
Lecture 25:

Spring 2025

1

Exceptions
Input/Output

ECE 2300
Digital Logic & Computer Organization

Lecture 25: 2

Announcements
• HW 8 due tomorrow

• Lab 5 due next Monday
– Download latest zip file from CMS

• Final exam: Saturday May 10th, 9am @ PHL 101,
100 mins
– Cumulative; More on coverage next lecture
– Sample final is posted on CMS
– TA-led review session on Thursday May 8, 7:30pm
– OH schedule in final week will be announced soon

Lecture 25: 3

Virtual Memory (True or False)
• Program counter (PC) holds a virtual address

• Different processes (running programs) share
the same page table

• The TLB is typically implemented using DRAM

• Page fault occurs when there is a TLB miss
followed by a Page Table miss

Lecture 25:

Review: Virtual Memory Concepts

4

Virtual address space
of process A

Physical address space

Virtual address space
of process B

• Each process (active instance of a program) has its own virtual
address space

– Allows developers to write software as if it owns all of the computer’s memory
– Each process also has its own page table

• The virtual page to physical page mapping is dynamically
managed by the OS

memory page

Lecture 25:

Review: Page Table Access

5

Virtual page number
(VPN) is used to index
the page table;

PTR+VPN form the
physical address of the
page table entry (PTE) to
access

The Page Table Register (PTR) is a special CPU register for
locating the page table in the physical MM

Lecture 25:

Review: Translation Lookaside Buffer (TLB)

6

accessed only
on a TLB miss

• Small cache of recently accessed PTE (typically 16-512
entries, fully associative)

Data: physical
page number

Tag: virtual page
number

Lecture 25:

Accessing the TLB and the Cache
• Cache usually uses physical addresses since it

holds a subset of what is in MM

7

Byte
offsetIndexTag

Cache

=

Virtual page number Page offsetvirtual
address

TLB

Physical page number Page offsetphysical
address

Lecture 25: 8

Analogy for TLB

Lecture 25:

Exceptions and Interrupts
• Useful methods for signaling the CPU that some event

has occurred that requires action
– In response, the CPU may suspend the running program in order

to handle the exception/interrupt

• Exceptions are used to handle conditions that arise
when executing instructions on the processor
– Detected by the processor itself

• Interrupts are used to handle (asynchronous) events
external to the processor
– I/O device request, external error or malfunction

9

Lecture 25:

Why are Exceptions Useful?
• Handle unexpected events

– Overflow, divide-by-zero, invalid opcode, memory protection
violation, etc.

• Handle page faults

• Allow user programs to get service from the OS
– A system call creates an exception that kicks out the user

program and transfers control to exception handler

• An exception handler is OS-managed code that
responds to exceptions and dispatches the right OS
service routine based on the exception type

10

Lecture 25: 11

Pipeline with Exception Handling

CU
=?

sign bit

ALU

Adder

IF/ID ID/EX EX/MEM MEM/WB

MB

M
U
X

M
U
X

M
U
X

M
U
X

M
U
X

LD
SA
SB
DR

D_in

RF
P
C

PCL

M
U
X

PCJ

+2

L1
Inst

$

D
ecoder

SE

M
U
X

MD

MW

D_IN

L1
Data

$

Fm … F0

Control
Signals

Data
TLB

Inst
TLB

Exception
PC

Exception
Cause

EL

exception

PC of the
exception
handler

Lecture 25:

Pipeline with Exception Handling
When an Exception signal is raised

• The control unit (CU) sets the Cause of the exception and
Exception PC (with the address of the faulting instruction)

• All instructions before the exception complete

• The faulting instruction (that causes the exception), and
any behind it in the pipeline, are turned into NOPs

• The PC of the first instruction in the exception handler
code is loaded into the PC register

12

Lecture 25: 13

Instruction Page Fault

[SUB R5,R5,R7] LW R4,0(R1) ADD R1,R2,R3
not in main memory

CU
=?

sign bit

ALU

Adder

IF/ID ID/EX EX/MEM MEM/WB

MB

M
U
X

M
U
X

M
U
X

M
U
X

M
U
X

LD
SA
SB
DR

D_in

RF
P
C

PCL

M
U
X

PCJ

+2

L1
Inst

$

D
ecoder

SE

M
U
X

MD

MW

D_IN

L1
Data

$

Fm … F0

Control
Signals

Data
TLB

Inst
TLB

Exception
PC

Exception
Cause

EL

exception

PC of the
exception
handler

Lecture 25: 14

Instruction Page Fault

[SUB R5,R5,R7] LW R4,0(R1) ADD R1,R2,R3
<TLB miss>

CU
=?

