FL, BaseRTL, AltRTL)
• Proc<impl>_jump_test.py – Tests for jump insts (<impl> = FL, BaseRTL, AltRTL)
• Proc<impl>_branch_test.py – Tests for branch insts (<impl> = FL, BaseRTL, AltRTL)

Each test script already has the basic test we provide for you. To add more tests you simply add
more rows to the py.test parameterized function. You should always start by running your tests
on the FL model to ensure that the test themselves are correct. So if we want to actually use the
gen_dest_dep_test assembly sequence generation function on the FL model, we would modify the
ProcFL_rimm_test.py test script as shown in Figure 11. We can run all of the tests for the addi
instruction and then just the new test case like this:

% cd ${HOME}/ece4750/lab-groupXX/sim/build
% py.test ../lab2_proc/test/ProcFL_rimm_test.py -k test_addi
% py.test ../lab2_proc/test/ProcFL_rimm_test.py -k test_addi[dest_dep

Once we are sure our tests pass on the FL model, then we can add a similar line to ProcBaseRTL_rimm_test.py
to test the baseline design. Finally, we can and a similar line to ProcAltRTL_rimm_test.py to test the
alternative design. We can use a similar process to run the gen_dest_dep_test assembly sequence
generation function on the FL, baseline, and alternative models.

In addition to testing the functionality of each instruction, we also want to make sure every instruc-
tion functions correctly when faced with random delays on the test source, sink, and memory. Fig-
ure 12 illustrates the random delay testing we provide for the add instruction in ProcBaseRTL_rr_test.py.
You will need to add similar random delay testing for each instruction you implement.

You will almost certainly want to use line tracing to help you visualize instructions moving through
the pipeline. We have provided most of the important line tracing code for you in the baseline
design. Figure 13 illustrates a line trace from the baseline design for a assembly sequence generated
to test the add instruction. Extra annotations are included to indicate what the columns mean. The
first column shows when data is sent from the test source into the processor, and the last column
shows when data is sent from the processor to the test sink. The middle five columns show the
five pipeline stages with the PC shown in the F stage, the disassembled instruction in the D stage,
and a short four-character instruction mnemonic in the X, M, and W stages. The # symbol means
an instruction is stalling in that stage, and the ~ symbol means an instruction is being squashed in
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fetch decode exe mem wb
cycle from src PC instruction inst inst inst to sink

0: . > | | | | > .
1: # > 00000200| | | | >
2: 00000001 > 00000204|csrr x01, 0xfc0 | | | >
3: # > 00000208|nop |csrr| | >
4: # > 0000020c|nop |nop |csrr| >
5: # > 00000210|nop |nop |nop |csrr >
6: # > 00000214|nop |nop |nop |nop >
7: # > 00000218|nop |nop |nop |nop >
8: 00000002 > 0000021c|csrr x02, 0xfc0 |nop |nop |nop >
9: # > # |# |csrr|nop |nop >

10: # > # |# | |csrr|nop >
11: # > # |# | | |csrr >
12: # > 00000220|add x03, x01, x02 | | | >
13: # > 00000224|nop |add | | >
14: # > 00000228|nop |nop |add | >
15: # > 0000022c|nop |nop |nop |add >
16: # > 00000230|nop |nop |nop |nop >
17: # > 00000234|nop |nop |nop |nop >
18: # > 00000238|csrw x03, 0x7c0 |nop |nop |nop >
19: 0000000e > 0000023c|csrr x01, 0xfc0 |csrw|nop |nop >
20: # > 00000240|nop |csrr|csrw|nop >
21: # > 00000244|nop |nop |csrr|csrw > 00000003

Figure 13: Line Trace for ADD Directed Test – The line trace clearly shows the instructions going
down the pipeline. Each line corresponds to one cycle, and the columns correspond to the test source,
test sink, and each of the five pipeline stages.

that stage. Debugging through line tracing alone will simply not be possible; students will almost
certainly need to use gtkwave to view VCD waveforms for debugging as well.