sign bit

ALU

Adder

IF/ID ID/EX EX/MEM MEM/WB

MB

M
U
X

M
U
X

M
U
X

M
U
X

M
U
X

LD
SA
SB
DR

D_in

RF
P
C

PCL

M
U
X

PCJ

+2

L1
Inst

$

D
ecoder

SE

M
U
X

MD

MW

D_IN

L1
Data

$

Fm … F0

Control
Signals

Data
TLB

Inst
TLB

Exception
PC

Exception
Cause

EL

exception

PC of the
exception
handler

Lecture 25: 15

Instruction Page Fault

<access page table>
<stall>

<LW and ADD have completed>[SUB R5,R5,R7]

CU
=?

sign bit

ALU

Adder

IF/ID ID/EX EX/MEM MEM/WB

MB

M
U
X

M
U
X

M
U
X

M
U
X

M
U
X

LD
SA
SB
DR

D_in

RF
P
C

PCL

M
U
X

PCJ

+2

L1
Inst

$

D
ecoder

SE

M
U
X

MD

MW

D_IN

L1
Data

$

Fm … F0

Control
Signals

Data
TLB

Inst
TLB

Exception
PC

Exception
Cause

EL

exception

PC of the
exception
handler

Lecture 25: 16

Instruction Page Fault

<page fault>
[SUB R5,R5,R7]

CU
=?

sign bit

ALU

Adder

IF/ID ID/EX EX/MEM MEM/WB

MB

M
U
X

M
U
X

M
U
X

M
U
X

M
U
X

LD
SA
SB
DR

D_in

RF
P
C

PCL

M
U
X

PCJ

+2

L1
Inst

$

D
ecoder

SE

M
U
X

MD

MW

D_IN

L1
Data

$

Fm … F0

Control
Signals

Data
TLB

Inst
TLB

Exception
PC

Exception
Cause

EL

exception

PC of the
exception
handler

Lecture 25: 17

Instruction Page Fault

<page fault>
[SUB R5,R5,R7]

CU
=?

sign bit

ALU

Adder

IF/ID ID/EX EX/MEM MEM/WB

MB

M
U
X

M
U
X

M
U
X

M
U
X

M
U
X

LD
SA
SB
DR

D_in

RF
P
C

PCL

M
U
X

PCJ

+2

L1
Inst

$

D
ecoder

SE

M
U
X

MD

MW

D_IN

L1
Data

$

Fm … F0

Control
Signals

Data
TLB

Inst
TLB

Exception
PC

Exception
Cause

EL

exception

PC of the
exception
handler

Lecture 25: 18

Instruction Page Fault

<page fault>
[SUB R5,R5,R7]

CU
=?

sign bit

ALU

Adder

IF/ID ID/EX EX/MEM MEM/WB

MB

M
U
X

M
U
X

M
U
X

M
U
X

M
U
X

LD
SA
SB
DR

D_in

RF
P
C

PCL

M
U
X

PCJ

+2

L1
Inst

$

D
ecoder

SE

M
U
X

MD

MW

D_IN

L1
Data

$

Fm … F0

Control
Signals

Data
TLB

Inst
TLB

Exception
PC

Exception
Cause

EL

exception

PC of the
exception
handler

PC of SUB “page fault”

Lecture 25: 19

Instruction Page Fault

<page fault>
[SUB R5,R5,R7]

CU
=?

sign bit

ALU

Adder

IF/ID ID/EX EX/MEM MEM/WB

MB

M
U
X

M
U
X

M
U
X

M
U
X

M
U
X

LD
SA
SB
DR

D_in

RF
P
C

PCL

M
U
X

PCJ

+2

L1
Inst

$

D
ecoder

SE

M
U
X

MD

MW

D_IN

L1
Data

$

Fm … F0

Control
Signals

Data
TLB

Inst
TLB

Exception
PC

Exception
Cause

EL

exception

PC of the
exception
handler

Lecture 25: 20

Instruction Page Fault

1st instruction in
exception handler

CU
=?

sign bit

ALU

Adder

IF/ID ID/EX EX/MEM MEM/WB

MB

M
U
X

M
U
X

M
U
X

M
U
X

M
U
X

LD
SA
SB
DR

D_in

RF
P
C

PCL

M
U
X

PCJ

+2

L1
Inst

$

D
ecoder

SE

M
U
X

MD

MW

D_IN

L1
Data

$

Fm … F0

Control
Signals

Data
TLB

Inst
TLB

Exception
PC

Exception
Cause

EL

exception

PC of the
exception
handler

Lecture 25:

Enabling Program Restart and Calling OS
The exception handler then takes the following actions

• Saves the program state into memory so this program
can later be restored when the exception has been
handled

• Reads the Cause register and determines the
appropriate service of the OS to invoke

21

Lecture 25: 22

ADD R1,R2,R3
LW R4,0(R1)
SUB R5,R5,R7

instruction
page

boundary
TLB miss

Page table miss
CPU generates a page

fault exception

exception handler
saves program

state and transfers
control to the OS

OS brings in the
page, updates

page tables and
TLB, restores
program state,

and resumes the
program

ADD R1,R2,R3
LW R4,0(R1)
SUB R5,R5,R7

A Recap: Handling a Page Fault

Lecture 25:

Analogy for Exception Handler

23

Lecture 25: 24

L2 Cache

Main Memory

L1
Data
Cache
+

Data
TLB

L1
Inst
Cache
+
Inst
TLB

Processor

Computer with Input/Output

Input/
Output

interconnect
(e.g., bus)

disk, keyboard,
graphics,

network, etc

Input
Output

Lecture 25: 25

Input/Output Devices

• I/O devices are the media to
allow computer systems to
interact with the outside world

Lecture 25:

Example Server System with I/O

26

PCIe

DIMM: Dual Inline
Memory Module
(circuit board with
DRAMs on both sides)

DDR: Double Data Rate
(memory interface standard)

PCIe: Peripheral Component
Interconnect Express
(high-speed bus standard)

Serial ATA = Serial
Advanced Technology
Attachment
(interface standard for
storage device)

Lecture 25:

I/O Controller
• An I/O controller manages one or more

peripheral devices
– Function: coordinates data transfers between the

device(s) and the rest of computer system
– Interface: contains a set of special registers for

communication with the processor
• Command registers

– Tells the device to do something
– Written by CPU/OS

• Status registers (read by processor/OS)
– Indicates the status of the device (ready, busy, error)
– Read by CPU/OS

• Data input/output registers

27

Lecture 25:

Accessing I/O Devices
• How do we get a command/data to the right device?

• Dedicated I/O instructions
– Separate Load/Store instructions to access I/O registers
– Only the OS can use these instructions

• Memory-mapped I/O
– Specific portions of the physical address space are assigned to

I/O devices
– Only the OS can access these addresses
– Each I/O device register has a unique memory address

28

Lecture 25:

Data Transfer Between I/O and Memory

29

• Programmed I/O (PIO)
– Processor completely arbitrates transfer of data from device to

memory
• Typically much less efficient than DMA

• Direct Memory Access (DMA)
– I/O device transfers data directly to main memory
– Processor/OS sets up the transfer through I/O commands
– And then can do something else, like running another program

Lecture 25:

Informing the Processor

30

• A device needs to inform the processor when an I/O
operation is completed

• Polling
– Processor periodically reads the Status Register, which

indicates when an operation is done

• Interrupt-driven I/O
– I/O device signals the processor via an interrupt when the

operation is done
– Typically more efficient than polling

Lecture 25: 31

Let’s Pull Some Pieces Together
• Page fault occurs
• Exception handler gets loaded
• Exception handler takes action
• OS sets up disk transfer
• OS schedules another program
• Data is read from disk and transferred to main

memory
• Disk controller interrupts processor
• Second program is interrupted
• First program can run again

Lecture 25: 32

INSTR LW R1,0(R1)INSTRINSTR

Data Page Fault Occurs in Program A

<TLB miss>
<page fault>

CU
=?

sign bit

ALU

Adder

IF/ID ID/EX EX/MEM MEM/WB

MB

M
U
X

M
U
X

M
U
X

M
U
X

M
U
X

LD
SA
SB
DR

D_in

RF
P
C

PCL

M
U
X

PCJ

+2

L1
Inst

$

D
ecoder

SE

M
U
X

MD

MW

D_IN

L1
Data

$

Fm … F0

Control
Signals

Data
TLB

Inst
TLB

Exception
PC

Exception
Cause

EL

exception

PC of the
exception
handler

PC of LW “page fault”