We cannot stress enough how important it is for students to take an incremental, test-driven design
approach. Students should implement one and only one new instruction by modifying the datap-
ath and control unit. Students should then implement the corresponding unit tests, verify that the
tests are correct on the FL model, then verify that their baseline design passes the same test. Then,
and only then, should students move onto the next instruction. As mentioned above, we recom-
mend implementing the instructions in the following order: register-register arithmetic instructions,
register-immediate instructions, memory instructions, jump instructions, branch instructions.

In addition to the assembly tests for each instruction, you must also add additional unit tests for any
datapath components you add or modify. So when you add new operations to the ALU, you must
add corresponding unit tests to ProcDpathComponentsRTL_test.py.

5. Evaluation

Once you have verified the functionality of the baseline and alternate design, you can use the pro-
vided simulator to evaluate your two designs. You can run the simulator like this:

% cd ${HOME}/ece4750/lab-groupXX/sim/build
% ../lab2_proc/proc-sim --impl base --input vvadd-unopt --verify --stats
% ../lab2_proc/proc-sim --impl alt --input vvadd-unopt --verify --stats --trace

The simulator will display the total number of cycles to execute the specified benchmark. It will
also show you the instruction count and the CPI. You can choose the implementation you want to
evaluate with the --impl command line option. You should study the line traces (with the --trace
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command line option) to understand the reason why each design performs as it does on the various
benchmarks. The --verify command line option enables verification by checking the output array
to see if the values are as expected. The benchmarks provide non-trivial and realistic sequences of
instructions, so passing the verification is a good sanity check that your processor is working as
expected. Having said this, the simulator is not meant for verifying your design; you should use
a systematic testing strategy to ensure your design is fully functional before attempting to use the
simulator.

We have provided you with four different benchmarks and two versions for vvadd. These bench-
marks are:

• vvadd-unopt : Element-wise vector-vector add (unoptimized)
• vvadd-opt : Element-wise vector-vector add (optimized)
• cmult : Element-wise complex multiplication
• bsearch : Binary search in a linear array of key/value pairs
• mfilt : Masked convolution on a small image

For vvadd we provide both unoptimized and optimized versions. The optimized version unrolls the
loop to minimize both data and control hazards. Each of these benchmarks are in their respective
proc_ubmark_<ubmark>.py file and there is more information on what each algorithm does as well
as a C code snippet, the assembly instructions, and the input and reference data used for verification.
You should take a look at these to get a feeling on what each benchmark does.

6. Looking Towards the Multicore System in Lab 5

In lab 5, we will compose the pipelined processor and cache memory designed in labs 2–3 to create
a baseline single-core system and we will compose the pipelined processor, cache memory, and bus
network designed in labs 2–4 to create the alternative multicore system. You will be developing a se-
rial and parallel sorting microbenchmark, and comparing the performance of this microbenchmark
across the baseline and alternative designs. You will quickly find that the performance of your alter-
native multicore system is limited by the hit latency of the cache you will design in lab 3, but after
optimizing the hit latency the next critical performance bottleneck will likely be the branch resolution
latency of your pipelined processor. Our sorting microbenchmark will have one or more loops, and
the pipelined processor designed in this lab will almost always mispredict the backwards branch
used in loops. After the midterm, we will learn about dynamic hardware branch prediction tech-
niques. Adding a simple branch target buffer (BTB) in the F stage could have a significant impact on
the performance of the sorting microbenchmark by effectively eliminating almost all squashes due
to the backwards branch used in loops. There is no need to wait until lab 5. More advanced students
should feel free to start optimizing their pipelined processor as part of the alternative design in this
lab, or after this lab is submitted. You will need to read ahead to learn about BTBs. A simple, yet
effective approach would be to include a four entry BTB in the F stage. Each entry would include
a valid bit, the PC of the branch, and the target address for the branch when it is taken. In the F
stage, your processor would need to search the BTB for the current PC. If there is a hit, then the F
stage can use the corresponding target address in the BTB. If there is a miss, then the F stage can
simply use PC+4. If a branch is taken, then in the X stage we would need to write the BTB with the
corresponding PC of the branch and target address. This is obviously a very simple predictor. More
complicated schemes are certainly possible.
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Figure 14: Baseline Design: Five-Stage Stalling Processor Datapath
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Figure 15: Initial Baseline Design Provided To Students
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