Lecture 25: 33

Exception Handler Gets Loaded
CU

=?
sign bit

ALU

Adder

IF/ID ID/EX EX/MEM MEM/WB

MB

M
U
X

M
U
X

M
U
X

M
U
X

M
U
X

LD
SA
SB
DR

D_in

RF
P
C

PCL

M
U
X

PCJ

+2

L1
Inst

$

D
ecoder

SE

M
U
X

MD

MW

D_IN

L1
Data

$

Fm … F0

Control
Signals

Data
TLB

Inst
TLB

Exception
PC

Exception
Cause

EL

exception

PC of the
exception
handler

NOP NOPNOP NOP1st instruction in
exception handler

Lecture 25:

Exception Handler Takes Action
• Saves program A state

• Reads the Cause register and determines that a
page fault occurred

• Calls the appropriate part of the OS

34

Lecture 25: 35

What states do we save into the main memory
when program A is suspended?

• PC ?
• Registers in RF ?
• Page table register (PTR) ?
• TLB ?

What about caches ?

OS Switches from Program A to B

Lecture 25: 36

• Program counter (PC): Save

• Registers in RF: Save

• Page table register (PTR): Save

• TLB: Invalidate all entries

• Caches: Typically retained; not flushed during
context switch as they hold physical addresses

OS Switches from Program A to B

Lecture 25:

OS Sets Up Disk Transfer using DMA

37

SATA
controller

memory
controller

FSB
interface

NB-SB
interface

“read 4K bytes
from disk

starting at addr X
to memory

starting at addr Y”

PCIe

Lecture 25:

OS Schedules Another Program
• While waiting for the disk read to complete for

program A, the OS scheduler may run a different
process (program B)

• It loads the processor with the state (PC, PTR,
and RF) of program B

38

Lecture 25: 39

OS Switches from Program A to B

Page Table Register

CU
=?

sign bit

ALU

Adder

IF/ID ID/EX EX/MEM MEM/WB

MB

M
U
X

M
U
X

M
U
X

M
U
X

M
U
X

LD
SA
SB
DR

D_in

RF
P
C

PCL

M
U
X

PCJ

+2

L1
Inst

$

D
ecoder

SE

M
U
X

MD

MW

D_IN

L1
Data

$

Fm … F0

Control
Signals

Data
TLB

Inst
TLB

Exception
PC

Exception
Cause

EL

exception

instruction of
Program B

Lecture 25:

Page is Read from Disk

40

SATA
controller

memory
controller

FSB
interface

NB-SB
interface

“read 4K bytes
starting at addr X”

PCIe

(now running
program B)

Lecture 25:

Page is Read from Disk

41

SATA
controller

memory
controller

FSB
interface

NB-SB
interface

data returned
to disk controller

PCIe

(now running
program B)

Lecture 25:

DMA Transfer of Page to Memory

42

SATA
controller

memory
controller

FSB
interface

NB-SB
interface

data transferred to
memory controller

PCIe

(now running
program B)

data written to
memory location Y

(via DMA)

Lecture 25:

I/O Controller Interrupts Processor

43

SATA
controller

memory
controller

FSB
interface

NB-SB
interface

interrupt
“I/O complete”

PCIe

(now running
program B)

Lecture 25:

CU
=?

sign bit

ALU

Adder

IF/ID ID/EX EX/MEM MEM/WB

MB

M
U
X

M
U
X

M
U
X

M
U
X

M
U
X

LD
SA
SB
DR

D_in

RF
P
C

PCL

M
U
X

PCJ

+2

L1
Inst

$

D
ecoder

SE

M
U
X

MD

MW

D_IN

L1
Data

$

Fm … F0

Control
Signals

Data
TLB

Inst
TLB

Interrupt
PC

Interrupt
Cause

EL/IL

PC of the
interrupt
handler

44

Program B is Interrupted
PC of ADD “I/O complete”

INSTRINSTRADD R1,R2,R3 INSTR

exception/
interrupt

The state of program B is saved by the interrupt handler

Lecture 25:

Program A Can Now Run Again
• Page fault was handled, so OS marks program A

as runnable

• If OS scheduler chooses to run program A, it loads its
state (PC of the LW, PTR, and registers)

• Key point: Processor was free to do other work during
the long I/O transfer time
– With DMA, processor did not have to directly handle data

transfers from device to memory
– With interrupt-driven I/O, processor did not have to poll the

device to see when the I/O operation completed

45

Lecture 25:

Building a Complete Computer

46

A
B Y

Lecture 25: 47

Next Class

More on Final Exam
Advanced Topics

